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ABSTRACT

Kahn, Morrison and Wright (1986) recently studied the effect of
aggregating individual members’ purchasing behavior to the household
level. Their results show that for exponentially distributed
interpurchase times (of individuals), the household choice process
approaches a zero-order process as the number of individuals in the
household increases, even though the purchasing behavior of each
individual is a first order process. The purpose of this paper is to
show that their results hold for any arbitrary interpurchase-time
distribution that has a density over some interval,. Therefore
additional support 1is provided for their conclusion that the
empirically observed zero-order choice behavior at the household level

may not convey much information about individuals’ choice behavior.



1. Introduction

Brand choice is an important aspect of the purchasing behavior of
a household. Generally, a buyer has to choose one of several brands
existing in the market place on successive purchase occasions. On each
occasion, the brand choice may be either completely random or based on
choices made on previous occasions. Examination of households’
successive purchases of specific products reveals that few, if any,
households are completely brand loyal (Ehrenberg, 1972; Bass, 1974;
Blattberg and Sen, 1976) and that frequent brand switching is typical
for frequently-purchased, low priced products.

Panel data, a 1longitudinal history of household purchases, has
been used extensively by marketing researchers (Frank, 1962; Massy,
1966; Jeuland, Bass, Wright, 1980; and Bass et al. 1984) to study the
multibrand buying behavior of households. A general finding of these
studies is that the purchase behavior on a given occasion appears to be
independent of past purchases. Such independence of choice probability
is often termed as constituting a zero-order process of multibrand
buying.

An important fact concerning the use of panel data in studying

multibrand buying is that the unit of observation is a household and

not a particular individual. In other words, the panel data is an
aggregation of all family members’ purchase histories. Thus, an
interesting question in connection with the use of panel data is: "To

what extent does household purchasing behavior depend on that of

individual family members?" This question can be stated differently



as: "What is the effect of aggregating individual family members’
purchasing behavior to the household level?" Kahn, Morrison and
Wright, 1986, (herein after referred as KMW) formulated a model to
answer this question. They consider a household consisting of
individuals who have first order (Markovian) purchasing behavior and
whose interpurchase times are independent and identically distributed
(i.i.d.) exponential random variables. Their results show that for
exponentially distributed interpurchase times, the extent of dependence
between successive purchases decreases as the number of individuals in
the household increases.

An intuitive explanation of KMW's result is the following: As the
number of individuals in a household increases, the likelihood for two
successive purchases made by the household to be from the same
individual decreases and therefore, since the brand choice processes
for different individuals are assumed to be independent, the degree of
dependence between successive household purchases must also decrease.
In fact, one might conjecture that the above explanation should be
valid for any "well-behaved" interpurchase-time distribution and not
necessarily only for exponential interpurchase-time distribution. The
purpose of this paper is to show that the above conjecture is indeed
true and therefore our results provide additional support for KMW's
conclusion.

Our analyses rely on renewal theoretic arguments. We provide an
interesting probabilistic interpretation of the quantity D (proposed by
KMW) which measures the extent to which the household brand choice

process is a zero-order process. This interpretation also suggests an



alternative statistical test for zero-order hypothesis which might have
greater statistical power than the commonly used tests. Moreover, we
bound the speed at which the aggregated household brand choice process
approaches a zero-order process for the class of NBUE (New Better than
Used in Expectation) interpurchase-time distributions. This class
includes the Erlang family of distributions. In fact, we show
analytically that the speed of convergence of D to zero in the general
case is no worse than the speed of convergence when the interpurchase-
time is exponentially distributed.

The rest of the paper is organized as follows: Section 2 contains
a detailed description of the model formulation. Section 3 presents
the main results. Section 4 establishes a bound on D for a general
class of interpurchase-time distributions. Finally, Section 5 contains

the conclusions.

2. The Model

Consider a household consisting of n individuals indexed by
i=1,2,...,n. We assume that the purchase behaviors for different
individuals in the household are independent and that each individual
has i.i.d. interpurchase times with distribution function F and finite
mean A. In addition, to avoid pathological situations, we assume that
F has a density over some interval.

