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Abstract

For k in the unit interval, the k-double auction determines the terms of trade
when a buyer and a seller negotiate transfer of an item. The buyer submits a
bid b and the seller submits an offer s. Trade occurs if b exceeds s, at
price kb + (1-k)s. We model trade as a Bayesian game in which each trader
privately knows his reservation value, but only has beliefs about the other
trader’'s value. Existence of a multiplicity of equilibria is proven for a
class of traders’ beliefs. For generic beliefs, however, these equilibria are
shown to be ex ante inefficient.
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Bilateral Trade with the Sealed Bid k-Double Auction:

Existence and Efficiency

by

Mark A. Satterthwaite and Steven R. Williams

1. Introduction

This paper concerns sealed bid k-double auctions, a one parameter

family of rules for determining the terms of trade when a single buyer and a
single seller voluntarily negotiate the transfer of an indivisible item.

The buyer submits a sealed bid b, while the seller submits a sealed offer s.
Trade occurs if and only if b = s, and the buyer pays the seller kb + (1l-k)s
when trade occurs. The choice of k in [0,1] determines a particular member
of the family that we study. For example, if k = 0.5, we refer to the
mechanism as the 0.5-double auction. A value of k in (0,1) means that both
the buyer and the seller influence the price at which trade occurs. If

k = 0, then the seller sets price unilaterally; we call this the seller's
offer double auction. At the other extreme, if k = 1, then the buyer sets
price unilaterally; we call this the buyer’s bid double auction.

The value a trader places on the item is his reservation wvalue. Focus
on either trader. We assume that (i) he alone knows his reservation value,
(ii) his utility is the sum of his reservation value (if he possesses the
item) plus any transfer payment (positive or negative) that is part of the
terms of trade, and (iii) his beliefs concerning the other trader'’s

reservation value are described by a prior probability distribution that is
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independent of his own reservation value. The strategic problem the traders
face is modeled as a Bayesian game, as formulate by Harsanyi [5]. Our main
goals are to examine the existence and qualitative nature of the traders’
differentiable equilibrium strategies, and to investigate the efficiency of
these equilibria.

We study bilateral k-double auctions for two main reasons. First, some
markets are inherently small. Consider for example the problem of
determining the terms of trade for the transfer of an item between two
divisions of the same firm. One wants to understand how the choice of the
rules for bargaining in such situations affects both (i) the proportion of
the potential gains from trade actually realized through bargaining, and
‘(ii) the division of the realized gains between the traders. The k-double
auctions are extremely simple procedures that can actually be used to
determine the terms of trade. They can be analyzed because they are simple,
and yet we can gain insight into how the choice of the rules for bargaining
affects the outcome because we can analyze an entire family of procedures.
While bargaining in small markets typically follows more complicated
procedures than k-double auctions, a thorough analysis of such simple
procedures is a step towards the development of a deeper theory of small
markets.

Second, k-double auctions may be an appropriate foundation for a
noncooperative theory of large markets. Wilson [18], for example, proposes
this view. Though this paper considers only the one seller, one buyer, one
item case, we believe that the results and methods that we develop are
applicable to k-double auctions with multiple sellers and buyers. An

alternative approach, exemplified by Gale [4], is to model the
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microstructure of large markets as a sequence of interactions between
individual buyers and sellers. These interactions may be modeled as
bilateral k-double auctions, provided that the equilibria of these
procedures are understood in detail.

Our results fall into three categories: existence, ex ante efficiency,
and interim efficiency. In each category the results fall into two groups:
results for k-double auctions when k ¢ (0,1), and results for the seller’s
offer/buyer’s bid double auctions. Throughout the paper we assume that the
traders’' reservation values are independently drawn from distributions that
satisfy a well-known monotonicity property. This property has been
frequently used in the auction literature to guarantee the existence of
differentiable equilibria.

Consider our existence results first. An equilibrium pair of
strategies is regular if (roughly) each strategy is differentiable and
monotone increasing at each reservation value where the conditional expected
probability of trade is positive. For all k-double auctions, regular
equilibria exist, though their number depends critically on the value of k.
For each k ¢ (0,1) and each pair of prior distributions of traders’
reservation values, Theorem 3.2 characterizes all of the regular equilibria
as a two parameter family. 1In addition to establishing the existence of
this continuum of equilibria, we develop a geometric representation of their
qualitative nature. If, on the other hand, k ¢ (0,1} (the seller's offer or
buyer’s bid double auction), then the unique dominant strategy of the trader
who can not affect price is to truthfully report his reservation value. The
other trader's best response to truthful revelation defines a regular

equilibrium.
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With the existence of equilibria established, we turn to questions of
efficiency. Throughout this paper, the Holmstrom and Myerson [7] taxonomy
of efficiency for games with incomplete information is used. Myerson and
Satterthwaite [13, Corollary 1] showed that the private information and
individual incentives of the two traders implies that neither the k-double
auction nor any other trading mechanism can be ex post classical efficient:
no rules for bilateral trade permit equilibrium behavior in which trade
occurs whenever the buyer’s reservation value exceeds the seller's
reservation value.l Intuitively, ex post classical efficiency is not
realized in the k-double auction because if a trader’s bid/offer affects
price as well as the likelihood of trade, then he has an incentive to
misrepresent his true reservation value. The buyer bids less than his
reservation value in order to drive the price down and the seller makes an
offer greater than his reservation value in order to force the price up.
The unfortunate result of this strategizing is that some trades that should
take place do not, for a bid may be less than an offer even though the
buyer’s reservation value is greater than the seller’s reservation value.

Since ex post classical efficiency is impossible, we turn to ex ante
efficiency and interim efficiency.2 These standards take into account the

limits on performance that are caused by private information and individual

Myerson and Satterthwaite assume that participation in trade is
voluntary, i.e., individually rational. 1If this assumption is dropped, then
ex post efficient mechanisms do exist for bilateral trade. See d’Aspremont
and Gerard-Varet [3].

In the precise language of Holmstrom and Myerson (7], we analyze the
ex ante incentive efficiency and the interim incentive efficiency of
k-double auctions. Interim efficiency in our own paper is the same as
"incentive efficiency" in Wilson [18].
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incentives. Each applies the Pareto standard to the traders’ expected gains
from trade. Their difference lies in the timing of the welfare analysis:

eﬁ ante efficiency evaluates performance according to each trader’s expected
gain from trade before he learns his reservation value, while interim
efficiency is based upon the expected gain to the trader conditioned upon
his realized reservation value. Which standard is appropriate depends on
the particular problem at hand. Interim efficiency, for example, is
appropriate if the traders themselves choose rules for bargaining after each
has learned his own reservation value. Ex ante efficiency is appropriate if
the traders will trade many times, each time with an independently drawn
reservation value. Note that interim efficiency is the weaker standard: an
outcome of bargaining is interim efficient if it is ex ante efficient.
Finally, for a given k and a given pair of prior distributions, we say that

a k-double auction achieves ex ante efficient performance if at least one of

its equilibria is ex ante efficient. Interim efficient performance is
defined similarly.

