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1. INTRODUCTION

Innumerable commuters choose and/or follow daily some path from their origin
to their destinataion in a transportation network. It is therefore of {nterest,
both for decisional and for descriptive purposes, to provide a method of computing
best such paths. Improved paths could be found and the discrepancies between
these paths and those actually choosen could be evaluated. Moreover, a tool would
thus be »orovided for an empirical study of the distribution of departure times and

for a simulation approach to the dynamic network =quilibrium problem.

A simplistic approach would be to express this problem as a classical
snhortest path one. Then, a positive length representing a cost or a travel time
is assigned to each arc of the network. A path from an origin to a destination
with minimum total length can then be found Dby the well known algorithm of
Dijkstra (1953) or some variant thereof (see Deo and Pang (1984) for a recent

survey).

There exists however a large number of situations of practical interest for

which some assumptions of the classical shortest path problem are not adequate.

First, using that model Iimplies the assumption that the travel time
associated to each arc is constant, i.2. independent of the time of the day. This
assumption is clearly not satisfied in dense urban areas where travel times vary
significantly between peak and off-peak hours. Consequently, {n the model we
introduce, at each arc 1is associated a constant cost and a travel time which is a

functicn of the arrival time at the origin node of the arc.

Second, wnen considering the shortest path problem for commuters, it appears
that road users try also to minimize their schedule delay (i.e. the difference
between the desired and actual arrival times at destination). Note that schedule
delay 11s also an important factor when describing the travel behaviour of
individuals zoing to scheduled events at sport arenas, movie theaters and alike.
Again, the assumptions of the classical shortest path problem do not allow to take

such a factor into account.
The problem we consider here, consists in determining a path linking an
origin to a destination for a given departure time from the origin and which

minimizes the following objective function

z = TCC + a(TTT) + 3(2sD) + Y(LSD) :



where

TCC 1s the total constant cost,

TTT 1is the total travel time,

ESD is the early schedule delay (zero for on time or late arrivals and
positive otherwise),

LSD is the late schedule delay (zero for on time or early arrivals and
positive otherwise),

a (2 0) is the cost per unit of travel time,

£ (2 0) is the cost per unit of waiting time in case of early arrival,

Y (2 0) is the cost per unit of lost time in case of late arrival.

We call this problem the Generalized Shortest Path Problem (CSPP). It includes
among others the constrained shortest path problem (see Handler and Zang (1980))

and the shortest path problem with time dependent travel {imes.

Tnhe paper 1is organized as follows. In the next section, we present a
mathematical programming formulation of CSPP and show that it is NP-hard. Section
3 then provides some properties of CSPP and discusses some speclial cases of CSPP
which are shown to be polynomial. 1In Section 4, & pseudo-polynomial algorithm for

solving CSPP is presented and it is illustrated by a short example.

2. THE GENERAL MODEL

Let N = (V,p) be an oriented network with vertex set V and arc set &

There are n vertices and m arcs. Vertex v, 1s the destination and v, the

departure vertex or origin. At each arc (vy,vg) € A are associated a constant
cost ck£<z 0) for using the arc and a travel time Y (14) (2 0) wnere 1y
denotes the arrival time at v, , the origin of the arc. Let 1* 2 5 Dbe the

gesired arrival time interval at vp

We now provide a mathematical programming formulation of the generalized

shortest path problem (GSPP) for a given departure time 14 at the origin v,
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The first term of the objective function is the cost associated with the path
(the fixed cost plus the cost associated with the travel time). The second term

is the penalty for early arrival and the third term the penalty for late arrival.

As in classical snortest path problems, X*k =~ {f and only {f the arc
(vj,vk) belongs to the optimal path. Constraigts (2) to (4) {mply that the path
1inks v, Lo ve 2and for any intermediate vertex v, of the path there are
exactly one arc arriving in vy and one arc leaving v, . Finally, constraint
(5) defines the arrival time <, at each vertex v, . If v, does not belong to
the optimal path then all X, = 0 and thus 71, = 0 . If vy belongs to the
optimal path then 71, = ot L. (rj) Wnere v is the predecessor of vy on the

optimal path.
We make the following two assumptions

H1 : ¥ i,j such that (vi,vj) 2 A and ¥ 1y



Assumption H1 means that it 1is 1impossible to arrive earlier at the
destination by leaving the origin later, i.e. the arrival time T at any vertex
v is an 1increasing function of the departure time 1{ at the origin vy
Indeed, if a path contains only one arc (vi,vj) then, using Hl, we obtain that

dTy d(Ti * t,:(Ti))
N 4

— - 2 0
813 a1y

s

To show that this property holds for any path we use induction : consider a path
linking v; and v and containing p arcs. Let 14 De the departure time at
Vi and T3 the arrival time at v using this path. Furthermore, let v, De

the extremity of the subpath containing p-! arcs and 1, the arrival time at vy

d1y
using that subpath. If —— 2 0 then, since 15 = 1y * tkj(1k) , we obtain
i
- dt (1)
ar TR S dt,
e Ty X0, using M
aty C1g at;

