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INTRODUCTION

In stochastic theory of individuals' choice among altermatives
whose (monetary) outcomes have differences in timing, it is
customary in the literature to proceed by postulating the following
concerning an individual's preferences: (1) for outcomes at any
fixed time, the preferences are represented by a von Neumann-
Morgenstern cardinal utility (which may or may not be assumed to
be the same for each time slice of the choice space); and (2) for
outcomes across time, the preferences accord with some rate of
pure interest (having whatever time structure). It is taken for
granted that this much postulation places no restriction on the
functional form of the individual's NM-cardinal utility for
monetary income, so that, in this regard, one is free to make
whatever additional assumptions one wishes.

In this paper, I propose to show that, in the last mentioned



respect, the literature is without theoretical foundations. More
specifically, I propose to show that, if one makes the usual
"consistency" assumptions concerning an individual's preferences
in the realm of risk (which implies that the preferences may be
represented by an NM-cardinal utility), and if it is assumed that
the NM-cardinal utility functions are one and the same for every time
slice, then, by assuming further that the individual's preferences
across time accord with a nontrivial rate of pure interest (with
whatever time structure), one necessarily fixes the functional
forms which can serve as NM-cardinal utility for monetary income.

If my argument here is accepted, then it must also be accepted
that either the literature dealing with individuals' choice when
both risk and time preference prevail, e.g., capital budgeting
theory, portfolio selection theory, etc., is in error in assuming
that an individual's NM-cardinal utility for monetary income can
have arbitrarily any functional form or, else, the foundations of
the theory need questioning for not agreeing with an individual's
having whatever NM-cardinal utility (or risk preference) for
monetary income he may wish to have,

Not too roughly, my argument runs as follows. Given any time
structure of pure interest, first I show, invoking ''consistency,"
that, for every lottery promising monetary outcomes at some

arbitrarily fixed time, one can construct a "time adjusted lottery"

promising monetary outcomes at any specific time whatever, such

that the individual is indifferent between owning one lottery or



the other. Then, by the transitivity of the indifference relation,
it follows that, for every lottery, the operation of taking its
certainty equivalent must commute with that of adjusting for time.
This translates into a functional equation which has determinate
solutions when the pure interest rate is nonzero. So are fixed

the functional forms which can serve as NM-cardinal utility for
monetary income when both risk and a nontrivial rate of pure
interest prevail.

Toward this, Section 1 below sets up the axiom system for the
argument; Section 2 gives the counstruction of time adjusted
lotteries and derives the functional equation which an individual's
NM-cardinal utility for monetary income must satisfy in the
presence of pure interest; Section 3 obtains the solutions of the
functional equation; and Section 4 closes the study with a brief

discussion of the results.



1.0

1.1

THE AXIOM SYSTEM

Since a simultaneous axjomatization of utility and probability
is not an issue here, I will assume without discussion that the
primitive notion of numerical probability is well defined and
applicable to our individual. Also, to simplify exposition, 1
will work with discrete probability distributions instead of the
generalized prbability distributions for which Stieltjes integrals
and notation other than that below may be convenient. In regard

"consistency' of preference behavior, T will

to the notion of
accept the following as basic and needing no further justification

or foundation.

Principle of "Consistercy": An individual's preferences will

be said to be 'conmsistent' only when he cannot, so to speak,
make book against himself and end up winning -- or shall I
say losing? == in the process!

Definitions:

(1) Sure Outcome: A consequence which is well specified in

the sense that it can always be determined with certainty
whether the consequence obtains will be called a ''sure
outcome.'" A sure outcome may need specification in more
details than one and, so, may not be represented as a

one dimensional scalar, but rather as a many component



(2)

(3)

(4)

vector, Nonetheless, every sure outcome can be denoted

by a single letter, and will here be so denoted.

Simple Lottery: Let {cl, oo, cn} be an arbitrary set
of sure outcomes. The prospect £ of getting exactly
one of Cps wees C with probabilities Pys> «ees P o

respectively, will be called a "simple lottery' with

consequences in |c ceos Cn} and will be denoted by

1’
4= {(cl: pl), ey (cn: pn)}.