Our main result with‘respect to ex ante efficiency is Theorem 5.1. It
states (subject to some technical restrictions) that if k ¢ (0,1), then for
a generic pair of prior distributions ex ante efficient performance can not
be achieved with the k-double auction. This result contrasts sharply with
an example in Myerson and Satterthwaite [13] that concerns uniformly
distributed reservation values. They showed that the linear equilibrium in
the 0.5-double auction that Chatterjee and Samuelson [2] identified is ex
ante efficient. Our theorem implies that the efficiency of this equilibrium
is exceptional and does not generalize to a generic perturbation of the

prior distributions away from the uniform.
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The generic inefficiency of the k-double auction when k ¢ (0,1) is
reversed for the seller’s offer/buyer’s bid auctions where k ¢ {0,1}.
Theorem 5.2, which is from Myerson [10] and Williams [17], states that the
buyer’s bid/seller’s offer auction achieves ex_ante efficient performance
for all pairs of distributions in the specified class. Neither auction,
however, has much to offer with respect to equity. The seller’s offer
auction maximizes the seller’s expected gain from trade and places zero
welfare weight on the buyer’s expected gain from trade. The buyer’s bid
auction reverses the weights to the buyer’s favor.

The final standard of performance we consider is interim efficiency.
The seller’s offer/buyer’s bid auctions are interim efficient because they
are ex ante efficient; consequently, our results concern the k ¢ (0,1) case
where both traders jointly determine the price. Theorem 6.1 is a necessary
condition for interim efficiency. Together with Theorem 3.2's existence
result, it implies that for every k ¢ (0,1) and every pair of prior
distributions there exists an open family of equilibria that are interim
inefficient. It shows that any statement about the interim efficiency of a
k-double auction must be conditioned upon the choice of the equilibrium.
Furthermore, any theory that asserts that k-double auctions are interim
efficient must explain how the traders select the strategies that implement
interim efficient performance.

Theorem 6.2 adapts Wilson’s [18] sufficient conditions for interim
efficiency to our setting. Theorem 6.3 uses these conditions to establish
that, for each k ¢ (0,1), there exists an open set of pairs of prior
distributions over which the k-double auction achieves interim efficient

performance. In this limited sense we are able to show that interim
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efficient performance in a k-double auction is robust over some class of
distributions. We have not, however, been able to determine the size of
this class.

This paper builds on the insights of other papers. Three of the most
important are cited above. Chatterjee and Samuelson [2] first examined
Bayesian equilibria within the k-double auction. Myerson and Satterthwaite
[13] applied to double auctions with two-sided uncertainty the techniques
Myerson [10] developed for analyzing the performance of auctions with one-
sided uncertainty. Wilson [18] established that as the number of traders
grows large the k-double auction achieves interim efficient performance if
well-behaved equilibria exist. In addition, see Wilson [19] for a nice
discussion of the equilibria of k-double auctions. Finally, Leininger,
Linhart, and Radner [9] use different techniques to explore the equilibria
in the bilateral k-double auction. Remarkably they show the existence of a
large class of equilibria that involve step function strategies. This
contrasts with our paper, which focuses on differentiable equilibrium

strategies.

2. Notation and Preliminaries

Basic Structure. The seller is trader one and the buyer is trader two.

Trader i’'s reservation value (or type) v, o€ [0,1] is drawn from the
distribution Fi' Its density fi is positive over (0,1). Both traders are
risk neutral, expected utility maximizers. Traders’ utility functions are
normalized so that 1f no trade takes place their utility is zero. When

trade occurs at price p, the seller's utility is p - v, and the buyer's

1

utility is vV, - P- The rules of the k-double auction, the wvalue of the
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parameter k, the distributions F1 and F2, and the traders’ utility functions

are common knowledge. Only the reservation values are private.

Restrictions on Distributions. Define:

R(vl) = Fl(vl)/fl(vl) (2.01)
cl(vl) =V + R(vl), and (2.03)
02(v2) =V, + T(v2) (2.04)

R and T are inverse hazard rates and, in the terminology of Myerson {[11], 1
and c, are virtual reservation values. These functions arise naturally in
the first order conditions for traders’ equilibrium strategies and in the

characterization of ex_ante and interim efficiency rules.

Throughout this paper, we assume that F, and F, satisfy:

1 2
R and T are C1 on [0,1]; (2.05)
R >0 on (0,1] and R(0) = 0O; (2.06)
T<0on [0,1) and T(1) = 0; and (2.07)
c, and ¢, are strictly increasing on {0,1]. (2.08)

1 2
A pair (Fl,F2) is admissible if it satisfies (2.05-08). Since (Fl,F2) are

recoverable from any pair (R,T) that satisfies (2.05-07), we use (R,T)
interchangeably with (Fl,F2).3 Note that (2.05-07) are quite general: over

a proper subinterval [eg, 1 - ] of [0,1], R can be any positive C1 function,

Rewrite the definition of R(vl) as fl(vl)/Fl(vl) = l/R(vl).
Consequently, fd(ln Fl(vl)) = f(l/R(vl)dv1 + C, which, coupled with

appropriate boundary conditions, gives F Note that condition (2.05)

1
guarantees that the solution process yields a function while (2.06-07)

ensure that the solution can be interpreted as a distribution.



December 24, 1987 Page 9

and T can be any negative Cl function. The monotonicity condition (2.08),
while common in the auction design literature, is genuinely restrictive.

Let H" be the set of admissible (R,T) pairs that are also Cn. We
topologize H" with the induced Whitney ct topology. Under this topology two
functions are close if and only if, at every point in their common domain,
both their values are close and their first n derivatives are close. Note
that Hl is the space of all admissible pairs.

Equilibria in k-double auctions. A strategy for a trader is a real

valued function on [0,1] that describes his bid/offer as a function of his
reservation value. Let S and B denote the seller’s and buyer’s respective

strategies. Given a strategy pair (S,B), we call ((vl,vz)ls(vl) = B(v2)}

the trading boundary; it divides those pairs (vl,vz) for which trade occurs
from those for which trade does not occur.
Consider a pair of strategies (S5,B). The seller’'s strategy S is a best

response to the buyer’'s strategy B if, for all v, € [0,1], the offer S(v

1 1)

maximizes type v, seller’'s expected utility given that (i) the buyer's

1

strategy is B and (ii) the buyer's reservation value has distribution F2.
The definition of a best response to S is parallel. A strategy pair (S,B)

is a Bayesian Nash equilibrium if and only if B is a best response to S and

S is a best response to B,

Several properties of an equilibrium (S,B) can be stated immediately.
Chatterjee and Samuelson [2, Th. 1] proved that each of these strategies is
nondecreasing over the set of those reservation values at which the
conditional probability of trade is positive. Similar arguments show that

(i) S(Vl) > v, unless the conditional probability of trade at v, is zero,

1 1

and (ii) B(v2) =< v, is

unless the conditional probability of trade at vy
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zero. If vy > B(1l), then the conditional probability of trade at vy is zero
and the value of S(vl) can be modified arbitrarily within the interval
[B(1),1] without breaking the equilibrium. A similar statement holds for B
on the interval [0,S(0)].