Notice that this assumption corresponds to real world traffic behaviour (see

Ben-Akiva and de Palma (1986)) and is thus not restrictive.

Assumption HZ states that the penalty associated with one unit of travel time
is larger than the penalty associated with one unit of waiting time at the
destination. Empirical studies show that this ineqguality holds (see e.g. Small

(1982)).
We now prove
THEOREM 1.
GSPP is NP-hard
Consider the constrained shortest path problem (CSPP)
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This problem nas been proved to be NP-hard by Megiddo (see Handler and Zang

(1980)). Furthermore, it i3 a subcase of GSPP. To see this, set, in G3PP, t* -
T, =% ,2a=0,a=13=0, Yarbditrarily large and assume that the travel times
tjk(fj) are independent of <t (i.2. they are constant). The resulting GCSPP {s
2quivalent to CSPP. Now, since GSPP contains a subcase which is NP-hard, it is
{tself NP-hard.
o]
3. PROPERTIES AND SPECIAL CASES
We now present properties of GSPP. for the first property We nesd 3ome
additional definitions. Let P(v,,vq) oe a path linking v, Lo v, The
values of the variables X‘k , (vj,vk) 8 A , corresponding to that path are such
J

that X = i if and only if (vj,vk) is an arc of ?(v,,v,) and they satlsfy
(2) to (4). Furthermore, for a given departure time <1, at v, , the arrival
time <t at any intermediate vertex v, of P(v,,vy) 1is given by (5) and the
arrival time =<, at v, s

- = g (..

T et “i)e DA LR

J,K)(VJ,Ik £A

For a desired arrival time interval <* I & , P(v,,v,) 1is sald to be on time {f
and only if

RS WS S ) t, (rj) X, = 1%+ A

Jok[ (v, v En

Similarly, P(v,,vq) 1s early (respectively late) if and only {f

T, ) £, (1

;] i) X S 1% - A (respectively 2 1% + 4)
j,KI(Vj.Vk)EA /

Finally, we define three problems related to GSPP



the on time problem (TP)

-

min zy = g (e, =+ at, (15)) x
3okl vy voen JK

s.t. (2) to (6) ,

the early problem (EP)

min zo = 7 (e, * (o~ B)tjk(Tj)) X

Sokjvyvoes S Ik

s.t. (2) to (6) ,

anc the late problem (LP)

. Ay ~ - .
min zg = (¢, *+ (o= Y)ujk(TJ>> iy

L
j,k'(Vj,Vk)EA

s.t. (2) to (6)

TP

THEOREM 2.

If the optimal solution of TP (respectively EP or LP) 1is on
(respectively early or late) then it is an optimal solution of (SPP.

Proof.

Let F:(v,.vn) , F;(v],vn) and Fz(v,,vn) be optimal solutions of
and LP respectively. Consider a path P(v,,vn) with corresponding Xjk
have

z(P(v,,vp)) = )} (¢, + at, (13)) x, + B max [0 ,
k] vy, vi€h Ik Ik Jk
X - - - t +
T L= 1, . 1 Jk(TJ) xjk] Y max {0 ,
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T, * v tg) x o=t - a)
K
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, K AL AR I
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= Zg(P(v,,vp)) + B(1* = & - 1,)

(8)

(9)

Lime

, EP



2 zo(Pa(v,,vq)) + 8(x* = 4 = t,) , by definition of

P;(vlyvn) ’

= z(P;(vl,vn)) ir Pi(v,,vq) is early.

The proofs that z(P(v,,vn)) 2 z(Pg(vl,vn)) and z(P(v,,vq)) 2 z(P;(vl.vn)) wnen

Pe(v,,vy) is on time and Pg(v,,vy) late are similar and are left to the reader.

a
COROLLARY 2.1.
ir Cjk = 0 for every (vj,vk) 2 A, then GSPP i3 equivalent to
Min ) :jk(Tj) 30 (10)

Proof

A direct consequence of the fact that {f all the costs are equal to zero,
then TP, EP and LP are equivalent to (10) up to a multiplicative constant in the

objective function.

