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1. INTRODUCTION

Aggregate demand systems (a.d.s.) are widely used in both theoretical and
empirical work on product differentiation. The a.d.s. can be taken as a primitive
which obeys some a priori “reasonable” properties such as the gross substitutes
property, some kind of Chamberlinian symmetry, etc. (see, e.g. Shubik (1959) and
Friedman (1977)). However, for many purposes, it is useful to have a theory of
the microeconomic underpinnings, from the viewpoint of individual consumers, of
such an a.d.s. In particular, with a disaggregated model, further insight may be
gleaned about the role of individual preferences and incomes, and moreover, exact

welfare analysis becomes possible.

The two prevalent utility-theoretic approaches used in product differentiation
are the representative consumer and address models. The representative consumer
model (see, e.g. Spence (1976), and Dixat and Stiglitz (1977)) leaves open the
question as to the individual preferences it represents since it is itself an a priori
aggregate preference ordering. The utility function posited under this approach
(most typically a CES-type function) embodies aggregate preference for diversity
via a parameter in the utility function (p in the CES). The justification of such
a model as a description of consumers with specific tastes has not been made

explicit.

In the address model, products are described by the bundle of characteristics
they embody (see e.g. Lancaster (1979) and Archibald et al. (1986)). Individ-
ual preferences are defined over characteristics directly (in the previous approach
they are defined over goods) and aggregate preference for diversity is captured by

endowing each consumer with a different most preferred product.

A third model was recently suggested by Perloff and Salop (1985) who claimed
to synthesize the two previous ones via a probabilistic choice framework, although
the precise nature of the synthesis was not made explicit. Their approach is
reminiscent of discrete choice theory developed in econometrics (see e.g. Amemiya
(1981) and McFadden (1984)). In this theory, individuals face mutually exclusive
choice and are assumed to maximize a stochastic utility function. As a result, each

individual has a positive probability defined on each choice.

In this paper, we \7ant to explore the linkages between these different ap-
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proaches. To this end, we choose a simple and specific address model and we
identify a set of conditions to be imposed on a given a.d.s. satisfying the gross
substitutes property to be generated from our address model. In particular, we
show that the dimension of the characteristics space must be large enough com-
pared to the number of variants of the differentiated product for the reconciliation
to be possible. We then state some additional conditions to be satisfied by the
a.d.s. 1n order to make 1t fully consistent with our address model. As an 1i-
lustration, we consider the logit, probit and linear probability models and derive
their explicit address (and deterministic) representations, thus confirming Manski
(1977)’s hypothesis that randomness in observed consumer behavior lies (at least
partially) 1n unobservable characteristics influencing consumer choices. This en-
ables us to provide an alternative to the standard stochastic utility interpretation
of these models. In addition, this highlights their implicit restrictions, especially

in regard to the meaning of their main parameters.

Finally, we take the a.d.s. generated by the CES representaiive consumer
and show explicitly that 1t can be derived from a specific address model similar
to that considered previously. Whereas the CES a.d.s. was loosely based from a
consumer-theoretic viewpoint, and criticized for this fact, we now have a concrete
disaggregated preference structure which generates it. On top of this, we uncover

a strong conceptual link between the CES and logit models.

2. THE MODELS

Model 1. Let us consider a demand system defined over n variants of a

differentiated product. The demand function of variant 7 is given by

Di(pl»---,Pn), izl,...,ﬂ (1)

where p; 1s the price of variant i. The corresponding a.d.s. is assumed to obey the

following properties :

(A1) D; isstrictly positive for all nonnegative prices, n—1 times continuously
differentiable and satisfies the gross substitutes property (GSP)
0D; C .
—>0 forall p, >0, j7#4, h,i5=1,...,n. (2)
Opj
Further assumptions will be introduced in the course of the analysis in order

to cast the above demand system into the address framework.
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Model II. The address model we want to compare to Model I is defined as
follows : '

(B1) There are m characteristics and /R™ is the characteristics space. The n
variants are located at z; = (z{,...,z{*) ...z, = (z},...,27), with z; # z; for all

t,j=1,...,nand 1t # 5. !