We focus on differentiable equilibrium strategies. This focus,

together with the above properties of equilibrium strategies, leads us to

impose the following restrictions upon the equilibria we consider:

S and B are continuous and strictly increasing, (2.09)
M S(vl) < 1 for all v, o€ [0,1], (2.10)
0 < B(VZ) = v, for all v, € fo,17, (2.11)
S(vl) =V whenever vy = B(1l), (2.12)
B(vz) =V, whenever v, < S(0), (2.13)
S is Cl on [0,B(1l)], and (2.14)
B is Cl on [S(0),1]. (2.15)

A strategy pair is regular if it satisfies (2.09-15) and an equilibrium is
regular if its strategies are regular. Requirements (2.12-13) pin down each
strategy over the interval in which the best response is indeterminate.

Allocation rules. Evaluating the efficiency of k-double auctions

involves comparing their outcomes with all conceivable outcomes of arbitrary
bargaining procedures. Formally, an outcome of bargaining is an allocation

rule. An allocation rule is a pair (p,x) where p (the trading rule) is a

function from [0,1]2 -+ [0,1] whose value at (Vl’VZ) is the probability that

trade occurs at that pair, and x (the payment rule) is a real-valued

function on [0,1]2 whose wvalue at (vl,vz) is the payment from the buyer to

the seller at these values. We impose two condition on the class of
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allocation rules that we consider--incentive compatibility and individual
rationality. Each is discussed in turn.

An allocation rule (p,x) is incentive compatible if (p,x) is the

outcome of some Bayesian game when a pair of Bayesian Nash equilibrium
strategies are chosen. Note that an equilibrium (S,B) in the k-double

auction defines the following incentive compatible allocation rule:

1 if B(V2) > S(vl)
p(vl,vz) = (2.16)
0 otherwise
and
kB(v,) + (1 - k)S(v,) if B(v,) = S(v,)
x(vl,v2 2 1 2 1 (2.17)
0 otherwise

For an incentive compatible allocation rule (p,x), the interim expected

is

utility of a seller of type vy

UL (vy:p,%) = fé[x(vl,vz) - VPV, v,) 1dF, (v,) . (2.18)
The ex ante expected utility of a seller is

¥, (p,x) = féUl_(Vl;p,X)dFl(vl). (2.19)
Finally, the probability that a type vy seller will trade is

py(v)) = fép(vl,vz)dF2(v2). (2.20)
Similar formulas apply to the buyer. Because any equilibrium (§,B) in the
k-double auction implements an incentive compatible allocation rule (p,x) as
in (2.16-17), we can without ambiguity write a type Vs trader's interim
expected utility under this equilibrium as Ui(vi;S,B) = Ui(vi;p,x). Ui(S,B)
and pi(vi;S,B) are defined analogously.

An allocation rule (p,x) is individually rational if, for all i ¢ (1,2}

and all v, € {0,171, Ui(vi;p,x) = 0. The allocation rules defined by k-

double auctions are individually rational because in equilibrium each
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trader’s strategy guarantees that he never incurs a loss. Individual
rationality is a natural requirement, for the essence of a free market is
that trade is voluntary. An allocation rule that is both incentive

compatible and individually rational is incentive feasible. The allocation

rule (p,x) that an equilibrium pair (S,B) defines is thus incentive
feasible.

In order to evaluate the outcomes of k-double auctions against all
other incentive feasible allocation rules, we need to know which pairs (p,x)
are incentive feasible. Define I'(p) as the following function of a trading
rule p:

P = JEfH (e, (v,) - e (v.))p(v, ,v,)dF, (v,)dF, (v,) ' (2.21)
00"72""2 171 172777112 2 )
Using an approach first formulated by Myerson [10], Myerson and
Satterthwaite [13, Th. 1] characterized all incentive feasible allocation
rules.
Theorem 2.1: Let (R,T) be admissible. If (p,x) is an incentive

feasible allocation rule, then:

Py is nonincreasing and Py is nondecreasing on [0,1], (2.22)
() = U (1;p,%) + U,(05p,%) 2 0, (2.23)
U, (v,;p,X) = m + fl P, (y)dy, and (2.24)
1'°1 vy 1 v
. _ 2
Uy(v,yip,x) = T(p) - m + [ "p,(y)dy (2.25)
where m ¢ [0,T(p)]. Conversely, if p: [0,1]2 -+ {0,1] is a function

satisfying (2.22-23), then a function x: [0,1]2 -+ R exists such that
(p,x) is incentive feasible,

Efficiency criteria. An incentive feasible allocation rule (p¥*,x%*) is

ex ante efficient if no incentive feasible allocation rule (p,x) exists such

that, for i ¢ (1,2}, Ui(p,x) > Ui(p*,x*) and, for some i, Ui(p,x) >
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U(p*,x*). Ex ante efficiency means that the seller on average cannot be
made better off without making the buyer on average worse off, and vice
versa. Williams [17, Th. 2] characterized all ex ante efficient incentive
feasible allocation rules,
Theorem 2.2: Let (R,T) be admissible. An incentive feasible
allocation rule (p,x) is ex ante efficient if and only if (i) T'(p) = 0

and (ii). scalars t,s ¢ [0,1] exist such that

1l if v, + sT(v2) > v, + tR(v

)
p(vl,vz) 2 1 1 ] (2.26)

0 otherwise
Thus, ex ante efficiency requires that the trading boundary consists of

solutions to the equation v, + sT(v2) = v, + tR(vl) for some choice of

2 1

s,t ¢ [0,1].

An incentive feasible allocation rule (p¥*,x*) is interim efficient if

no incentive feasible allocation rule (p,x) exists such that, for all i e
{1,2}) and all v, o€ [0,11, Ui(vi;p,x) > Ui(vi;p*,x*) and, for some i and Vi
Ui(vi;p,x) > Ui(vi;p*,x*). Interim efficiency means that, without leaving
the class of incentive feasible allocation rules, a type Vs trader cannot be
made better off unless a trader of another type is made worse off. Under
interim efficiency each type buyer and each type seller is a distinct person
whose interests must be respected.

Theorem 2.3: Let (R,T) be admissible. An incentive feasible

allocation rule (p,x) is interim efficient if (i) T'(p) = 0 and (ii)

functions (El(vl), az(vz)): [0,1]2 - [0,1]2 exist such that
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1 if v, + (1 - az(vz))T(vz) >

p(vl,vz) = vl + (1

0 otherwise

(2.27)
and (2.28)
- &l(vl))R(vl) . (2.29)

This theorem is a corollary of Lemma 3 in Wilson [18]. See the Appendix for

details.

3. Existence of Equilibria

The first step in showing existence of regular equilibria is the

development of necessary and sufficient conditions for their existence.