This last corollary and assumption H1 {mply that GCSPP with zero costs can easily

be solved using Dijkstra's algorithm.

COROLLARY 2.2

If the travel times are independent of the time of the day, i.e. if for every

(vj,vk) € A tjk(rj) = t‘k and if there exists a non negative constant a such
J
that for every (vj,vy) 2 A i T at, =~ then GSPP reduces to the classical
v}
shortest path problem :
Mi ! t,ox.
in ik ik

L
j,k'(Vj,Vk)eA

s.t. (2), (3), (4) and (6)



Proof
L direct consequence of the fact that also in this case TP, EP and LP reduce

to the classical shortest path problem.

Notice that even if the travel times are independent of the time of the day,

the optimal solution of GSPP is not necessarily an optimal solution of TP, EP or

LP when the costs are not proportional to the travel times. As an example,
consider the network of figure 1 with a = 2 , 8 = Y = t |, ¥ = 10 , 4 = 2 and
7, = 0 . There are three paths from v, to v,

P, = (v,,v,) U (vy,ve) 3 Pyo={v,,v,) y{v,,vy) and P, = (v,,v.) y (v.,v,)

Let ¢; and tj denote the cost and the travel time respectively of path Py

i =1,2,3 . Wehave : ¢, =10, ¢, =4, ¢, =65 ,¢t, =5, t, =10and t, = 8
Path P, is thus early and the paths P, and P, are on time. Tne values of
the objective functions of EP, TP, LP and GSPP for P, , P, and P, are given in

Table 1 . It appears that the optimal solution of EP is P, , the optimal solution

of TP and LP is P, and the optimal solution of GSPP is P,

FIGURE 1 : A NETWORK WHERE THI OPTIMAL

SOLUTION ©OF GSPP IS NOT OPTIMAL
FOR EP , TP OR LP.



P, P, P, Optimal solution
E? 15 14 14.5 P, (on time)
TP 20 24 22.5 P, (early)
Lp 25 34 30.5 P, (early)
Gsse 23 24 22.5 P, (on time)

Table 1 : Values of the objective functions of EP, TP, LP and GSPP for the network

of Figure 1.

Finally, with corollaries 2.1 and 2.2 we have identi{fied special cases of
G3SPP wnich can be solved using Dijkstra's algorithm. This does unfortunately not
hold for the gzeneral case even where there is no schedule delay. As an example,
consider the network of Figure 2 with =+, = Q . Assume that a = 1 and 8 = Y = 0.
There are two paths linking v, to vy : P, = (v,,v,) uy (v,,v.) u (v.,vy) and
Py = (vy,vy) y (vy,vy) y (vi,vs). The travel time aleong (v,,vs) s the only one
that depends on the time of the day so that ¢t_,{(1) = 2.75 and t,,(3) =1 . The

subpath (v, ,v,) y (v,,v.) 1is optimal to reach v, since

Ui

- 2 7
Ciz * Cay * Uy vty = 375 < Cpy * 0 * 0y + by, =

However path P, i3 not optimal as

t-'.SH):Z'-/S'tLSB) =
—_ )%

¢5=0

FIGURE 2 : A NETWORK FOR WHICH DIJKSTRA'S
ALGORITHM CANNOT BE USED
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Now, we present some properties concerning the efficliency of the optimal
solution of GSPP. Given e pair of objective functions, a path P(vl,vn) is
efficient if and only il no other path P'(v,,vp) has a better value for one
criterion and & not worse value for the other one. If P(v,,vp) 1is not efficient

then it is dominated by some other path P'(v,,vp)

THEOREM 3.

There exists an optimal solution P*(v,,v,) of GSPP such that any subpath

P*(vp,vq) of P*(v,,vy) 1s efficient for the two criteria

Min ] Cjk and Min ) t. (1)

where Tp is the arrival time at Yp using the subpath P*(v,,vp)

Procf.
Let P¥*(v,,vp) Dbe an optimal path to CSPP. Assume that there exists a path
ﬁ(vp,vq) which dominates the subpath P*(vp,vq) of P*(v,,vp) . We shall prove

that the path §(v1,vn) defined as

E(v,,vn) = P*(vl,vp) U ﬁ(vp,vq) U P*(vq,vn)

is sueh that z(P(v,,vp)) < z(P*(v,,vp)) . This will imply that P(v,,vn) is
also an optimal solution to GSPP. Then by iterating on all the dominated subpath
of P*(v,,vn) we wWill obtain an optimal path to GCSPP which does not contain any

dominated subpath.