(B2) There is a continuum of consumers distributed in R™ according to a
continuous and strictly positive density function f(z), where z = (z!,...,z™),
with fR"‘ f(z)dz = N, the total population.

(B3) Each consumer purchases one unit of the variant which offers the great-
est utility. (This assumption is relaxed in Section 5.) The utility of a consumer
located at z (where z corresponds to its most preferred brand) and purchasing

variant i 1s given by

m

U;(;):W—cZ(zk—zf)z, i=1,...,n (3)

k=1

where ¢ is a positive constant and
Vi=ai—pi (4)

with «; representing a (one-dimensional) quality index of variant i. The second
term on the RHS of (3) is the disutility from not buying the ideal brand z, which
is proportional to the square of the Euclidean distance between z and z,. (In the
geographical context, this disutility corresponds to the transportation cost.) This
particular specification of the utility function, which has been used recently in
several models of product differentiation (see, e.g. Eaton and Wooders (1985)),
has been chosen to allow us to determine in a simple way the basic components of

the address framework consistent with Model I. 2
The market space of the variant 1 is defined as
M;={ze R™; U,(QZUJ(Q), j=1,...,n}

which can be rewritten as (using (4))

Mi={zeR™V;=Vi<c) (zF =)+ —2:5),5=1,...,n}.  (5)
k=1



Hence, M; 1s the intersection of n — 1 closed half-spaces, the boundaries of which

are hyperplanes orthogonal to the straight lines passing through z; and z; , with
J=1,...,n, JF1.
The demand for vamant 1 1s therefore defined as
X = / f(2)dz. (6)
M,

Our objective in the next section is to find a function f(z) and a set of points
{z;,...,2a} consistent with the demand system (A1). The address approach also

implies further restrictions on the demand system satisfying (A1l).

3. EQUIVALENCE OF THE MODELS

For the demands X; to be identical to the demands D;, we must impose
some conditions both on the dimension m of the characteristics space and on
the positions of the variants z,,...,z,. For example, if m = 1 and n = 3 with
zy < z9 < z3, then either My # ¢ and hence 0X,/0ps = 6X3/0p; = 0, or
Mo, = 0 and hence X, = 0. In both cases, assumption (A1) 1s violated. Secondly,
suppose that m = 2,n = 4 and z,,...,z, are as shown in Figure 1. Then, for

py = ps3 < pz = ps, the market spaces are represented 1n the figure so that
6X2/6p4 = 5X4/5p2 = (.

[Insert here Figure 1]

On the other hand, if m = 2 and n = 3 with z,,z, and z; noncollinear, then
all demands are strictly positive and the cross derivatives are always positive. This

1s illustrated in Figure 2.
[Insert here Figure 2]
More generally, we have the following result :

PROPOSITION 1. For the demands X; to satisfy the GSP, 1l must be that

{zy,--.,2,} contains n — 1 linearly indcpendent poinis.
The proof is relegated to Appendix I.

This proposition has an important implication : a pecessary condition for
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the GSP to hold is that the number of variants does not exceed the number
of characteristics by more than one (the characteristics space is rich enough).
When the condition of the proposition is met, we have something akin to the
Chamberlinian assumptipn that a change of the price of one variant is spread out
over all others. Otherwise, the characteristics space is crowded by variants and
it is not possible for all to be “neighbors” for all prices (the GSP is essentially a

neighbor condition in that it requires M; N M; # @ for all prices and all 1, j).