The market is viewed as a two brand market, indexed by j=0,1. The
brand under consideration is denoted by 1 and the other brand(s) by O.
We further assume that each individual makes purchases independently
according to a first-order brand choice process, i.e., a two-state

Markov chain {X;, k = 1}, where X; denotes the brand bought by
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individual i on the kth purchase occasion, 1=1,2,...n. Let the ith

individual’s transition probability matrix Pi be of the form

Pi(lll) Pi(Oll)

Pi(1|0) Pi(0|0)

where Pi(ﬁlj) is the conditional probability that the ith individual
chooses brand £ on his (k+1)th purchase occasion given that he choose
brand j on the kth occasion, £=0,1 and j=0,1. The steady state
probabilities corresponding to Pi will be denoted by ﬂji, j=0,1.

Similarly, at the household 1level, let k> 1} denote the

Zk’

household’s brand choice process where

7 =

occasion
k

1 1if brand 1 is bought at the kth household purchase
0 otherwise.

Note that the process {Zk, k =2 1} is an aggregation of individual
brand choice processes {X;, k = 1}, i=1,2,...,n, and thus, it is in
general not a Markov chain. However for this process there exists a

"transition rate"™ matrix P, where

P(1]|1) P(0|1)
P =
P(1]|0) P(00)
with P(£|j) = transition rate from state j to state £ for j=0,1 and
£2=0,1. The transition rate P(£|j) is defined as the proportion of

times the process next enters state £ after leaving state j.
Now, if the household brand switching process were zero-order,

i.e., successive brand choices were i.i.d., then the rows of P would be



identical, implying that P(lll) = P(lIO). Since {Zk,k > 1} is in
general not a =zero-order process, we shall, following KMW, study a
quantity D defined by

D = P(1]1) - P(1]0),
which measures the degree of dependence between two consecutive
purchases at the household level. We shall examine the limiting
behavior of D as the number of individuals in the household approaches
infinity. For this purpose, we need to relate the elements of P to the
-elements of Pi for i=1,2,...,n and the interpurchase-time distribution
F.

First, we observe that at any purchase occasion in_gteady state,
the distribution of the random variable Ye representing the time to
next purchase for all individuals other than the one making the current
purchase is given by the equilibrium distribution Fe (the assumption of
F having a density over some interval is needed here), defined for
t = 0 by

1
F (t) =— [ [1 - F(u)] du
A

O &t

(see, e.g., Ross, 1983, p. 76).

To facilitate understanding we begin by considering the case of
two individuals, say, A and B. If a person makes two consecutive
purchases, then his/her interpurchase time Y is less than the other
person’s equilibrium interpurchase time Ye' On the other hand, if the
person making the purchase on the second occasion is different from the

one making the first, then Y is greater than Ye.



Now viewing P(lIl) as a conditional probability, we have

P(1|1) = B¢ . 1|zk =1)

Zys1

P(Z,, =1, 2, =1 /B =1).

To calculate the numerator, consider four mutually exclusive

events as follows:

Event Probability
A makes two consecutive purchases (1/2) T P(Y<Ye) PA (1|1)
B makes two consecutive purchases (1/2) T8 P(Y<Ye) PB (1|1)
A buys first and B buys next (1/2) T P(Y>Ye) 1B
B buys first and A buys next (1/2) TR P(Y>Ye) 1A

For example, the probability of the first event is obtained as
follows: The factor 1/2 is due to the fact that A purchases half of

the time; = is the steady state probability of A buying brand 1; P(Y

1A
< Ye) is the probability that A purchases brand 1 again. The

probabilities for the other events are obtained similarly.

Noting that P(Zk=l)=(1r1A + wlB)/Z, we therefore have

(2.1) P(1|1) = {[wlAPA(lll) + nlBPB(lll)]P(Y<Ye) +
2ﬂ1Aﬂ1BP(Y>Ye)}/(wlA+ﬂ1B).