Compound Lottery: Let {l oo lm} be an arbitrary

1’

set of simple lotteries with consequences in a set O
of sure outcomes. Then, a prospect L = f(ﬁl: ql), ooy
(ﬁm: qm)} of getting exactly one of 21, eeey Em with

probabilities Gqs cees 4 s respectively, is called a

"compound lotterv' with comnsequences in O . The simple

lottery EL obt.:ined from L by the classical laws of

composition of probabilities will be called the "simple
lottery associated with L ." Compound lotteries of

higher orders may similarly be defined and associated

with simple lotteries.

Constant or Sure Lottery: A simple lottery £ = {(c: 1)}

sure to result in an outcome ¢ 1is called a '"'constant"

or a "sure lottery." Clearly, viewing it as a sure

lottery is another way of viewing a sure outcome. Thus,

for any sure outcome c¢, ¢ will be identified with



{(c: 1)}, and the two notations will be used inter-
changeably to emphasize one or the other viewpoint, as

convenient.

Remarks: (1) Given a simple lottery £ = f(clz pl), ey

(cn: pn)} , another way of viewing it is to think of it as the
compound lottery £ = {(El: pl), cees (En: pn)§ , where

I {(ci:1)‘; (1 =1, ..., n).

(2) Given a set O of sure outcomes, let £ be
the set of all lotteries, simple or compound, with consequences
in 0. Then, for each ¢ €&, identifying c¢ with {(c: 1)}

embeds & in £.

Standing Notation:

R = The set of real numbers;

T = f{r= 0| r € R : denotes times, with 0 being the time
at which the individual makes the choice;

M = TR denotes the range of the individual's monetary income

(or of the change in the monetary value of his asset
position as at time 0). Although practical considera-
tions put both an upper and a lower bound to the range,

it is extended here, without loss of generality, to the

entire real line for analytical convenience.



M, = M«x {t} denotes the set of all possible monetary

incomes at time t (t € T);

moo= U{Mtl t € T} denotes the set of all possible monetary

incomes at whatever time;

£ = The set of all lotteries, simple or compound, having
consequences in a suitably specified set of sure

outcomes.,

In the realm of risky alternatives which can be characterized

as lotteries with consequences in some set O of sure outcomes,

an individual's preference behavior is consistent in the sense of

1.1 above only if it satisfies the following two axioms.

1.3

1.3.1

1.4

AXIOM I (of Complete O:zdering): The individual has over &£

(and, hence, also over &) a complete preference ordering
X (to be read, "is not preferred to'") which, for compound
lotteries, is stated in terms of their associated simple

lotteries, and which is continuous in the probabilities.

N.B. '~' will denote indifference, i.e., for any two

14

lotteries &', 2" €2, 4’ ~48" iff (' <2 & (" <)),

AXTOM IT (of Substitutability or ''Strong Independence’): For

’ " "

any integer n>0, let £, L. € Z Dbe such that ﬂ{ ~ li

for



all i, i=1, «.., n, and let q =0 (i =1, .e., n),
n

with L q.
i=lq1

independently of the events generating the probabilities for

= 1, be any probabilities which are generated

££ and zg (i=1, ..., n). Then, L' = ((z{: ql)’ ceey

(pa) b~ 1]t ap, vey Urq) ) = 1",

This much postulation yields the following result which,

being standard in the literature, is stated here without proof.

1.5

1.5.1

Theorem (on the Existence of NM-cardinal Utility): Axioms I

and II are sufficient (and necessary) for an individual's

preferences over £ to be represented by a '"von Neumann-

Morgenstern cardinal utility" wu: £ * IR, determined upto an

affine transformation, and having the property that, for any
simple lottery £ = {(c]: pl), ey (cn: pn)} e, u(d)

n
- iglpiu(ci).

Remark: To specify u, it suffices to specify its
restriction over the set & < #£ of sure outcomes. No
notational distinction will be made here between u and
the restriction of u on & -- thus, allowing the latter

to be written simply as u: O R.