Since E(vp,vq) dominates P*(vp,vq) we have

3 . < l Ch and (10)
(Vj,Vk)GP(\’p."q) (VJ,VR)EP*(\D,\Q)
v -
L £, (15) 8 . £, (13) (11)
— ' ko J ' jk
(vj,vk)eP(vp.\q) (vj,vk)EP (\p,\q)

with at least one strict ineguality (1p is the arrival time at Vp using path

P*(v,,vp)). Given the definition of P(v,,vn) , we obtain using (10) that

1 Cop v (12)
(v, V)IEP*(v,,vp) J

!

(V5, ViEP(V,,vy)

A

Cjk
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L o, (1) s ! v, (1) . (13)
(vj,vk)ep(vl,vn) - (vj,vk)EP*(vl,vn) -

Hence,

2(F(v,,vp)) =3 L ¢, *a L t,, (1y)
(v v )EP(v,,vy) J (vy,vi)8P(vy, ) J
+ 3 max {0 R S S S z_ t.k(rj)}
(Vi vIEP(vy,vy) J
S L S B
(v, Vi )EP(V,,vy)
- Z_ ¢, + max [a 2_ tik(rj) ;
(vi v )E€P(v,,vq) N (vi, v )EP(Vy,vq) °
(a - 3) L L (tg) =8 (0 - 8- 1))
(vs, Vi) 6B (v, vy)
+ Y max {0 T, Z. t'k(Tj) - * - A}
(vj,vk)GP(vl,vn) J
3 } ¢, * max {a ) t:k(rj) ;
(Vi v )EP* (v, ,vy) * (vj,vk)SP*(vl,vn)‘
(a - 3) ) R R K T,

(vj,vk)EP*(vl,vn)

+ Y max {0 ; T, * Z t . (rj) - % - A
(vj,vk)GP*(vl,vn)

using (12), (13) and since a § 8 ;
= z(P*(v,,vp))

which completes the proof.

Theorem 3 provides the grounds for an algorithm for solving GSPP. It will De

presented in the next section.

When the travel times are independent of the time of the day, we have a

stronger property.



THEOREM 4.

If for each arc (vj,vk) € A, t1k(1j) = tjk then there exists an optimal
solution P*(v,,v,) to GSPP such that any subpath P¥(vp,vg) of P¥(v,,vp) is

efficient for the two criteria

Min ] (cJk « (o - B)tjk) and Min | i

Proof.

wWe proceed as for Theorem 3. Let E(vp,vq) be a path which dominates a

subpath P*(vp,vq) . Using the same notations, we shall prove that z(?(v,,vn)) <

z(P¥(v,,vp))

Since F(vp,vq) dominates P*(vp,vq) and given the definition of P(v,,vy)

we have that

2_ t < ) t , and (14)
(vy, v )EP(v,,vp)

(c. =+ (o~ 8)t, < } (c. + (a- 8%, ). (15)
(vj,vk)EP(v,,vn) JK Jk (vj,vk)EP*(v,,vn) Ik Ik
Furthermore, combining (14) ancd (15) we obtain
) T
L (c <+ at, ) S L (e, + at. ). (16)
- 4
(vj,vk)EP(v,,vn) Jk Jk (vj,vk)EP*(v,,vn) Jk J
Hence,
2(P(v,,vp)) = L c, * o Z_ ® ik
(vy, v EP(v,,vp) J (v, VR IEP (v, vy)
T
+ 8max [0 ; v -4~ 1, - L tjk]

(Vi VI8P (v, ,vp)

+ Y max {0 ; 1, + Z_ tjk - % - 4]
(v, Vi IEP (v, vp)

- max | ! (c, + at, )
(vj,vk)eﬁ(v,,vn) Ik Ik

z -+ - <+ . — -
(V3 €8 (v, vgy ak T (8T By By )
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+ Y max {O T, o+ Z_ t k" - A
(vy,vi)€P(v,,vy) ]
< max | ) (c;k * at;k) ;
(vy,vi)EP* (v ,vn) N
L (e * (a= 8t ) + 8(t* = &= )]
(Vy,v)8P*(v,,vq) * ]
» vmax [0 1, + L Ly -l

(vy, i )€P* (v ,vy)

using (14), (15) and (16) ;

= z(P*(v,,vq))

When some travel times depend on the time of the day, Theorem U4 does

unfortunately not hold. As an example, consider again the network of Figure 2
with 1, = 0, t# = 10 , 4 =0 , a=2 and 8 = Y =1 ., The two paths linking
v, to vy are early. furthermore the subpath (v,,v,) U (v,,v,) dominates the

subpath (v,,v,) U (v,,v.) (in the sense of Theorem 4) as

C12 + Cz.. + (a - S) [tlz + tzk] = 3'75

However it is the path P, = (v,,v,) uy (v,,v.) y (v.,vy) which is optimal.