Theorem 3.1: Let (R,T) be admissible.

If (S,B) form a regular

equilibrium in a k-double auction, then they satisfy the following two

differential equations whenever vy =
-1 ,
B [S(vl)] = S(vl) + kS (vl)R(v

and

s'l[B(vz)] = B(v2) + (1 - k)B'(vz)T(v

S(0) and v

1)

1 < B(1):

(3.01)

2). (3.02)

Conversely, if (8,B) is a regular strategy pair such that, for all v, =<

1=

B(l) and v, = S(0), (3.01-02) are satisfied, then (S,B) is a regular

g Z
equilibrium.

Chatterjee and Samuelson {2, Th. 2] showed

our knowledge, the sufficient part is new;
Given Theorem 3.1, demonstration that

double auction is straightforward provided

separately. Theorem 3.2 states the result

the theorem’s necessary part. To
its proof is in the Appendix.
regular equilibria exist in a k-
the two cases are considered

for k ¢ (0,1).
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Theorem 3.2: If (R,T) is admissible and k ¢ (0,1l), then the regular

equilibria in the k-double auction form a two parameter family.
This theorem'’s proof is central to understanding the nature of equilibria in
k-double auctions; consequently we include it here instead of relegating it
to the Appendix.

Let b, the bid/offer of a trader, be regarded as a parameter. Regard

each Vs (i € {1,2)) as a function of the parameter b by inverting trader i’'s

strategy; vi(b) therefore describes the reservation value at which trader i

makes the bid/offer b. Let v, = dv /db. Then v, = s 1wy, v, = B L(b),

S'(vl) = 1/%1, and B'(vz) = l/% Substitution into (3.01-02) gives

)
kR(vl)/(v2 - b) (3.03)

v

1

and

v, (1 - k)T(vz)/(vl - b). (3.04)

If (3.03-04) are supplemented with the tautology
b=1, (3.05)
then (3.03-05) define a vector field at each point in the tetrahedron 0 =< vy

<b=x< v, < 1 within RB where the axes are labeled Vs Vo and b. This

tetrahedron is illustrated in Figure 3.1. Note that v and b are

1’ 62’
strictly positive at each interior point. A standard theorem from the
theory of differential equations (e.g., see Arnold [1], Thm. 7.1), asserts
that a solution to (3.03-05) exists through any point in the interior of the
tetrahedron. Though some solution curve passes through each point in the
interior, the family of all solutions can be indexed with any planar surface
that is transverse to this family. This completes the proof.

The second existence theorem considers regular equilibria for the

seller’'s offer auction (k = 1) and buyer’'s bid auction (k = 0).
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Theorem 3.3: If (R,T) is admissible and if k ¢ (0,1}, then a regular
equilibrium exists. For the seller’s offer double auction (k = 1), the
truthful strategy B(V2) =V, is the unique, dominant strategy for the
buyer. The seller’s best response S to this strategy is unique,

differentiable, and satisfies c2[S(v1)] =V Similarly, for the

1
buyer’s bid double auction (k = 0), the truthful strategy S(Vl) =V is
the unique dominant strategy for the seller. The buyer’'s best response
B to this strategy is unique, differentiable, and satisfies

cl[B(VZ)] =V,-

A proof can be found in Williams [17, Th. 5].

4, Geometry of Solutions when k ¢ (0.1)

Specific examples. Egqs. (3.03-05) are useful not only in proving

existence, but also in numerically calculating equilibria. The

computational procedure is as follows. Pick a point (v b) within the

1’V2’

tetrahedron. The vector (G b) points along the solution through this

1’62’
point. Compute, using a small step, a second solution point by moving in
the direction of the vector. Repeat this process until the path leaves the
tetrahedron. Return to the initial point and repeat the process moving in
the opposite direction of the vector field until the path again leaves the
tetrahedron. The resulting path approximates a complete solution. We used
this procedure to compute the numerical examples that are graphed in this
paper.

Figures 4.1 and 4.2 illustrate an equilibrium in the 0.5-double
auction. Figure 4.1 shows, within the tetrahedron, the solution that passes

through the point (v b) = (0.375, 0.625, 0.45). Note that the solution

1°V2’
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enters the tetrahedron at point E (0.0, 0.285, 0.285) on edge AC and

leaves the tetrahedron at point F (0.791, 1.0, 0.791) on edge BD. 1In this
equilibrium S(0) = 0.285 and B(0.285) = 0.285. Thus, a type O seller
distorts his offer upward to 0.285, while a type 0.285 seller bids his value

0.285. Buyers of types v, < 0.285 bid truthfully, but have zero probability

2
of trading because a seller’s offer always exceeds 0.285.
Figure 4.2 shows this same solution projected three different ways into

the unit square. The seller's strategy S(v,) = b is obtained by projecting

¢

1’
the solution onto the tetrahedron's top face BCD, the buyer’s strategy B(v2)
= b is obtained by projecting the solution onto the side face ABC, and the
trading boundary B(v2) = S(vl) is obtained by projecting the solution onto
the plane at the front of the tetrahedron defined by the vy and v, axes.
Figure 4.3 shows, for k = 0.5, the well-known linear Chatterjee-
Samuelson [2] solution. It passes through point (0.375, 0.625, 0.5), has
equilibrium strategies S(vl) = (2/3)v1 + 1/4 and B(v2) = (2/3)v2 + 1/12, and
has a linear trading boundary v

=v, + 1/4 (i.e., trade only occurs if the

2 1

buyer's reservation value is at least 1/4 greater than the seller’s
reservation value). Myerson and Satterthwaite [13] showed that the
Chatterjee-Samuelson equilibrium is ex ante efficient because it maximizes
the total expected gains from trade. Under this equilibrium each trader’s
ex ante expected utility is 0.0703. These ex ante utilities should be
compared with the ex ante utilities generated by the equilibrium shown in
Figures 4.1 and 4.2. That equilibrium gives the seller ex ante utility of
0.0654 and the buyer 0.0725. While this equilibrium is ex_ante inefficient,

it is ex ante preferred by the buyer. Equilibria of k-double auctions
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generally can not be Pareto ordered, and traders may have conflicting
preferences over them.

The Chatterjee-Samuelson solution is one example of how each ex ante
allocation rule in the uniform distribution case can be implemented through
a properly chosen k-double auction. Williams [17, Section 3] showed that
the ex ante efficient trading boundaries in the uniform case are given by v

2
= dvl + ¢, where ¢ ¢ [0,1/2] and d = 2(1-¢)/(2¢c+1l). For a given c, the
welfare weights assigned to the seller and buyer are 4c/(2c+l) and (1-
2c)/(l-c) respectively. By solving (3.01-02) directly, it can be shown that
for each choice of ¢ (and therefore of the welfare weights), there is a

unique k-double auction (k = 1-2¢) and a regular equilibrium

S(v

l) dvl/(l + k) + ¢ (4.01)
and

B(VZ) = vz/(l + k) + ck/(1 + k) (4.02)
that implements the ex ante efficient allocation rule associated with c.
Note that ¢ = 1/4 gives the Chatterjee-Samuelson equilibrium. This family
of ex ante efficient equilibria plays an important role in the proof of

Theorem 6.3.