Accordingly, we can limit ourselves to m > n — 1. Let us first consider the
case m = n — 1. Given Proposition 1, we may assume without loss of generality
that z;,...,z,_, form a basis of IR™; furthermore, z,, can be chosen arbitrarily.
A natural candidate for the basis 1s the orthonormal one with =z, = Q. However,
to derive a simple expression for the consumer density function, we make a change

of unit and shift the origin in order to have z; defined as follows :

a if 1=
:{: ,7=1,...,n—1 (7)
—a otherwise
whereas
z, =(—a,...,—a) (8)

with a being a positive constant reflecting the proximity of variants. For (7)

and(8), the market space for variant n i3 therefore given by

V., -V,

M,={zcsR™ < ~ j=1,...,n=1} (9)

4ac
which shows that the set of consumers indifferent between variants n and j is a

hyperplane orthogonal to the j-axis at
o2 1 (10)

As m = n, z 1s univocally determined by n — 1 linear independent equations.
In other words, given (4), there exists a one-to-one correspondence between the
vectors (p1 — Pn, ..., Pn-1 — Pn) and Z in IR™. Observe that consumers located at
z are indifferent among the n variants and that M;,..., M, have the form of n

polyhedral cones with a common vertex at z.

We can now construct the demand X, for variant n as :

X,,:/ / f(2)dz* ... dz""L (11)



In view of (10) and (11), it should be apparent that X, 1s only a function of
p;j — Pn, J =1,...,n—1. Hence, for X, = Dy, 1t must be that D, can be
written as Dn(P1 — Pnyy---»Pn=1 — Pn). In fact, we shown in Appendix II that a
similar characterzation holds for X;, 71 =1,...,n— 1 (see (39)). Consequently,

the address framework imposes the following :
(A2) The demand function of variant 7 has the form
Dilpy = piy-ypn—pi), 1=1,...,n (12)
Furthermore, from (11), we have

ar-iX,
épl [P 6pn_1

= (4ac)'™" F(2). (13)

Given (13), for X, = D,., it must be that 6"~ D, /8p; ...0p._, exists and, as
f(2) > 0, this expression must be strictly positive. It 1s shown in Appendix Il that
the (n — 1)-th derivative of variant i’s demand w.r.t. all other prices 1s the same

for all variants 1 = 1,...,n (see (40)). Hence we have :

def o1 D;
) il

= — — — >0, i=1,...,n. (14)
Opy...[0pi]...0pn

(A3) ©(py = Br,---»Pn-1 — Pn

Finally, as each consumer buyvs one unit of & single variant, the total demand for

the variants must equal N, or
(A4) Z?_—.l Df(pl — Di, .-, Pn '_pf) =N.

Replacing p; — pn by 4ac?’ +a; — a, in (14) and equating to (13) then yields
the following result (where we henceforth replace z by z since any point in R™

can be reached by appropriate choices of prices) :

PROPOSITION 2. Assume that the variant locations z,,...,z,
(7) and (8). The consumer density funciion f(z) consistent with (Al) - (A4) s

unique and gen by

are gen by

f(2) = (4ac)* p(dacs’ + a1 — an, ..., 4ac:” "+ an_g — an). (15)

Intuitively, the construction of f(z) can be understood as follows. For any z € IR™,
a vector (p1 — Pn,...,Pn—1 — Pn) can be found such that consumers at z are

indifferent between all variants. A marginal increase in p; induces consumers on
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the boundary of M; (including therefore those at z) not to buy variant 1. A similar
increase in p, leads some of these consumers (including again those at z) not to
purchase variant 2 either. Repeating the argument for variants 3...n — 1, we are

left with the consumers it z who now want to purchase only variant n.

Note that locations (7) and (8) have been chosen for simplicity. Other loca-
tions (subject to the restriction imposed by Proposition 1) would again lead to a
unique density function (but, of course, different from (15)). Furthermore, when
n = 2 and a@; = a1, the density function takes the simple form
0D, aD

- (dacz) = 4ac L(—dacz 16
. {4acz) = dac S=(—dacs) (16)

f(z) = 4ac

with z € IR.

It remains to discuss the case where m > n—1, that is, the space of character-
istics is rich with respect to the number of variants. Following the same procedure
as 1n the previous case, we must specify the variant locations subject to the re-
striction imposed by Proposition 1. This leads us to define z, as in (8), whereas

Zyy---,Z,_, are now defined as follows :

a if 1= 7,

ty
i

; i=1,...,n=1, 7=1,...,m. (17)

—a otherwise

The difference between (7) and (17) is that j can take values larger than n — 1 :

for the same characteristics space, we have less variants than before.