Turn now to the case when & 1is the set 7 of all sure

monetary incomes at whatever time and £ is the set of all



1.6

1.6.

lotteries with consequences in 7, and assume that the individual's
preferences over &£ satisfy the consistency Axioms I and II. Then,
it is straightforward that his preferences satisfy the consistency
conditions both in respect of each "time slice'" of the choice space
and in respect of the choices across time. In regard to the former,
for any t €T, let {t < £ be the set of all lotteries having
consequences only in Mt . (Remark: Notice that LW£tl t € Ti
g:ﬁ 'Y Then, by 1.5, the individual's preferences on each time
slice £t can be represented by an NM-cardinal utility function

u,: Mt + R (t €T). For any t € T, up represents the
individual's preferences at time 0 for sure monetary incomes m € M
at time t and, since u already carries the appropriate time
subscript, the notation will be simplified by taking M as ut's
domain and writing u; as ug e M+ R. In regard to the individual's

preferences across time, it is usual to specify it in terms of his

preferences among sure mon:tary outcomes (m, t) € 7 as follows,

AXIOM III (of Discounting at Pure Interest Rate): There exists

a function p: T [O, 1} such that, given any sure monetary
outcome (m, t) € M, the individual is indifferent at time O

, t) and (m’, t +dt) € M iff m’

between (m
= m(l + p(t)dt) . The function p will be called the '"time

structure of the individual's own pure interest rate.,"

1 Remarks: (1) Using the sure lottery notation of 1.1.(4),



1.

1.

7

7.

10

the indifference postulated in the above axiom may be written

as {((m, ©) : Dt~ {((m’, t+de): 1)} iff m' = m(l + o(t)dt).

(2) Fix t, t’' € T arbitrarily. Then, (m, t)

~ (m', t")y iff w = m’e F” At, where m, m’ €M, At = (t'-1t)
7
and p* = i} t p(t) dt . (Remark: Notice that o* = p(t) as
t o
At * 0.) Setting & = e P At, @ will be called the

"certainty discount factor" corresponding to the ordered pair

(¢, t’) .

Comparison across time among arbitrary lotteries is then

carried out using the following

1

Definition (of the Certainty Equivalent): For any t € T, Ilet

Lt = {((ml, t) . pl), AN ((mn, t) pn)i € £t be arbitrary.

Then, a sure monetarv outcome (mz, t) € Mt such that (mz, t)
n

~ Zt or, equivalently, such that ut(mz) = iz pi.ut(mi)

= ut(ﬂt), will be called a '"certainty equivalent'" of the
lottery Lt for the individual whose NM-cardinal utility on
M is u : M* R.

t t

Remark: With everything being as in 1.7, using the sure
lottery notation of 1.1.(4), we may write {((mﬁ, t) : 1) - Lt.
This says (using Axiom II) that (mﬁ, t) may be substituted

for Et in all preference relations, and vice versa. 1n other

words, (mz, t) 1is an asking price of Et, i.e., at time O,
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the individual is indifferent between ﬂt’ assuming that he
already owns it, and receiving for sure an income m, at

time ¢t .

The following assumption (which should not be hard to concede
for all but a very mystical few!) guarantees a unique certainty

equivalent for any lottery Et €=£t (t € 7).

ASSUMPTION I (of Monotonicity of the Utility Functions): Each

u, (t € T) 1is a strictly increasing monotonic function of
m € M,
.1 Remark: This assumption allows the definition of a preference

order preserving map CEt: £t i Mt (t € T), where CEt(Zt)

is the unique certainty equivalent for any L €z£t.

This completes the preliminaries toward attending, in the next
section, to the main issue, namely, what restrictions, if any, does
Axiom III imply in respect of the individual's NM-cardinal utility

functions u_ on time slices Mt i  (t € 7).
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TIME ADJUSTMENT OF LOTTERIES

From here on, assume that the individual's preferences conform
to Axioms I - III.

In the nonstochastic realm, i.e., when no risk exists in fact,
and none is even to be contemplated by our individual, it is
straightforward that the individual's preferences on each time
slice M (t € T) wmust accord with the following

t

Proposition (on the Consistency Condition for the Nonstochastic

Case): For any t' € T, and any m, m, €M, (m, t’)

~ (m,, t’) iff (Gml, t) ~ (sz, t) for every t € T, where

2’
8 is the certainty discount factor corresponding to (t, tl).

If, as is usual, it is further assumed that each u,* M~ R

(t € T) 1is strictly increasing monotonic (see 1.8), then the above
condition is no restriction for it holds anyway, and, so, for the
nonstochastic case, the matter ends here.