General features. Examination of the limiting values that (3.03-05)

assign to the vector field v b) on the faces and edges of the

l’%Z’
tetrahedron allows us to deduce a number of qualitative features of regular
equilibria. On each face and each edge Gl and 52 equals either zero or

infinity. To avoid the problems that values of infinity create, we look at
the normalization of the vector field. (Recall that a vector is normalized

by reducing its length to unity and leaving its direction unchanged.)

Normalization has no effect on solutions to (3.03-05) because the solution
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curves are fully determined by the vector field’'s direction at each point,
not by its magnitude. The limits of the normalized field are summarized in
Table I, and they are also depicted in Figure 3.1. Note that the normalized
vector field is indeterminate along the edges AC, BD, and AD.

A striking regularity of Table I is that the normalized vector field on
each face lies within that face. This means that a solution curve to the
field can enter and exit the tetrahedron only along the edges AC and BD; the
curves flow up from the edge AC through the tetrahedron and out the edge BD.
This illustrates an important property of equilibrium auction strategies:
at the seller’'s smallest offer, S(0) on face ABC, the buyer's strategy
converges to truthful revelation. A similar result holds for the seller’s
strategy.

Not only can solution curves enter only along the edge AC and exit
through edge BD, curves can only enter and exit through specific
subintervals of those edges. Consider the case of edge BD in detail by

examining the behavior of the vector field near a point q = (v b) on BD

12
where vy = b = vy and v, = 1. The limit of the field is not well-defined
at g because Gz(q) is a 0/0 indeterminate form that can be made to converge
to any positive number by properly choosing the direction in which the limit
is taken. The limit of the Gl term, however, is well-defined at q:

V(@) = KR(v /(L - V). (4.04)
If Ql(q) is less than b = 1, then no solution curve can exit through g
because (regardless of the value of 62) near g the vector field points back
into the tetrahedron rather than towards the boundary BD. Consequently, a

necessary and sufficient condition for solution curves to exit at point g on

BD is that Gl(q)A> b =1. This condition depends solely on the values of k,
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L and R(vl), and is independent of T. An analogous condition can be
derived for points of entry on edge AC.

If Gl > 1 so that solution curves can exit from the tetrahedron at gq,
then a one parameter family of curves exits at g. This is true because
Qz(q) is indeterminate and can assume any positive limiting value. It is
intuitively suggested by the fact that a two-dimensional family of solutions
exists that must enter and exit through edges that are one-dimensional.

Because R is differentiable, the condition Gl(q) > 1 partitions the

edge BD into subintervals where solution curves can and cannot terminate.

For instance, in the standard example where F., and F, are both uniform and k

1 2
= 0.5, solution curves cannot exit at points on BD unless vy = 2/3, and
solution curves cannot enter at points on AC unless v, < 1/3,

5 =
Table I indicates that the normalized vector field has the limiting

values (i) (G B) = (1,0,0) on face ACD and (ii) (0,1,0) on face ABD.

1'V2:

These limiting values trace out the following one parameter family of step

function equilibria:

5 if vy < 1)
Sa(vl) (4.05)
: | 1 otherwise
and
[ 0 if v, < )
BS(VZ)
8 § otherwise

where § ¢ (0,1). The equilibrium a given § determines corresponds to a
solution curve that crosses from the point (0,§,6) on AC, along the bottom
face ACD of the tetrahedron to (§,6,5) on AD, and then up the face ABD to
(6,1,6) on BD. These are the simplest of the many step function equilibria

Leininger, Linhart, and Radner [9] found.
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5. Ex Ante Efficiency

For generic distributions the only k-double auctions that achieve ex
ante efficiency are the seller’s offer and the buyer’s bid double auctions.
When both traders influence price the k-double auction is generically ex
ante inefficient.

Theorem 5.1: An open, dense subset X C H6 exists such that, for

(R,T) ¢ X and k ¢ (0,1), the k-double auction is ex ante inefficient.
Recall that H" is the admissible palrs (R,T) that have continuous nth order
derivatives. We outline the proof here; the formal proof is in the
Appendix.

Suppose (R,T) ¢ H" and (5,B) is a regular equilibrium. As before let
v (b) = s 1(b) and v, (b) = B 1(b). The first order conditions (3.03-04) can
be rewritten as

R[vi(b)] = v, (B) [v,(b) - bl/k (5.01)
and

T[v,(b)] = ‘.72(b)[vl(b) - b]/(1 - k). (5.02)
Note that if the inverse strategies (Vl’v2) are perturbed slightly (while
respecting monotonicity and boundary conditions), then the perturbed
strategies are a regular equilibrium for the perturbed pair (R’,T’) obtained
through (5.01-02).

Suppose inverse strategies (Vl’v2) are an ex_ante efficient equilibrium
for (R,T). Theorem 2.2 states that constants s,t € [0,1] exist such that

v2(b) + sT(v2(b)) = Vl(b) + tR(vl(b)) (5.03)
for all b ¢ [S(0),B(1)]. Use (5.01-02) to substitute for R and T in (5.03):

v, + sx'zz(vl -b)/(L - k) =v, + tx'zl(v2 - b)/k. (5.04)

2 1
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Eq. (5.04) is noteworthy because it is a necessary condition for ex ante
efficiency on vl(b) and vz(b). It is immediate that a generic perturbation
of (vl,vz) defines an ex ante inefficient equilibrium for (R’,T'), because
(5.04) will not be solvable for constants s and t as b varies,

It is harder, however, to show that for a generic pair (R,T) no
equilibrium is ex ante efficient. To anéwer this question we consider all
pairs of functions vl(b) and vz(b) that solve (5.04) for some constants s,
t, and k. When these solutions are substituted into (5.01-02), do they
generate all admissible pairs (R,T), as they must if every admissible (R,T)
has an ex ante efficient equilibrium? No, for the following reason.
Equation (5.04) shows that the selection of vl(b) and the constants s, t, k
determine v2(b) up to a constant of integration K. The four scalars s, t,
k, K, and one functional parameter vl(b) cannot possibly generate the two
independent functional parameters R and T. Formally, we consider the nth
order Taylor polynomials of vl(b), vz(b), R(vl), and T(vz). Eqs. (5.01-02)
can be rewritten in terms of the coefficients of these polynomials. We show
that, for an open dense subset of the coefficients of the sixth order Taylor
polynomials of R and T, (5.01-02) are not solvable for appropriate
coefficients of the Taylor polynomials of vl(b) and vz(b). An ex ante
efficient equilibrium therefore does not exist for a generic pair (R,T) e
H6.