In view of (17), all the variants offer an identical amount of each of the

characteristics n,n - 1,...,m. As a result, what matters for consumer choice
s the amount of each of the characteristics 1,2,...,n — 1. Hence, consumers
with identical preferences on characteristics 1,...,n — 1 can be bunched together.

Formally, this means that we can reduce the dimension of the characteristics space
from m to n — 1 and that we can replace the density function f(z) defined on R™
by the marginal density function

g(:l,...,z"—l):/ / f(z)dz",...,dz™ (18)

defined on R™™!. Consequently, we can state :
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PROPQOSITION §. Assume that the variant locations z,,...,z, are given by
(8) and (17). The consumer density function f(z) s consistent with the demand
system (Al) - (A4) if and only if its marginal density function (18) is gven by

(14)

Because m > n—1, we get only n—1 equations simular to (11) which precludes
us from determining a unique point Z in JR™ where consumers are indifferent among
variants. Instead, we have a linear variety of dimension m — (n — 1) of points in
IR™ satisfying this condition. Therein lies the reason for the nonuniqueness of the
density function f(z) which 1s able to generate the demand system satisfving (A1)
- (A4).

4. EXAMPLES

a. The multinomial logit model. The demand function of variant @
associated with the logit 1s given by (with a; = a)

]\Y
Di(Pl—Pi,---,Pn—Pi)z - ( ) (19)
p: — pi
1+ exp | - ———
> e (222
=1
FE

where u 1s a positive constant which 1s interpreted in discrete choice theory as
the standard-deviation of consumer tastes. It i1s readily verified that (19) satisfied
conditions (Al) - (A4).

Computing w2—2=— for (19) vields

6p1 ,,,,, an—;
‘ro(pl — DPny-o-yPn-1— pn) = _

n—1 n—1
]\’/Jl—n(n-—l)!H exp <__£___ﬂ> 1_;_2 exp <_pJ—Pn>

u

i=1 j=1

Hence, using Proposition 2 and (10), we obtain :

PROPOSITION 4. Letm = n—1. The consumer density function consistent
with the logit demand (19) is given by

= ()7 oy L -4)



This function has the following properties :

n—1
(1) f(2) has a unique maximum at z = Q which is equal to N (‘;—““‘1) (—"—r—-‘-l—)'-
To show this, it 1s sufficient to check that z* =0, 1 = 1,...,n, is the only solution

of the FOC. As f(z) > 0 and lim,. ., f(z) =0, it must be that this solution is

the only global maximuzer;

(11) the spatial distribution of consumers is more spread out as u rises and as

a and c fall;

(i1) for g — 0, the density function reduces to an atomic distribution of
value NV at the origin; in this case, all consumers buy the variant with the lowest
price. For u — oo, the density approaches zero everywhere (with the total mass

remaining equal to N); in this case, consumers tend to buy the closest variant,

N

regardless of its price so that D; =

(iv) when m > n — 1, the expression (20) in which n — 1 is replaced by m is
a possible density function in R™ since its marginal density function is precisely
(20). In other words, the structure of (20) is invariant with respect to the number

of variants;

(v) when m = 1 and n = 2, (20) reduces to

dac ,

— V4ac exp <~ B )

# [l—f-exp <—4z°z>r

for z € R. This is the logistic formula with zero mean and standard-deviation

(21)

4o L : .
equal to 5= 73 which is symmetric around the origin.