Indeed,

2(P,) = C,; *+ C,, * Cus ~ {a— 8) (t,, + t,, * £.4(3)) + 8(x*) = 16, and

Z(P,) = €3 * Cou * Cug *+ (@ = 8) (t,, *+ 8,y * £ (1)) + 3(1*) = 16.5
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Yy, THE ALGORITHM

In this section we present an algorithm for solving GCSPP for a given

departure time 1, at the origin vertex v, . The data of the problem are the
following : the network N(V,A) and for each arc (vj,vk) € A , @ non negative
cost cjk and a non negative piecewise linear travel time function tjk(Tj)

For simplicity, each such function 1is represented by a 1linked 1list of 1its

break-points

Then for T3 such that ay £ T < a

t. (e, -t
ik z+x) ik

=) ai

(ai)

tjk(Tj) = tjk(ai) -

The algorithm is of A*-type (see e.g. Pearl (1984)). 1In a first step, we compute

for each vertex Vi 2 lower bound on the cost and on the travel time
corresponding to the best path to go from v, to v, . The lower bound Ckg ©n the
cost 1s obtained by applying Dijkstra's algorithm backwards. Since the travel

time along an arc depends on the departure time at the origin vertex of that arc,
we proceed as follows to obtain a lower bound on the travel time. For T given

5

arrival times < , 1= 1,...,7 at Vn (e.g. from 5 to 5 minutes) we apply
Dijkstra's algorithm backwards to obtain the latest departure time 1; at each
vertex v, which &allows to arrive at v, at :* . Thus for these so-obtained
departure times Ti , & lower bound on the travel time is given by

i i i
EK(TK) = T = TQ

For a departure time 1, which has not been obtained by this last procedure, i.e.

i i+
Tk ¢ 1k ¢ Tk, a lower bound on the travel time is obtained by
i
Llg) = 17 = 1y

This expression is justified by the fact that one cannot arrive earllier by leaving

later (assumption H1). Again, practically, we will keep for each vertex v, a
'

linked 1list containing the so-obtained departure times and the corresponding

arrival times at vp

i

\ i T T
Ly = < ltidsee i (it )i (e 170

Once we have all the lower bounds, we proceed to the main part of the



- { : the number of the path;
- J(i) : the index k of the extremity vertex of the path;
- p(i) : the number of the path having for extremity the vertex which

preceeds (i) in path { ;

- A(i) : the cost of the path;
- u{i) : the travel time of the path given a departure time <1, at v, ;
- b(i) : a lower dound on the objective function corresponding to that path;

ACL) = o+ alull) + b (o + u(i))]
«+ 8 max {0, v =&~ 1, - ul(l) = glr, + uli))}

+ Y max [0 , Ty ¢ oulil) + oy = (i) - * - Al
- e(i) : an estimation of the exact value of the objective function for that
nath ;

ACL) *+ pey + alu(i) + oty (ry + u(i))]
+ 3max {0 ; ¢ - A ~ T, = ull) = ogy i, + u(i) i
+ Y max [0 ; Ty v ou(i) + oty » u(i)) - <* - al

wnere p and ¢ are two constants to be determined empirically.

During the whole procedure, the 6-tuples of the paths that have not been

dominated yet are stored in a list P

At each i{teration, we select a path, that will be denoted by i* , in the set

R} of unselected path such that
e(i*) = min{e({) , i £ 1’}

(ties are broken in favor of the path with minimum b(l)). We remove i* from R’.

Then for each vertex v, such that (vj,vk) g A where j = j(i*) , we obtain a

new path, say 1 . For =sach such path, we compute the values of j(i) , p(i) ,
ACL) , u(i) , »n(i) and e(i) . If b(i) > z , where z is the value of
opt opt
the objective function for the best path linking v, to v, found so far, we
eliminate path { . If b(i) % zoot and Jj{(i) = n , we insert this path {n the
list P and update z . If b(i) S z and i(1) < n , we compare this path
opt opt
i with 31l the other paths i' from P such that J{(i{') = j(L) . If 1| s
dominated, we eliminate it. Otherwise, we insert it in the 1list P of

undominated paths and {n the set R of unselected paths by choosing for { the
smallest numober not yet used. Furthermore, we eliminate from P and R all the

paths that { dominates. Finally, the algorithm stops when R 1is empty.
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ALGORITHM : Optimal path for CSPP.