To understand this theorem, it is helpful to apply it in the context of
the family of ex ante efficient, regular equilibria that (4.01-02) describe
for the uniform case in which (R,T) = (vl, 1 - v2) € H6. Perturb (R,T)
slightly to create (R',T') € H6. Theorem 5.1 states that, for any k e

(0,1), no ex_ante efficient equilibrium exists for the generic perturbed
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pair (R',T'). This means that the ex ante efficiency of the family of
equilibria in (4.01-02) is a knife-edge phenomenon.

Ex ante efficient performance is achievable when only one trader
influences price. The cost of achieving this efficiency is a welfare weight
of zero on the trader who can not influence price.

Theorem 5.2. For all admissible (R,T) the regular equilibrium

specified in Theorem 3.3 of the seller’'s offer auction (k = 0) is ex

ante efficient and maximizes the seller’s ex_ante expected utility.

Similarly, the regular equilibrium of the‘buyer's bid auction (k = 1)

is ex ante efficient and maximizes the buyer’s ex ante expected

utility.

For proofs, see Williams [17, Th. 5] and Myerson (10, cf. pp. 66-68].

6. Interim Efficiency

When both traders can affect price, ex_ante efficient equilibria
generically do not exist. This leads to the following question: Do interim
efficient equilibria exist for k-double auctions when k ¢ (0,1)? We are
unable to answer this question definitively, but we do provide some partial
answers and insights.

Our first result is a necessary condition for interim efficient
performance.

Theorem 6.1: Let (R,T) be admissible. If (S,B) is a regular

equilibrium that is interim efficient, then under (S,B) trade occurs

with probability one in the region A(R,T) = {(vl,v2)|c2(v2) > cl(vl)}.

Proofs of this and the remaining theorems are in the Appendix.
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To illustrate this theorem, consider the uniform case in which cl(vl) =
2v1 and c2(v2) = 2v2 - 1. Within the square 0 =< V1Y, < 1 the region A(R,T)

is the area above and to the left of the line Vy -V = 0.5. If an
equilibrium (S,B) generates a trading boundary that enters the region
A(R,T), then trade does not occur for some (vl,v2) pairs within A(R,T);
consequently the equilibrium is interim inefficient.

More generally, because 02(1) =1>0-= cl(O) for any admissible pair
(R,T), the region A(R,T) always contains a nonempty open set in the upper
left corner of the square 0 < ViV, S 1. This determines a "tube" in the

tetrahedron that contains the edge BC (v1 =0, v, =1, and b ¢ [0,1]). Any

2
solution curve to (3.03-05) that passes through this tube is an interim
inefficient equilibrium. Consequently, for every k ¢ (0,1), the k-double
auction has an open set of regular equilibria that are interim inefficient.
In this sense interim inefficient performance of the k-double auction is
robust over the set of admissible pairs, the scalar k, and the choice of the
equilibrium strategy pair.

The second result of the section is a sufficient condition for interim
efficiency. The theorem assumes that R, T are 02 in order to ensure that
the regular equilibrium strategies are also CZ.

Theorem 6.2: Suppose (R,T) ¢ H2 and (S,B) is a regular equilibrium for

a k-double auction with k ¢ (0,1). If, for all pairs v, < B(l) and v

1 2

> 5(0),
1 - kS'(v)) € [0,1], (6.01)
1 - (1- KB’ (v, € [0,1], | (6.02)
d/dv, [Fy(v))(1 - k8'(v;))] = 0, and (6.03)

d/dv2[(1 - F2(v2))(1 - (1 - k)B'(vz))] < 0, (6.04)
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then the equilibrium pair is interim efficient.
The proof is a direct application of Theorem 2.3.

Theorem 6.2 is used to prove our final result, which establishes the
existence of an interim efficient equilibrium for all (R,T) pairs that are
close enough to the uniform case. This contrasts with Theorem 5.1's
statement that generically ex ante efficient performance is unachievable.

Theorem 6.3: For each k ¢ (0,1), an open subset Xk C Hl exists such

that the k-double auction achieves interim efficient performance for

every (R,T) in Xk' For each k, Xk contains the pair (vl, 1 - v2) € Hl.

7. Remarks

1. Myerson [12] considered the situation where (i) the buyer and
seller trade only once and (ii) each Fi is the uniform distribution on
[0,1]. Each trader knows his reservation value from the outset of the
bargaining process, and is concerned with maximizing his interim expected
utility. Therefore their ex ante expected utilities are irrelevant.
Myerson argued that the Chatterjee-Samuelson linear equilibrium to the 0.5-
double auction is both positively and normatively an inappropriate outcome

to the bargaining process. As an alternative he suggests the neutral

bargaining solution--originally defined in Myerson [1l1]--that gives rise to
the trading boundary M shown on Figure 7.1. This solution concept
incorporates what Myerson calls the "arrogance of strength" that naturally
arises in situations in which a seller’s realized reservation value is high
or a buyer’s realized reservation value is low.

Superimposed on trading boundary M is trading boundary T, which is

generated by the regular equilibrium of the 0.5-double auction that passes



December 24, 1987 Page 26

through the point (v b) = (0.25, 0.75, 0.5). Because T approximates the

1'V2
boundary M, this equilibrium gives both traders approximately the same
interim expected utilities as Myerson’s neutral bargaining solution.

This illustrates a general point: the multiplicity of equilibria in
the k-double auction may enable it to implement many different allocation
rules approximately. Our work, however, provides no basis for selecting
among the possible equilibria, nor for explaining regulafities that are
observed in experiments with double auctions.

2. Wilson [18] showed that the k-double auction achieves interim
efficient performance when the number of traders becomes large. His result
assumes the existence of a sequence of equilibria indexed by the size of the
market such that: (i) in each equilibrium the buyers’ strategies are
identical and the sellers’ strategies are identical and (il) the strategies
are differentiable and their derivatives are uniformly bounded in both the
traders’ reservation values and the total number of traders. Our Theorem
6.2 shows that if equilibrium strategies in the bilateral case obey certain
bounds on their derivatives, then the equilibrium is interim efficient.
While Wilson’s assumptions on strategies are not simply an extension of the
bounds given in our Theorem 6.2, our theorem does suggest that his
assumptions on the derivatives of the equilibrium strategies play a central
role in his proof. Thus an important problem that remains is to prove that

sequences of equilibria that satisfy Wilson’s hypotheses actually exist.

4 See, for example, Smith et al [15] and Radner and Schotter [14].
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Appendix

Proof of Theorem 2.3: The correspondence between our notation and

is v(t), v, is u(t),

1 2

l) is aj(t), and az(vz) is ai(t). Wilson's

Lemma 3 takes as given both the set of welfare weights a and the conditional

welfare weights a that the weights a imply. It then states conditions on

the conditional weights that are sufficient to guarantee that the trading
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rule is interim efficient. Our theorem takes as given a set of conditional
welfare weights a. It states conditions on these weights that are
sufficient to guarantee (i) the existence of imputed, nonnegative welfare
weights a and (ii) the interim efficiency of the trading rule.