A final comment is in order. For a fixed consumer density function (20),
any variation in g is equivalent to a proportional variation in a or c¢. Intuitively,
this means that a change in the standard-deviation of consumer tastes can be
represented in the address model by a similar change either in the distance be-
tween variants or In the marginal transport rate. As a consequence, the terms
consumer heterogeneity or product heterogeneity can be used interchangeably at

the aggregate level. This 1s also true for the subsequent examples.

b. The multinomial probit model. The demand function of variant ¢ for

the probit can be written as follows (with a; = «) :
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Di(py = Diy. . P —pi) =

N/_:P' U—:p.} .../_:p' N(z;0,Q)dz! .. [dz']...dz"  (22)

where N (z;0,%2) 1s the multivariate normal density with mean (0 and covariance
matrix {2 (see Domenchich and McFadden (1975)). Using (10), D,, becomes

N(4ac)"'l/ / N(dacz; 0, Q)dz". . .dz"" 1 (23)

This form is directly comparable with (11) so that we can state

PROPOSITION 5. Let m =n—1. The consumer density function consisient
with the probit demand (£2) 1s given by

f(2) = N(4ac)” " *AN(dacz: 0, Q). (24)
Hence consumers are distributed according to a normal distribution with zero
mean and covariance matrix Q/(4ac)?. In particular, for n = 2, we have

(o) = N2y <4_“_€> (25)

c c

where ¥ 1s the density function of the standard normal distribution. In other
words, consumers are distributed over IR according to a normal distribution of

mean zero and standard-deviation ©—. From (21), it is clear that u and ¢ play

the same role.

c. The linear probability model. This model 1s only defined for the

binary case (n = 2). The demands are given by :

0 if p—p;>L
Di(p; —pi) =N B=tl 4t L <p—p; <L i 5=1,2 (26)
1 if pr—p; <~L

where L 1s a positive constant.
Note that (A1) is not satisfied since %f—% = ( for some prices. However, our
2
analysis remains applicable. Given (7) and (8), the two firms are located at z; = a

and zo = —a. Taking the derivative of (26) and using (10) yields

5D 0 if z< —L/4ac
—5-p—2:N 1/2L if -~ L/4ac< z < L/4ac (27)
' 0 if > L/4ac
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Applying (16) then enables us to write

PROPQOSITION 6. Let m = n—1 = 1. The consumer density function

consistent with the linear demand (26) is given by

0 for |z| > L/4ac
=9, 28
s { % for |z| < L/4ac (28)

This is the standard rectangular density function most commonly used in spatial

competition since Hotelling (1929). Here the role of 4 in the logit is played by L.

5. THE CES UTILITY MODEL

In the foregoing analysis, it has been assumed that consumers make indivisible
purchases (see assumption (B3)). This fits some commodities well (like durables)
but not commodities that are (perfectly) divisible. In the latter context, (B3)
should be replaced in order to allow each consumer to buy his optimal quantity of

a certaln varlant.

Model III. We consider a representative consumer with income Y and a

CES-type utility function

U

n 1/p n
5 Qf] 00} = [2 Qf} o (29)
1=1 1=1

where @Q; 1s the quantity consumed of variant i, Qg the numéraire, p a constant
such that 0 < p < 1 and « a positive constant. The demand function of variant :

is then given by

0% p}/(ﬁ—l)
Di(p1, - pn) = — ————————, i=1,...,n. (30)
EE Ve

learly, D; satisfies assumption (A1l). Furthermore, the derivative of D; w.r.t.

P1-..[pi]...pn is positive and the same for all ¢ which implies that the analogous
condition to (A 3) holds.

Model TV. The address model we wish to compare to Model 11l is defined
by (B1), (B2) and

11



(B3 bis). The utility of a consumer located at z and purchasing quantity g;

of variant 7 1s given by

m

Ui(zg)=lng+y—pgi—cy (F=zf)? i=1...,n (31)

k=1
where y > 1 is the income of the consumer.

In this expression, the first three terms define the gross utility while the last
term corresponds to a lJump-sum loss to be interpreted as in Model II. 3 Consumer
choice can now be viewed as a two-stage process : 1n the first stage he chooses the

variant 7 to buy and, in the second, the amount purchased, 1.e. ¢7 = 1/p;.