But, contrary to what the literature takes for granted, the
above does not close the matter for the stochastic case, as may be
seen from the following informal argument: Suppose you own a
lottery ticket £ , € it' which will give you, at time t’, either
an income m with probability p or else an income m, with

probability (1 - p); and, fixing t € T arbitrarily, suppose that

your certainty discount factor corresponding to (t, t’) is ©.
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Then, if the lottery were to draw the outcome (ml, tl), you would

be indifferent between m; for sure at t' and eml for sure at

t; alternatively, if (m t’) were to be drawn, you would then

2,
be indifferent between m, for sure at t’ and sz for sure at
t . Notice that the argument necessarily uses the discount factor

as for certainty and NOT as "adjusted for risk'" in some manner!

Thus, comparing outcome for outcome, you are indifferent between

zt, and the "time adjusted lottery" denoted as Et = e(zt')t

€ it , which gives you, at time t 1instead of t’, incomes, each
of which is 6 times that given by Et, but has the same
probability as in zt,. In the next theorem, the same argument

is made formally using no more postulation than that of Axims I - III.

@
=

THEOREM I (on Time Adjusting of Lotteries): Fixing t, t’

arbitrarily, let 6 be the individual's certainty discount

factor corresponding to (t, t’). Then, for any lottery ﬂt,

= i((mls t,):pl), e oy ((mn, t’):Pn)} €£tl, 'g/t/ ~ 1

{((emly t):pl)s LR ) ((emn, t) : Pn)} €£t‘

Proof: Using the sure lottery notation of 1.1.(4), by Axiom
111, {((mi, t’y: 1) w'{((emi, ty: )b (i=1, ..., n).
Express ﬂt, as a compound lottery having for its outcomes
the sure lotteries f((mi, t’y . 1)‘ and, using Axiom II,
substitute for these the corresponding sure lotteries
{((emi, t): 1)} (i =1, ..., n). Then, 2. 1is simply the
associated simple lottery, so that, by Axiom I, zt, ~ zt.
#
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It is now possible to state the consistency condition which is

the counterpart of 2.1 for the stochastic case.

THEOREM II (on the Fundamental Consistency Condition): Let

everything be as in the hypothesis of Theorem I above. Then,

(my, t’) 1is a certainty equivalent of L iff (Gmﬂ, t) is

a certainty equivalent of 9(£t/)t.

Proof: Assume that (mﬂ, t’) 1is a certainty equivalent of

£t,. Denote dez it' -+ it as the time discounting map

defined by de(ﬂt,) = e(gt,)t (ﬂt, e;ﬁt,). Then, by the

transitivity of indifference, the following diagram commutes:

£ - 2
t de *t
1 dg Y
(m, t) < (m,, )

Thus, (m¥*, t) = (emz, t) . Now, assume, instead, that
(Gmﬂ, t) 1is the certainty equivalent of zt and repeat the
argument noting that the certainty discount factor
corresponding to (t’, t) is 5
#
The following is stated without proof for it is a straight-

forward corollary of the above theorem; it is given the status of

a theorem here only to underline its importance.
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THEOREM III (on the Fundamental Functional Equation of

Consistency): Fixing t, t’ € T arbitrarily, let u: M= R

and up e M+ R be the individual's NM-cardinal utility

functions, and let 8 be his certainty discount factor

I
corresponding to (t, t ). For any positive integer n,

let m,, ..., m_ €M be arbitrary. Then, for any probabilities
1 n
n
1 2 i = =
Pls +++» P with Py 0 (i 1, ..., n) and izlpi 1,
and any x € M,

Utl(x) = i

il ng}=]
s
n 1B
s

Ps ut/(mi) = ut(ex) =

;o P u (8m,)

The last three theorems are a direct consequence of Axioms
I-T1II alone, i.e., of the requirements of '"consistency'" of behavior
and the existence of pure intevest rate for an individual. In the
next section, a complete solution of the above functional equation is
obtained with the assumption that each ug (t €T) 1is strictly

increasing monotonic (see 1.8) and also accords with the following

ASSUMPTION II (of Time State Independence of Utility): Each

u M-+ R (t €T) 1is one and the same function upto an
affine transformation and is, thus, unambiguously denoted

(without the time subscript) as u: M+ R,

The alternative case when Assumption II does not necessarily hold
(i.e., the case of "time state degendence” of utility) is

investigated in a second paper.