Similarly,

(2.2) P(1]0) = {[WOAPA(1|0) + wOBPB(IIO]P(Y<Ye) +

[7oa™1m * TopT1alB(PY )N/ (mpp+mpp)



Now consider the general case of n individuals. In order for the

same individual to make two consecutive purchases, his interpurchase

time Y must be less than Y where Y = minimum of (n-1)
e,n-1 e,n-1

independent random variables each distributed as Ye. Denote the

probability of this event by a 4, le,a 4= P(Y<Ye,n-1)'

Similarly, if two different persons make the purchases then Y must

be greater than Y Consequently, the probability of this event

e,n-1°

will be 1-an Moreover, given that the individual who makes the

Rk
first purchase does not make the next purchase, it is equally likely

for the next purchase to be made by any of the remaining (n-1)

individuals. Following this argument we get

(2.3) n
%ep [ 2w R (D) + (/@) Q- ) [ 2 7]
i=1 1#]
P(1|1) =
n
2 m,.
-1
and
(2.4) n
@ 4 [ = nOiPi(1|0)] + (/1)) (Aee ) [ 2 ﬂOiﬂlj]
i=1 iAj
P(1|0) =
n
Z T,
i=1 0i

To evaluate P(1|1) and P(lIO) further, we must now make specific
assumptions on the interpurchase-time distribution F. We consider the
following examples.

Example 1. Exponential interpurchase times: F(t) = l-exp(-t/X),x>0.

For F exponential, it is easy to show that Ye is exponentially

,n-1
distributed with parameter 1/[A(n-1)]. Hence

(2.5) a_ . =XM/[A + A(n-1)] = 1/n.



Substituting (2.5) into (2.3) and (2.4), we have

n n
(2.6) P(1|1) = (I/n) [ = =y, P, 1jy + = g nlj]/ = my,
i=1 i#j i=1
and
N n
(2.7) P(1|0) = (1/n) [ = 0i Pi (1|jo) + = To1 niJ]/ z mys
i=1 i#j i=1

The expressions (2.6) and (2.7) agree with equations (4) and (5)
in KMW (p. 267).
Example 2. Erlang interpurchase times: Y ~ Erlang (m,1/(Om)), m = 1.
Consider the case of two individuals. Since Y can be viewed as a
sum of m.i.i.d. exponentially distributed "phases", it is not difficult

to see (e.g., Ross, 1985, p. 209) that

P(Y>Ye)
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For example, if m=2, then P(Y > Ye) = 5/8 and P(Y < Ye) = 3/8. The

above can then be substituted into (2.1) and (2.2) to find D.

3. Main Results
In this section, we present our main results in the form of two
theorems. Theorem 1 reveals an interesting probabilistic interpreta-
tion for D (defined in the previous section). Theorem 2 deals with the
asymptotic behavior of D as the number of individuals in the household
approaches infinity.
Theorem 1. D 1is equal to the correlation coefficient between Z, and

k

Zk+1' In other words,



Cov (Zk’ Zk+1)

(3.1) D = p(Zk,Zk+l) =

Var (Zk)

Proof: For any k = 1, let P(j) = P(Zk = j) for j=0,1 and

P(1,j) = P(Z,, = i, Z, = j) for i=0,1,j=0,1.

By definition,

E(Z 1'P(Zk=1) + O.P(Zk=0)

»,

P(Zk=1)

P(1)
and

E(Z, 2 = 1.P(z,=1,2, ,=1) + 0.[P(Z,=1,Z ,,~0)

k+1 k+1™

P(Zk=0’zk+1=1) + P(Zk=O,Z

k+1)

+

k1”0

= P(Zk=l,Z 1)

k+1
=P(1,1).

The variance of Z, , by definition, is

k’
Var(Z E(Zi) - [EZ)]?

») »)

E(Z

2
W - [EZ)]

E(Z) [1-E(Z)]

P(1)[1-P(1)]

i

P(1)P(0).

Also, by stationarity, E(Z = E(Zk) and Var(Z = Var(Z

K1) K41 K

The quantity D can then be expressed as

o
i

P(1]1) - P(1]0)

{P(0)P(1,1) - P(1)P(1,0)}/P(0)P(1)



{[1-P(1)]P(1,1) - P(1)P(1,0)}/P(0)P(L)

I

{P(1,1) - P(1)[P(1,1) + P(1,0)]}/P(0)P(1)

It

{P(1,1) - P(1)P(1)}/P(0)P(1)

P(Zk=l,Z 1) - P(Zk=1) P(Z 1)

k+1~
=1)P (Zk+l=0)]1/2

k+1
_ _ay11/2
[P(Z,=1) P(Z,=0)] [P(Z

k+1

- B(Z)EZ )

(E(Z

E(ZZ, 1)

2,1/2

2.1/2

[E(z ea)) )

2 2
[E(Z,)-(E(Z,)) )

Cov (2,2, 1)

/2

(var(z, W% (var(z,, '

p(zk’ Zk+1)’

completing the proof.