Clearly, Proposition 1 remains valid in the context of Model IV so that we
must have m > n — 1. For simplicity, we himit ourselves to m = n — 1. The case
m > n — 1 can be treated as in Section 3. A straightforward calculation using
the indirect utilities shows that, for (7) and (8) unchanged, the market space of
variant n is given by (cf. (9))

M, ={z€ IRn;zk < ~Inp, +Inp;

=1,...,n—1}. 2
T €9

Thus, the set of consumers indifferent between purchasing variants n and j is a

hyperplane orthogonal to the j-axis at

; { /[ Pn .
EJ:M, j=1,...,n—=1 (33)

4ac

As every consumer in M, buys 1/p, units of variant n, the demand X, is now

o=t f w - m flakz (34)

Unlike (11), X, 1s no longer a function of p; ~ p,, only, so that assumption (A2)

equal to

becomes irrelevant.

Following the approach of Section 3, we take the derivative of X, w.r.t.

DP1,...,Pn—1 and obtaln

or—iX 1 ,
5 — = 4ac)t ™ F(2). 35
Opl"'opn-l pl._'pn( ) f(—) ( )
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We now claim that the consumer density function (20)derived for the multinomial
logit can be made consistent with the a.d.s. (30). Indeed, substituting (33) into
(20), we get

H?:l pj—llu—l

n 1 n-
[z:j:l pj/u}

Integrating (36) and neglecting the constant of integration at each stage yleld

an-—an
@pl...@pn_l

= Np'~"(n - 1)!

(36)

n

Xn= N p7He-ti5" priie (37)

=1

Using again the argument of Appendix III, the comparison of (30) and (37) shows
the following :

PROPOSITION 7. Letm =n—1. Ifpu = 1;" and N = —X—, then the

1+a’
a.d.s. generated by the CES-type utility function (29) is consistent with Model IV

in which the consumer density function is given by (20).

In other words, the CES-representative consumer does indeed represent the
aggregate preferences of consumers distributed in a certain manner over a charac-
teristics space, provided that the number of characteristics is large enough com-

pared to the number of variants. Furthermore, N = TZ— is just an accounting

+a
condition which says that the sum of the individual expenses on the variants

(Ngq!p;) is equal to the income —— of the representative consumer available for

l+a
buying the differentiated product. Also, g = 1—%3 shows that the parameters u
and p are inversely related. In particular, when g = 0 and p = 1, the n vari-

ants are perfect substitutes. On the other hand, when g — oo, the density f(Z)

approaches zero with a mass equal to NV and X; = %; equivalently, for p — 0,

the utility function (29) reduces to a Cobb-Douglas function []., z}/nQS with

D; = RTT%—"EE" Finally, the individual demand for the numeéraire is y — 1 so that
the aggregate demand is (y — 1)N. The representative consumer’s demand is i‘%x-

Hence, consistency imposes the following additional condition :

64

(y—1)N = Y. (38)

l+a

The above proposition reveals some particular and interesting connections between
the CES and logit demands. More specifically, the CES demand (30) can be viewed
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as a “fractional” version of the logit demand (19) in which the deterministic utility
term ~p; Is replaced by —inp;. Indeed, using this replacement in (19), we obtain
from the logit formula p;—l/”/}:?:l pj.—l/” which gives the CES demand function
for variant 1 when multiplied by the fraction 1/p;. Within the context of the
address framework, the consumer density functions is the same under the logit
and CES models, but the market spaces, for a given price vector, are not the same
(compare (9) and (32)). In addition, consumers choosing variant : buy a single
unit under the logit while they buy 1/p; under the CES.

6. CONCLUSIONS

In this paper, we have shown that several a.d.s. commonly used in theo-
retical and empirical work on product difierentiation do represent the consumer
preferences over a certain characteristics space. To this effect, we have chosen a
simple and specific address model and 1dentified a set of conditions that guarantee

consistency between our address model and the a.d.s. under study.

This i1s true, in particular, for the main discrete choice theory models. In
a criticism of Perlofl and Salop (1985)’s paper, it was claimed by Archibald et
al.(1986, pp.15-16) that the “cost” of interpreting the probabilistic choice model
as an address model was tantamount to assuming characteristics spaces to be
individual-specific, thus making the primitives of the model unciear. We have
shown here that this latter position i1s not correct. From Proposition 1, we re-
quire that the characteristics space have the dimension at least n — 1, where n,
1s the number of variants, for the reconciliation to be possible. Furthermore, for
the probabilistic choice model to twin with our address model, we need specific
restrictions on variant locations. For an m-dimensional characteristics space, with
m > n—1, variant Jocations must form an (n—1)-dimensional basis for a consumer

density function to exist which 1s consistent with the GSP.