Step 1 : Data

Read the catz, i.e. 7, , 7* , A, a, B, Y, ¢, p, N= (V,a) , and for each

(vi,vi) € K ¢ Cj and ij = < (a,,t (al);...;(ai,tjk(ai));...;(apjk,tjk(apjk)) >,

Step 2 : Lower bounds on the costs

(a) Set ¢y = 0 and ¢y = *= for k = 1,...,n"1 . Set S5 = {1,2,...,n}

(b) If S = ¢ , stop. Otherwise, determine k* such that ¢ = min {Sk , k € S}

_k{

anc¢ eliminate k* from S
(c) For each v such that (VJ’Vk*) € A, if gy » Spr T Cjk* ,

Set S5 = Cuy T Cyps - Return to (b).
Step 3 : Lower bounds on the travel times

r - i 3 -~ r
Choose a set of T values <1 , I =1,...,T of arrival times at vy
For { =1,...,7T , apply the following procedure.
i i . i . -

(a) Set 14 = 1 and 1y = == for k= 1,...,n-1 . Set S = {1,2,...,n).

H

(b) If S = ¢ , then for each vertex v, , k = 1,. n , add the couple (1&.1‘)

i

in the list Ly . Tnen, proceed to the next <" , unless 1 = T , and return
. ) ) i i

to (a). Otherwise, determine k¥* such that Ty = Max {1y, + K € 8} and

eliminate k* from S

(c) For each vj such that (VJ'VR;) € A , determine in ij* the element 2q
such that
2ag * ¢ (eq) £ 11 < a + t (a )
q Jk* Q7 = k¥ q+! °Jk* g+1
Ir
a - 2
Q+1 Q i
éq * T < - —— - (204 = &g = t. x(&gg)) > =
@ aq*l N "jk*(ccpx) °q tjk* Cq*x) K g Jk a J
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then set

3. T3
,\aq¢l) Y tjk*\aq) X

{
T§ = aq + aq+1 - :‘k
J

Return to (Db)

Step 4 : Initialization

Set L =1, 3(1) =1, 2(1) =0, x(1) = u(1) = 0 and zopt 2 +o
Determine (r?,rq) in L, such that r? s 1, < r?+l . Then compute
t,(1,) = 3 - L
(1) = ¢, + at, (') + 3 max {0 ; t* -4 -~ 1, = 5, (v,)}
= Ymax {0 ; v, + t,(7r,) - t* - &} , and
e(1) = pc, + aot, (1) + 3 max {0 ; <* - 4 - v, - ot,(1,))
= Ymax {0 ; v, = at,(t;) = t* - 4}

Set R = (1} and insert the 5-tuple (J(1) , 201) , x(1) , uC1t) , »(1) , =(1)) in

v

Step 5 : Selection of the nath with smallest estimation iand test for 2nding

If R = ¢ , go to step 7 (all the optimal paths sought for have been found).
Ctherwise, compute e = min {e({) , { € R} and select i* such that D(i*) =

min {b(i{) , i 2 R and e(i) = 2} . Delete {* from R . If Db(1*) >

“opt '
erase the corresponding 6-tuple from P and return to the beginning of this step.

Otherwise, proceed to step 5.

Step 6 : Computation of new labels

For each vy such that (vj,vk) 8 A and j = j(i*) , compute

p(i) = u(i*)y = ¢t (t, + u(i*))

ik
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determine (TE,TQ) in Ly such that

+1
TE <1, + ull) < TE

and set

trlr, + wli)) = 9 - 1, = u(i)

Ther.,, consider the 6-tuple composed of

p(i) = w(i*) + ¢ (1, = u(i¥))

(i) = a(1) + cp + olw(i) + tylr, + w(4))] + B max {0 ; % - & - 1,
-ull) = oy(ry, - uli))) » ymax {0, v, + u(i) + gk(Tl * uli))
- ¥ - 4} , and

e(1) = (1) + pey = alwli) + oty + w(i))] + B max {0 ; % - &
=1, = ould) =yl + wli))) + ymax {0 1, + u(i)
+ otplt, < w(i)) - % = &)

Ir (i) > 2 opt then erase the f-tuple.

|9

If j(i) = n and Dbli) <z , set z . = Db(i) and eliminate from P all the
opt opt

paths i' such that j(i') = n and b(i') > zopt . Add the new b6-tuple in list
P : choose for | the first value not yet used.