16

THE ADMISSIBLE FORMS OF UTILITY FUNCTIONS

Let everything be as in 2.4 and assume that 1.8 and 2.5 hold.

Then, u: M* R satisfies the following functional equation

1=

n
u(x) = 1 Pi u(mi) e u(Bx) = iElpiu(emi) .......... (1)

1

for an arbitrary positive integer n, arbitrary m, , s m eEM,
arbitrary probabilities P =0 (i =1, ..., n) with iglpi:zl’
and for every 6 ¢ @, where
e at
@ = fe " (t, t'yeTxT. L., (2)
Note that © € @ implies that the interval [-é—, 8jce.
If @= {1}, i.e., if the time structure of the individual's

own pure interest rate (£(t) £ 0, then (1) holds trivially and
any strictly increasing monotonic function f: M+ R will serve

as an NM-cardinal utility function.

o
Py

Now, assume that, for some 6 € @, 5" # 1. This implies
that, if wu(m) 1is unbounded at any point w* > 0 [reSp, m* < O],

then it is necessarily unbounded over every closed interval

/

'] CM with both m, m" >0 [resp. both m, m’ < O]. To see

[m, m

this, choose n = 2 and, calling m, = 5, m, =y, Py = (1 - p)

and Py = P> rewrite (1) as
u(x) = (L-p)u(s) +puly) ¢ u(®x) = (1-p)u(88) +pu(By) ...(3)

For some y > & > 0, assume that u 1is bounded over the interval
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[5, y] . Pick p>0 and 8§ € [-l*, 9*], with 8 > 1, such that
Sx <y . Then, both u(88) and u(8x) are finite; hence, u(8y)
is also finite. Thus, u 1is bounded on the interval [6, Sy].

By repeating the argument j times, it follows that u 1is

bounded on the interval [6, Gjy] for 3 =1, 2, .... This shows
that, for any m € M, with m=2vy, u(m) 1is finite for one can
find some positive integer jm such that m € [6, (e)jm y]. A
similar argument with p > 0, but with 6 < 1 such that 8x > §
shows that u(m) 1is finite for 0 <m < §. The proof for the
case when m < 0 1is similar and is omitted.

There is nothing interesting about the case when wu(x) 1is
unbounded everywhere except possibly at 0. From here on assume,
therefore, that u 1is bounded on some (and, hence, all) positive
closed interval(s) or on all negative closed intervals.

Take the case when u ‘s bounded on all positive closed
intervals [6, y} , with 0<§ <y, and fix 9 # 1. 1In equation
(3), let y =13 then, for p € (0, l] , i.e., for x € (5, 11,

u(x) - u(8) _ u(fx) - u(8d)
u(l) - u(d) u(®) - u(8d)

B 3

Now, let y wvary and, taking 6§ <1, fix x=1. As y ranges

over the open interval (1, =), p takes values ranging from near

1 to near 0. So, we may write, using (3),
u(y) - u(d) - u(By) - u(Bd) 1 (5)
a(1) - u(d) 2@ - u(8b) o e anes

By 1.8, u(l) > u(d) and u(8) > u(Bs) . Hence, (4) and (5) can
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be put together and rearranged into the following functional

equation which holds for all x > 0

1
u(8x) = IZTRNTSY [u(l).u(88) - {u(d).u(B) +u(88).u(x)}

+ u(e).u(x)] R )

For the case when u 1is bounded on all negative intervals ry, 5],
with y < 8§ <0, a similar argument as above gives the following

functional equation for all x < 0 :

1
8 = - - -
u(Bx) TR [u(-1).u(88) - {u(®).u(-8)

+u(88) . u(x)} + u(=8).u(x)] eenrrrnn. (D)
Further solution of the functional ecuations (6) and (7) now

falls into two cases:

CASE 1 : u(x) remains bounded as x approaches 0O from the right

or from the left.