This 1is a very general result; it depends neither on the
interpurchase-time distribution nor on the number of individuals in the
household.

Theorem 2. When the number of individuals in a household increases, D
approaches zero and hence the aggregated process {Zk, k=1) looks like a
zero-order process, irrespective of the interpurchase-time distribution
and of the brand switching behaviors of individual family members.
Proof. We begin by evaluating (3.1). The covariance term

Cov (Zk ) is calculated by conditioning on the pair of individuals

2t

who make the kth and (k+l)th purchases which we denote by (Ik’Ik+l)’

h

where 1T ) is equal to i if the ith individual makes the k'

kK Tke1
((k+1) ) purchase, i=1,2,...n. For the case of 2 individuals, say A
and B, the pairs would be (A,A), (A,B), (B,A), and (B,B). 1In general,

2 . .
there would be n~ possible pairs of (Ik’ Ik+l)'
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First, we find the joint distribution of (Ik Using the

Tpan)
argument presented in the previous section for deriving (2.3) and

(2.4), we have

(3.2) P(Ik+1=i, Ik=i) = P(Ik =i) P(Ik+1=i IIk=i) = (1/n) @ 4
and

(3.3) P(I

a1~ LD = B =1) PO AL T=1) PCT g3 [ T=, T ,#0)

(1/n)(l-e )[1/(n-1)] for iAj.

It then follows from a well-known conditional covariance formula

(Barlow and Proschan, 1975, p. 30) that

(3.4) COV(Zk, Zk+1) = E[COV(Zk, zk+1|1k’ Ik+]_)] +

Noting that the two processes {X;,k > 1} and {Xi,k > 1} are independent
when i # j, the first term above can be evaluated as
E[Cov(Zy, Zy 41T, Ty )

n . .
1 1 . .
= 2 Cov X)) Bt Ty

Cov(X, Xy ) B(L=i, I ,=j)
n . .
-3 Cov(X;, x;+1) P(I =i, I,,,=1).

Substituting (3.2) into the above expression, we get

E[Cov(Z, zk+1|Ik’ I)]

(3.5)

n . .
- (/ma, y [ = Cov X X0



Next, by definition of covariance and properties of conditional

expectations, the second term in (3.4) is equal to

(3.6) E[E(Zkllk)E(Zk+llIk+l)] - E(Z) E(Z,,q).
where
E(Z,,,) = E(Z) = P(Z=1)
n
(3.7 - = P(Zk=l|Ik=1) P(I,=1)
i=1
n
= [ 2 =1 A/m).
i=1

Again, the first term in (3.6) is evaluated by conditioning on possible

pairs of (Ik’1k+1) and using (3.2) and (3.3); it reduces, after some
algebra, to
2 1

.1+ - lea. N = 7w, m,.].
1 11 n(n-1) n-1 145 1i "1j
Using (3.5), (3.7) and (3.8), (3.4) can now be written as

(3.8) (/e |
i

r™MB
3

n
Cov(Zk, Zk+1) = (l/n)an_l [ =

i=1
(3.9) . a2 ] L (l-a. N = x. ]
im1 1i n(n-1) n-1 14§ 1i "1j
n
- (1/n2) (= ”11)2'
i=1
Finally, Var (Zk) is given by
Var(Zk) = P(Zk=1) P(Zk=0)
(3.10) n n
= [(d/m) 2 w0 ] [A/m) 2 m.]
i=1 i=1

thus completing the evaluation of (3.1).