If j(i) = n and b(i) = zopt , add the new 6~tuple in XYist P , choose for |
the first value not yet used.

If j(i) < n , compare the 6-tuple with the undominated 6-tuples i' of 1list P
such that j(i*) = j(i) . 1If some of them are dominated by the new 6-tuple (i.e.
if 0 a(4') 2 A1) and u(i') 2 w(i) with at least one strict inequality), erase

them from P and R (if still in R ).
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least one strict inequality), then erase the new 6-tuple; otherwise add it to list
P : choose for { the first value not yet used; set R = R U {i} . Return to

step 5.

Step 7 : Outout of the ootimal paths for CSPP

Each path i* in P such that j(i*) = n is optimal. Use the j{(i)'s and

p(i1)'s to recompose backwards the list of vertices of that path.

THEOREM 5.

The previous algorithm solves GSPP in O(nmc log n’c) time

Proof.

To prove the algorithm's correctness, we first note that the first four steps
are preliminary ones. Step 1 involves reading of the data. Step 2 consists {n a
backwards application of the classical Dijkstra's algorithm. Step 3 uses T
times a backwards variant of Dijkstra's algorithm in which travel times, along
arcs, corresponding to the arrival times at the extremity vertices are computed.
That this algorithm gives shortest <time paths {s a direct consequence of
assumption H! and of the rules of Dijkstra's algorithm. Step U consists in a few
straightforward initializations of parameters for the main algorithm which
comprises steps 5 to 7. In the latter, efficlent paths are systematically
constructed by labeling vertices wnich follow immediately the last vertex of a
selected path. Subpaths are eliminated by using the lower bdound b(i) described

above or because they are dominated.

Assuming, with very little loss in generality, the costs cjk Lo be integer,
the number of efficient paths from v, to all other vertices v is bounded by
n?c , Where ¢ = max [cjk , (vj,vk) 8 A} (indeed, the cost of any elementary path
from v, to a vertex Vj is not greater than (n-1) . ¢, all efficient paths are

elementary and there are n vertices). The algorithm therefore yields an optimal

solution in a finite time.

Regarding complexity, we note that step 2 is in O (m log n) (cf Gondran and
Minoux (1979)). Sim{larly, step 3 is in O (Tp m log n) where » denotes the

maximum number of break-points {n a list L. Step 4 is in O(T) . Using a

Tk

-

heap to store the unselected paths yields an 0(n?c log n?c) implementation of

step 5 (the selection of a path in the heap is in 0 {(n?c) and this must de
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performed at most n?c times). As the total number of arcs is m , step 6 takes
0 (nmc max {log n?c , p , TJ)) time. Indeed, each time a new 6-tuple is computed,
0 (max {p,T}) operations are needed and then 0 (log (nc)) operations to check
dominance an¢ O (log (n®c)) to update the heap containing the estimations e(i).
Finally, step 7 is in O(n®c) as there are at most (n-1). ¢ efficient paths from
v, to  vp . Assuming p and T constant the total complexity is thus in 0

(nmc log n?c)

u]
EXAMPLE.

Consider the network of Figure 2. The costs 01V are indicated along the
arcs. The travel time functions are depicted in Figure 4. For ease of

exposition, the arrival time functions T3 vt (1j) atl the extremity vertices of

ik

the arcs are also depicted in Figure &4,

FIGUR

m
w
—
I

n

NETWORK OF THE ZXAMPLE .
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FIGURE 4 : TRAVEL TIMES (t!t) AND ARRIVAL TIMES {at)
FOR ALL ARCS OF THE NETWORK OF THE EXAMPLE.

More prec1i. 21y, the 1ists I..ik of break-points cof the travel time functions
(rj) for (v, ,vy) 2 A are the following

n !