Consider the case when u(x) 1is bounded on a neighborhood of
0 and, hence, on every closed interval, whereby both equations (6)
and (7) hold. Choose 5 =0 and, with no loss in generality, set

u(0) =0 and wu(l)=1. Then, (6) and (7) reduce, respectively, to

u(6x) u(®).u(x) for all x =0 AP € )

u(Bx) = _2%l%%..u(x) for all x <0
u( -

In (3), substitute &= -1, y=1 (so that u(y)=1), and choose

0 <p <1 such that x=0. Then,
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Jigl_il_ = u(h)
u(-1)

Thus, (8) holds for all real x. In case u(x) 1is bounded only
as it approaches 0 from the right, only (6) would hold. 1In this
case, if u(0) exists, with no loss of generality, set wu(0) =0,
otherwise set 5%&)u(6) = 0, and set wu(l)=1. Then, (8) holds.
In case u(x) ;; bounded only as it approaches 0 from the left,

only (7) would hold. Then,there is no loss in generality in

setting u(-1)=-1, and u(0)=0 1if u(0) exists, otherwise

6Lt u(8) = 0, and in defining u(8) = -u(-8) for all 8 > 0.
+0

Then, (7) reduces to (8) holding for all x < 0. Hence, we have

THEOREM IV (on the Functions Bounded near 0 and Admissible as

Utility Functions): Accept Axioms I- III and Assumptions I

and II. Assume furthev that the individual's own pure
interest rate is nontrivial and denote 8 to be the generic
certainty discount factor corresponding to the ordered pair
(t, 9 (t, t' €T). Then, if u(x) 1is bounded on a

closed interval [0, 6] for some § >0 or some § <O,

precisely one of the following obtains:

(1) u 1is bounded on all closed intervals and satisfies
equation (1ll) below for all real x;
(2) u 1is bounded only on all non-negative closed intervals

and satisfies (1l1) for all x = 0;

(3) u 1is bounded only on all non-positive closed intervals
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and, defining u(8) = -u(-8) for all €& >0, satisfies

(11) for all x <0

u(Bx) = u(B) . u(x); u(0)=0; u(ld)=1 .......... (1D)

CASE II : u(x) becomes unbounded both as x * 0 from the left

and from the right.

If u 1s bounded on all positive closed intervals [é, y]
with 0 < § <y,i.e., if (6) holds, then, by 1.8, as é+ + 0,
u(d) + -, so that u 1is unbounded for all x < 0 and (7) cannot
hold. Similarly, if (7) holds, then, as 5_ 0, u(d) » +=, so
that u 1s unbounded for all x =2 0 and (6) cannot hold.

Taking limits as § + 0 and setting Lt u(8)/u(B8s) = 1/g(8),

6+ 0
(6) and (7) reduce, respectively, to the following:

u(8x)

-u(l). g(8) + u(8) + u(x) . g(8®) for all x>0..... (12)

u(8x) —u(-1).g(8) + u(-9) + u(x). g(8) for all x<0... (13)

Since both (12) and (13) do not hold simultaneously, there is no

loss in generality in defining for the case of (13)
u(x) = -u(-x) for all x>0. LLL......... (14)

This transforms (13) into (12) which, then, holds for all x z 0.

Continuing with (12), without loss of generality, set wu(l)=0:;

u(Bx) = u(B) + u(x).g(® ; uwl)=0  L.L....... (15)
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Recall from (2) that © € @ implies [%, 8] c €. (Clearly, for

any x € [é-, 8],

u(Bx) = u(®) + u(x).g(®) = u(x) + u(®).g(x) = u(x8) ..... (16)

g(§%§; L = g(:zx; L - & §§§ snglijzite K eenn. (17)
Therefore, either g(x) = 1, in which case (15) reduces to

W(Bx) = u(®) + u(x); u(l)=0 e, (18)
Alternatively,

u(x) = SR L, K#0 L. ce. (19)

Substituting (19) in (15), then, yields:

g(9x) = g(9) .g(x); g(l) =1 .. e, (20)

Note from (19) that, in this case, g and u are equivalent upto
an affine transformation. Thus, (20) is exactly the same as (11),
but it allows wu(x) to become unbounded in the neighborhood of O

both from the left and from the right, Thus, we have

THEOREM V (on the Functions Unbounded at 0 and Admissible as

Utility Functions): Let everything be as in Theorem IV, Then,

if wu(x) 1is unbounded at 0, setting u(-x) = -u(x), u
satisfies equation (18) or else equation (20), and, in either

case, for all x >0 or else for all x <0,
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Equations (1ll), (18) and (20) are the classical Cauchy's
functional equations, respectively having among their solutions only

the following strictly monotonic functions

Eq.(11): u(x) = |X\B . Sign x; B>0; x20 or x=<0 ..... (21)
Eq. (18): u(x) = Blog |x| . sign x; B>0; x>0

or else x<0 (not both) ... (22)
Eq.(20): g(x) = IX\B . Sign x ; B<0; x>0

or else x <0 (not both) ... (23)