The logit model generates an a.d.s. which can be shown to be consistent with
a representative consumer model (see, e.g. Anderson et al. (1986)). Hence, the
condilions staled in this paper are also sufficient 1o reconcile, at least for a class of
models including the logit and the CES, the represeniative consumer and address

approaches to product differentiation.

For a given a.d.s., if an additional variant i1s added to the market, it must
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locate at a specific point of an “unused” dimension of the characteristics space in
order to preserve the structure of the a.d.s. (see, e.g. the logit or the probit). If
not, we may end up with a completely different a.d.s. While any given form of
an a.d.s. imposes a restrictive assumption on the horizontal location decisions,
it should be noted that the model allows generality in the decision of vertical

differentiation through the choice of qualities «;.
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Footnotes

-

' If z; = z; the GSP cannot hold.

? Even in the two-dimensional case, Hanjoul and Thill (1987) have shown that
alternative transport cost specifications lead to extremely complex expressions for

market areas.

3This specification is not the standard one used in spatial models, where it
1s frequently assumed that transportation cost varies with quantity. Stahl (1987)
forceably argues that the Jump-sum transportation cost assumption makes more
sense 1n several spatial contexts. In the characteristics interpretation, both as-

sumptions seem a priori concelvable.
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APPENDIX

I. Proof of Proposition 1. (An illustration of the proof’is contained in
Figure 3.)

For (2) to hold, it must be that M; N M; # 0 for all 1,7 = 1,...,n whatever

Vi,...,Va. Suppose, then, that {z;,...,z,} contains £ < n — 1 linearly indepen-
dent points.

Let z, be an extreme point of the convex hull P of {z,,...,z,}. W.lo.g. set
z; = 0. Let also C be the cone {z € R™;z =) ., Az, A > 0}. This cone is
generated by £ independent points of {z,,...,2,}, say {zg,..., 244, }-

Denote by z,z; (with z; = 0) the straight line passing through z, and z; for
i =2,...,£+ 1. We can always choose Vi,..., Vs such that (1) the hyperplane
Hyi,t=2,...,£+1, orthogonal to z,z; passes through z,, and (1) the consumers
located in the closed half-space containing z; prefer z; to z;. Consequently, the
intersection of the half-spaces that do not contain {z,,...,z,.,} defines a convex
polyhedron that must include M. By constructionof C', z; € Cfor j = {+2,...,n.
Then, for any such z; we can always choose V; for the hyperplane H,; orthogonal
to the line z;z, to be such that P is strictly on one side of H); and the consumers
who prefer z; to z; areon the other side. Hence, it must be that M; is included in

the latter closed half-space. Consequently, we have M{ N M; = 0, a contradiction.

(Insert here Figure 3]

II. Using (7) and (8), we may rewrite M;, 1 # n, as follows :
M ={z2€ R™V; -V, < —dac(z? = z),7=1,...,n—1,and Vn—W§4aczi}
={:eR™ <P - 5= 1,...,n—1,andzi25{}.

Accordingly, we have :

oy PRSI FrTl gt
X,-:/ / / F(2)dz. (39)

Taking the derivative of X; w.r.t.py...[pi]...pn~1 then yields

om2 X, " /oo . . . A . .
‘ : = (4ac)*—" ?:'1-4,-2;—.%‘,...,:‘,...,;:"—1 I L A P
Op1 ---[0pi] ... Opn-1 (ac) i 4 N )
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from which 1t follows that

"l

r

= (4a0)' 7" f(2).

0py ... 10pi)...0pn
Thus, by (13), we get
" X or-lX;
O6py...0pno1 Op1...[0pi)...0pn
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