12



Summarizing, the final expression for D is given by

n n
i i 2
D = {(l/n)an_l [.Z Cov(Xk, Xk+l) + .Z T4 ]
i=1 i=1
(3.11)
1 2. 2 2
n(n-1) (l'an-l)[.z. ﬂliﬂ‘lj] - (1/n7) [.Z 1l'li] }/Var(zk),
i#j i=1
For example, if F is exponential then @ 9 = 1/n and using this

value of o 4 in (3.8) and (3.11), we get after some algebra the

following interesting results: for exponential interpurchase times,

n . .
Cov(Z,, 2, ,1) = (1/n2)i§l Cov(Xi, X;+1)

and

T

1 Oi)]'

i’
i=1 i

r™MBs

n . . n
D= [ = Cov(x, X, )] / [(T m )
i=1 i

Note that, P(Y < Ye) < 1 and hence @ 1" 0 as now. Now,

assuming that lim inf Var(Zk) = ¢>0, (3.11) implies that

lim sup | =2 [ mom.] - (Lmdy( 3 22
Pl h@m-D) g 1

1
¢ )

I M8

lim sup |D| =

i=1

2
|

14 (after replacing n-1 by n)

1 2, D
= = lim sup l - (1/m7) =T =
¢ i=1

This completes the proof of the theorem.

An important implication of this theorem is that zero-order brand
switching behavior at the household level is a somewhat expected
phenomenon, especially when the number of effective individuals in the
household in large; and thus it may not convey much information about

individuals’ choice behavior.
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4. Bounds on D
The asymptotic result (Theorem 2) in the previous section is
applicable only when the family size is "large". For moderate or small
family sizes and suitable interpurchase-time distributions, one must
compute the values of D explicitly in order to get a good feel as to
how "close" a particular household brand choice process is to zero-
order process. KMW show that for exponential interpurchase times,

| D] = 1/m.

The questions that can be raised are the following:
a) Is exponential distribution a realistic assumption for the
interpurchase-time distribution?
b) Is it possible to analytically characterize the behavior of D
when the interpurchase-time distribution is not exponential?
As a response to the first question, Chatfield and Goodhart (1975) have
argued that the assumption of exponentially distributed interpurchase
times is perhaps not very realistic because individuals are unlikely to
make another purchase immediately following a purchase. They therefore
suggested and provided some empirical support for the use of Erlang
distribution as a better approximation of 1interpurchase-time
distributions. Recently Gupta (1987) while analyzing scanner panel
data for regular ground coffee, provides empirical evidence that the
interpurchase-time distribution is Erlang-2.
Here we provide an answer to the second question and show that it
is possible to provide a bound for D for the very general situation of

NBUE (New Better than Used in Expectation) interpurchase times. It is

14



important to mnote that Erlang and hence also exponential random
variables are NBUE. The NBUE assumption can be interpreted as : the
mean time to next purchase of the person making the current purchase is
greater than or equal to that of any other person; i.e., Y is an NBUE
random variable if and only if

E(Y-t|Y>t) < E(Y) for all t = 0.

It is well known (Ross 1983, p. 273) that Y is NBUE if and only if
Y is stochastically larger than Ye, i.e.,
Y ~ NBUE <=> P(Y > t) = P(Ye > t) for all t= 0,

and hence P(Y < Ye < P(Ye < Ye,n-l) = 1/n. This fact, together

,n-l)
with (3.11), implies that

n .
lim sup |D| =< lim sup —%E @ q | = COV(X;, X;+1) +

i=1
n n
% ﬂil - E%I 2 ﬂl.ﬂl I + Py I - %— = ﬂi.l
i=1 izg 3 i=1 -t
< 1i n i i n 2
< lim sup { 2 % | Cov(Xk, Xk+1)| + 2 P> T
cn i=1 i=1 L
+—1 > ii' ™1 Ty )
c(n-n J
= 1lim sup ( ;L-+ 2 + 2 )

cn cn cn

i

lim sup (C% ).

Thus, the speed of convergence of D to zero is again no worse than

0(1/n) for the wide class of NBUE interpurchase times.
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5. Conclusion

This paper generalizes the results of KMW and shows that their
results hold even when the interpurchase times have a well-behaved,
arbitrary distribution. We therefore provide additional support to
their main conclusion that the empirically observed zero-order brand
switching behavior at the household 1level does not convey much
information about individuals’ switching behavior. Thus, one should be
careful when attempting to extrapolate household brand switching
behavior to that of individuals.

A useful outcome of our analysis is the possibility of a more
powerful statistical test for the zero-order hypothesis. Our Theorem 1
can be used to develop such a test which could then be employed in
empirical work.

Our results also suggest that more empirical work should be done
on product categories where only one member of a household is a
consumer of the product. Clearly, in this instance, the aggregation
issue would be irrelevant, and tests of the zero-order hypothesis might

then yield useful information.
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