This, finally, proves the following

THEOREM VI (on All Admissible Utility Functions): The

following are the only strictly increasing monotonic functions
(upto an affine transformation) which satisfy Axioms I - III
and the assumptions 1.8 and 2.5 together with the assumption

that the individual has a nontrivial own rate of pure interest:

u(x)=Y+O,lx|B. Sign x ; >0, B>0; x20 or x<0 .... (24)
u(x) = y + Bloglxl . Sign x; B>0; x<0 or else x>0 .... (25)
u(x) = vy + a‘x‘B. Sign x; <0, B8B<0; x<0 or else x>0 . (26)

These "admissible'" NM-cardinal utility functions are sketched

in Figures 1 and 2 below.
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FIG, 2:
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u(x) = 1xi6. Sign x ; B>0
FIG. 1: UTILITY FUNCTIONS WHICH REMAIN BOUNDED AS THEY
APPROACH O
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u(x) = loglxl. Sign x u(x) = - lxl— B. Sign x
(1) (2)
Remark: u exists either for x>0 or else for x<0 (not both)!

UTILITY FUNCTIONS WHICH ARE UNBOUNDED AT O
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4. DISCUSSION AND SUMMARY

Several things should be noticed about the admissible

NM-cardinal utility functions.

(L

(2)

(3)

(4)

(5)

For (26), the domain of definition of u may be the entire
real line, or the non-positive or non-negative half line. 1If
the domain is only a half line, then on the remaining part of
the real line u is necessarily unbounded. 1If the domain is
the entire real line, then the exponent [ which defines

u(x) over all x =2 0 1is necessarily the same as that defining
u(x) over all x = 0.

For (27) and (28), the domain of definition is either all x>0
or else all x <0 (but not both). Over the remainder of the
real line u 1is necessarily unbounded.

Any algebraic expression combining two or more admissible
functions yields an admissible function only if the expression
is reducible to one of the three admissible forms by some
transformation.

Each of the admissible functional forms represents risk averse
preferences on the positive reals iff it represents risk loving
preferences on the negative reals, and vice-versa.

An NM-cardinal utility function is not admissible if it has a
point of inflection at some point x # 0. This means that,

for example, the doubly inflected Friedman-Savage utility

function for money, or the concave-convex Markowitz utility
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function for increments of (monetary) wealth is NOT admissible!

(6) An admissible NM-cardinal utility function is unbounded at any
point x # 0 only if it is unbounded over all }*x for all
A >0.

(7) Except for the case u(x) = x, the functions defined by (24),
(25) and (26) do not remain admissible for translation
transformations (i.e., for y = x + ¢) -- a property which is
needed to allow the asking price of a lottery to equal its
bid price. Hence, if this additional requirement is to be
met, then wu(x) = x 1is the ONLY admissible NM-cardinal
utility function (upto an affine transformation).

(8) For each t € T, the certainty equivalent map CEt: i% -+ Mt
is homogenous of degree one in respect of the scale of the
risky outcomes; i.e., keeping all else the same, if you
multiply all the outccmes of an arbitrary lottery 4 € £t by
some constant c¢ > 0, tnen the certainty equivalent of the new

lottery is ¢ times the certainty equivalent CEt(Z).

Of course, all the above are the consequences of making
Assumption II in conjunction with the Axiom I-III and the assumption
(I) that the NM~cardinal utility functions are strictly increasing
monotonic. However, regardless of the particular assumptions, the
primary notions of the consistency of preference behavior, of

mutually exclusive outcomes, of numerical probabilities and

conditional probabilities, and of time adjustment (or time discount-

ing) are all related together via the fundamental (consistency)



26

condition of Theorem II, which must always hold: For every lottery,

its time adjusted certainty equivalent must equal the certainty

equivalent of the corresponding time adjusted lottery. This

requirement allows but one degree of freedom: You may either choose
arbitrarily the utility functions on each time slice Mt (t €7T),

or else may choose the structure of the calculus for time adjustment,

but not both!