Three observations establish the theorem. Our condition I'(p) = 0
implies Wilson's requirement Vh(l) = 0. Inequalities (2.27-28) guarantee
the nonnegativity of the imputed welfare weights a. Eq. (2.29) is
equivalent to maximization of Wilson's expression (9).

Proof of Theorem 3.1: We begin with Chatterjee and Samuelson’s

derivation of eq. (3.01). Suppose (S,B) is a regular equilibrium. Define
v ) = s71(b) if 1 = b = 5(0) (4.0
1 L O0Oif S(0) >b =0 ’ )

V1 is increasing and differentiable for all b > S(0) because of the

properties of S. Given a bid b by the buyer, trade occurs only if the

seller's reservation value v, is less than Vl(b). Consequently, the type v

1 2

buyer's expected utility as a function of his bid b is:
Vv
1

U,(b;v,,5) = fo [vy - kb - (1 - k)S(v;)]dF (v

\
1
= (vy - KB)F (V) - (1 - k) fo §(v,)dF (v,).

1) (A.02)

The buyer selects b to maximize U2(b;v2,S). If v, < S(0), then the buyer

cannot make an advantageous trade. If v, > S(0), then the first order

condition for selecting b is:

dU2/db -kFl(Vl) + (v2 - kb)fl(Vl)V1 - (1 - k)S(Vl) fl(Vl)V1 (A.03)

£L (VD [-RR(V)) + (v, - BV ] =0

where V., = dVl(b)/db = l/S'[Vl(b)]. Because B(v2) is a bid that maximizes a
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-1

type v, buyer'’s expected utility, (A.03) is satisfied when v, = B "(b). The
definition of Vl implies that S(Vl) = b. Substituting into (A.03) gives
[ -1 ' -
fl(Vl)[-kR(Vl)S (Vl) + B (S(Vl)) - S(Vl)]/S (Vl) = 0. (A.04)

Replacing Vl with K the term in brackets on the third line is eq. (3.01).

Derivation of eq. (3.02) is analogous.
We now prove that (3.01-02) are sufficient. Suppose (S,B) is a regular

strategy pair that satisfies (3.01-02) for all vy < B(1l) and v, = S(0). Let

2

v, be the buyer’s reservation value. We show that his optimal bid b is

2

B(v2). A similar argument shows that S is optimal for the seller.

If v, < S(0), then the buyer cannot make an advantageous trade;

b = B(v2) =V, achieves zero as his expected utility level. Suppose instead

that v, > 5(0). Up to the second line of (A.03), the derivation of dU2/db

2
does not change. Factor Vl = 1/S'(V1) from the expression in brackets to
obtain
dU% .
gg = [ kR(Vl)S'(Vl) + (v2-b) ]fl(Vl)Vl. (A.05)

For bids b ¢ [S(0),B(1l)] we can use (3.01) to substitute for -kR(Vl)S'(Vl);
simplifying we obtain
au,/db = [v, - B'l(b)]fl(vl)\'z1 (A.06)

At b = B(v2) this expression equals zero. As b increases dU2/db changes
from positive to negative because (i) B is increasing, (ii) f1 is positive
on the interval (0,1), and (iii) ﬁl is positive on (0, B(l)). Therefore b =
B(v2) is the optimal bid in [S(0),B(1)].

It remains to be shown that the buyer would not want to choose b within
[B(1),1]. We establish this by showing that dU2/db is nonpositive in

[B(1l),1]. For bids in this interval v

1 l/S'(Vl) = 1 because the seller’'s
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offer equals his reservation value when it exceeds B(l). Substituting this
into (A.05) gives

du,/db = [v, - (b+kR(b))1£,(V,). (A.07)

2

The term b+kR(b) is increasing because R is admissible. It is therefore
sufficient to show that

vy - [B(1) + kR(B(1))] (A.08)

is nonpositive. Any regular solution to the Chatterjee-Samuelson equations
has the geometry we described in Section 4. The solution we are considering

exits the tetrahedron at the point v, = B(1l), v, = 1, b = B(1). At this

1

point %1 z 1. Using (3.03) we obtain

1< Gl = KR(v])/(v,-b), (A.09)
which implies
1 -[B(l) + kR(B(1))] = O. (A.10)

Expression (A.08) is therefore nonpositive for all v, < 1, which completes

2
the proof.

Proof of Theorem 5.1. A g-jet space is a topological space that

represents all possible Taylor polynomials of order q for a particular class

of functions. Specifically, the gq-jet of an admissible R at v, e [0,1] is

1

the (q+2)-tup1e (Vl’R(Vl)’R' (Vl)sR"(V -,R(q)(vl)). The q'jet of an

D
admissible pair (R,T) at (Vl’VZ) is the (2q+4)-tuple obtained by

concatenating the q-jets of R at vy and T at V- For q < n, the g-jet space

of admissible pairs (R,T) ¢ H° is therefore a (2q+4)-dimensional subset of

32q+2.

[0,1]2 X Let J? denote this space. Note that JY is the union of an

open subset of [0,1]2 X 32q+2

, which is determined by the monotonicity
condition (2.08), and a boundary set that is determined by (2.06-07). We

also consider the g-jet of an inverse strategy pair (vl(b),vz(b)):
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(b,vl(b),vz(b), .. .,Viq)(b),véq)(b)). Let I9 denote the space of all such
(2q+3)-tuples; it is a subset of [0,1]3 X qu. See Hirsch [6, pp. 60-61]
for further discussion of jet spaces.

The first goal in the proof is to describe at the n-jet level the set
of s, t, k, b, vl(b), and v2(b) that satisfy the necessary condition (5.04)
for ex ante efficiency. For 1 < q < n, differentiating (5704) q-1 times
permits the derivation of a formula for the qth derivative of v2(b) in terms
of the variables s, t, k, b, the value of vz(b) and its derivatives of order
g-1 and smaller, and the value of Vl(b) and its derivatives of order gq and
smaller. Sequential substitution for the first derivative of vz(b), its
second derivative, etc., eliminates the derivatives of vz(b) that are of
order less than q from the formula for the qth derivative of vz(b). The
result of this exercise is a system of algebraic equations on [0,1]2 x (0,1)
x I™ in the variables s, t, k, b, and the n-jetAof (Vl(b)’VZ(b))' The
solution set of this system has dimension 6+n (i.e., the three wvariables s,
t, k, the value of b, the value of Vl(b) and its first n derivatives, and
the value of vz(b)). Let V" denote this solution set. A necessary
condition for a pair (vl(b),vz(b)) to achieve ex ante efficient performance
is that an s, t, k, and b exist such that they, together with the n-jet of
(vl(b),vz(b)) at b, define an element of v,

Each element of V" determines through (5.01-02) an element of 32n+2,
which also contains the (n-1)-jets of all admissible pairs (R,T). Formally,
(5.01-02) can be differentiated repeatedly with respect to b to obtain
algebraic formulas for the first n-1 derivatives of R(Vl) with respect to v