Lz C(0,1)501,3);(2,5):(5,8);(7,4):(8,4):(10,2); (1u,2) >,

< (0,2);(2,4):(7,4);,010,2);(15,2) > ,

—
—
u

< (0,2)5(2,3);(4,3);(5,4);(8,4);(12,2); (14,2) >,

—

n

5
H

Lyg = < (0,1)503,1)5(4,4);(7,3);(11,3); (13,10 (15,1) >,

Lys = < (0,2);(3,2):(6,5):(10,5);(12,4);(14,2) >,
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we obtain

, the so-obtzined

Ly < (0,3);(14,3) >,
Loe < (0,3);(6,6);(8,06);(12,2);(14,2) >
Lew = < (0,1);(H,1);(6,2);(9,5):;(13,3);(15,1) > , and
Lse < (0,1):;(5,17;(9,5):(10,5);(12,4);(15,1) >
Let 1, 0, t* 7 5 =0, a=2 and B =Y =1 t step 2,
the following lower bounds on the costs : ¢, =9 , ¢c, =6, ¢, =3, ¢,
Se =
We have applied step 3 for . 5,6,...,15. For each =
departure times 1& , k=1,..,6 , are listed¢ in Table 2.
* i i i i i i
i % ig {3 (¥ [X3 ‘e
5 0 - 2 1.333 4 5
6 0.500 0 3 2 5 6
7 0.625 gc.uhby 3.250 2.667 £.500 T
8 0.750 0.889 3.500 3.333 6 &
9 0.875 1.333 3.750 y 6.500 S
10 1 1.778 4 4.667 7 10
1M 1.125 2.333 4.250 5.333 7.500 M
12 1.250 3 4.500 6 8 12
13 1.380 L §.750 7 8.500 13
14 5 8 g 12 9 T4
15 6 10 10 13 10 15
Table 2 : Departure times 1ty , k = 1,...,6 for t° = 5,6,...,15.
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The details of the application of steps 5 and o are given in Table 3.

list ? is given for each iteration. The o-tuples without star contitute
set R. We have chosen o = 1.1 and ¢ = 1.7 . For clarity, the lower bounds

and  ty(r, + u(i1)) for x = j(i) are also indicated in Table 3.

We finally obtain :,-th = 27.75 and there is one optimal path

(vy,v) U (vy,vi) U (vg,ve)

! MW e 1w 2D ok | Iedn) | s 2(4)
1 i 0 ] 0 3 5 21 28.ux
2 2 r 4 1 5 7 21 w2
3 3 v 5 2 3 3 21 1 23.5%
! i 0 o] o] 9 5 21 28, ux
2 2 : 4 1 5 7 27 fu2.3
3 3 1 5 2 3 3 21 |23
2 3 3 3 6 3 43 | 62.5
4 4 3 5 5 3 5 32 | u28
5 5 3 Ty 4 7 1 33 13uye
| 1 Q Q Q 9 5 21 28.u%
2 2 ! u 1 5 7 27 |23
3 3 ] 5 2 3 3 21 |23.6%
u 4 3 § 5 3 5 32 | u2.8
5 5 3 14 4 7 1 33 3.4
4 5 ¥ 5 3 5 w508
5 5 5 21 5 9 ) 13 ) .,
1 I 9 9 0 9 5 21 | 284 °Pe
2 2 | 4 1 5 7 27 [ u2.3
3 3 ! 5 2 3 3 21 | 23.6%
4 u 3 6 5 3 5 32 | u2s
5 5 3 14 y 7 1 313 3 U
5 5 5 21 5 2 2 RIS =z
. opt
| 1 0 o] o] 9 5 21 28.u*
2 2 1 y ! 5 7 27 fua2.3*
3 3 | 5 2 3 3 21 | 23.5%
4 4 3 5 5 3 5 32 1423
5 5 3 U 4 7 | 33 | 3u.ye
5 5 5 21 5 3 0 33 33%] =z
7 4 2 7 3.5 3 4.5 27 | 36.75* opt
| oo 0 0 9 5 21 | 28.un
2 2 1 4 1 8 7 2 42, 3%
3 3 1 6 2 3 3 21 23.5¢
4 4 3 5 5 3 5 32 |ua2s
5 5 3 Ty 4 7 | 33 344w
5 6 5 21 5 9 0 33 33
7 4 2 7 3.5 3 4.5 27 | 36.75*
8 6 7 10 8.25| o 0 Wim} -z
[ | ¢ OPC
] ] a | o0 0 9 5 21 28.4n
> 2 ! 4 1 § 7 27 | w23
3 3 1 5 2 3 3 21 | 23.6%
5 5 3 Ty 4 7 1 33 4.4
7 4 2 7 3.5 3 4.5 21 | 36.75%
3 5 7 3.25| o 5 2775 1217500 = 2 0c

Table 3. Details of Steps 5 and 6.
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