1

and of T(vz) with respect to v, as functions of s, t, k, b, the values of

2

Vl(b) and vz(b), and their derivatives of order less than or equal to n.
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This defines a mapping 7 from [0,1]2 X (0,1) x 1" into 32n+2. Note that
rn(Vn) is contained in a union of submanifolds of 32n+2, each of which is of
5

dimension no greater than n+6, the dimension of v
The set 7 (V") is significant because 1f ex ante efficiency is
achievable for an admissible (R,T), then the (n-1)-jet of (R,T) at some
point (Vl’VZ) is an element of rn(Vn). We now show thét, for n = 6 and any
(R,T) within some open dense subset of Hn, no such point exists. Ex ante
efficiency is therefore not achievable for a generic (R,T). Formally, the
(n-1)-jet of any admissible (R,T) defines a compact 2-dimensional
submanifold of 32n+2 as (Vl’VZ) varies. Standard transversality arguments
(e.g., see Hirsch [6]) imply that the 2-dimensional manifold determined by
any (R,T) pair within some open dense subset of Hn-1 will not intersect the
(n+6)-dimensional (or smaller) submanifolds of rn(Vn) whenever 2 + (n+6) <

2nt+2, i.e., whenever n > 6. This completes the proof.

Proof of Theorem 6.1. Contrary to the theorem, assume that there

exists some subset of A(R,T) of positive measure where trade does not occur
under the interim efficient, regular equilibrium (S,B). We show that the
allocation rule (p,x) defined by (S,B) is dominated by the allocation rule
we construct below.

The pair (S,B) defines the trading boundary v, = B-lS(vl). Define a

new trading boundary g: [0,1] -+ [0,1] by the formula B(v,) = min (B'ls(vl),

1)
2 ©1
trading rule ¢: [0,1]2 + [0,1] by the formula

célcl(vl)). Since B_IS and c are increasing, B8 is increasing. Define a

See Jacobson [8, Th. 16 on p. 312] and Whitney [16, Ths. 1 and 2]
for details.
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1 if v, = B(vy)

¢(vl,v2) = { (A.11)

Note that the support of ¢ is the disjoint union of (i) the support of the

0 otherwise

trading rule p defined by (S,B), (ii) a set of positive measure where
c2(v2) > cl(vl), and (iii) a set where c2(v2) = cl(vl).

We now verify that ¢ satisfies the conditions (2.22) and (2.23) of
Theorem 2.1. Because 8 is nondecreasing, condition (2.22) is satisfied.

To show that T'(4) is positive, we first note that T'(p) = 0; the inequality
then follows by considering the integrand in I', and the relationship between
the supports of ¢ and p. The second part of Theorem 2.1 therefore implies
that a payment rule x exists such that (¢,x) is an incentive feasible
allocation rule.

Because (¢,x) is incentive feasible, (2.23-25) apply and may be used to
calculate the interim expected utility Ui(vi;¢,x) of each trader type. This
calculation shows that, for all v, o€ [0,1] and i € (1,2}, Ui(vi;¢,x) >
Ui(vi;p,x) because the support of ¢ contains the support of p. We must also
have strict inequality for some v, because I'(¢) > 0. Therefore (¢,x)
interim dominates (p,x), which means that (S,B) is an interim inefficient
equilibrium.

Theorem 6.2: This theorem is a direct application of Theorem 2.3,
which provides sufficient conditions for interim efficiency. Let (p,x) be
the allocation rule defined by the regular equilibrium (S,B). Theorem 2.3's
first requirement is that T'(p) = 0. As pointed out in Section 4, this is
satisfied because Ul(l;p,x) = U2(O;p,x) = 0 for every regular equilibrium of
the k-double auction. Let al(vl) =1 - kS'(Vl) and az(vz) =

1 - (1-k)B'(v2). The hypothesis of the theorem we are proving then
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guarantees that, as Theorem 2.3 requires, (i) al and a, have ranges within

2
the unit interval and (ii) inequalities (2.27-28) are satisfied.

All that remains to be shown is that the trading rule p satisfies eq.
(2.29). 1It is satisfied if at every point (vl,vz) on the trading boundary

v+ (1 - al(vl)]R(v v, + [1 - az(vz)]T(vz). (A.12)

1 =7
This follows from (3.01-02), which are true for every point on the trading
boundary of a regular equilibrium. Specifically, the Chatterjee-Samuelson
equations (3.01-02) may be rewritten as

v, = S(vl) + kS'(vl)R(vl) (A.13)

2
and

B(v2) + (1 - k)B'(vz)T(vz) (A.14)
at point (vl,vz) on the trading boundary S(vl) = B(v2). Equation (A.12) is
then obtained by solving (A.13), (A.1l4) for S(vl) and B(VZ)’ respectively,

and then equating these expressions.

Proof of Theorem 6.3: Fix k in (0,1). 1In Section 4, for the case of

uniformly distributed reservation values (where R(vl) = v, and T(v2) =

1

1l - v,), we demonstrated an equilibrium with linear strategies that is ex

5)
ante efficient. Inspection of this equilibrium shows that it satisfies the
requirements of Theorem 6.2 with slack. Therefore, if an admissible (R’,T')

is sufficiently near (R,T) = (vl, 1 - v2), an equilibrium exists for (R’,T')

that also satisfies Theorem 6.2's requirements.
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Table I. Direction of the vector field on the faces and edges of the

tetrahedron.
v, v, b
Face
ABD 0 1 0
ABC 0 >0 >0
BCD >0 0 >0
ACD 1 0 0
Edge
AB 0 1 0
BC 0 0
CD 1 0 0
AD undefined
BD undefined

AC undefined




Fig. 3.1. Tetrahedron 0 < v, = b < v, < 1 that contains solutions. The
arrows indicate the limit of the normalized vector field on the

tetrahedron’s faces and edges.



(0.375, 0.625, 0.45) shown within

Fig. 4.1. Solution through (Vl’VZ’b) =

tetrahedron. The solution enters the tetrahedron at point E and exits

through point F.
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Fig. 4.2. Solution through (Vl’VZ’b) = (0.375, 0.625, 0.45). Point H =

= (0.375, 0.625) is on the trading boundary where S(0.375) =

0.45) is on the graph of

B(0.625) = 0.45. Point J = (vl,S(vl)) = (0.375,

the seller’'s strategy.

of the buyer’s strategy. The ex ante expected utility is 0.06542 for the

seller and 0.07247 for the buyer.

Point K = (B(VZ)’VZ) = (0.45, 0.625) is on the graph



Vo, D

V=V,

17

Fig. 4.3, Chatterjee-Samuelson linear solution. It passes through
(vl’VZ’b) = (0.375, 0.625, 0.50). The ex_ante expected utility of each
trader is 0.07026.




v,, b

Fig. 7.1. Double auction vs. neutral bargaining solution. Line M is the
trading boundary that Myerson’s neutral bargaining solution generates. Line
T is the trading boundary of the 0.5-double auction equilibrium that passes

through (v b) = (0.25, 0.75, 0.50).

l’v2’



