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DYNAMIC MATCHING PROBLEMS WITH INCENTIVE CONSTRAINTS

1. Introduction.

Rothschild and Stiglitz [1976] and Spence [1973] showed that fundamental
difficulties may arise when we try to extend traditional notions of market
equilibrium to economies in which individuals have private information that
is relevant but unobservable to their trading partners. In such economies,
informational incentive constraints (or adverse selection} may hinder
individuals' efforts to identify mutually beneficial opportunities to trade
with each other. Rothschild and Stiglitz showed simple examples of such
economies in which no market equilibrium seemed to exist. The goal of this
paper is to explore new ways to define equilibrium concepts for economies with
informational incentive constraints.

The essential problem in any economy is to match suppliers of goods and
services with their potential users and consumers. A market can be viewed
as a system for matching individuals and arranging trades among them. Thus,
the basic conceptual approach of this paper is to view an economy as a dynamic
matching problem. We consider an abstract model in which individuals of
various types arrive or are born into the economy at some given rates. Each
individuai's private information is his knowledge of his own type. After
arriving in the economy, each individual waits to be matched for some period

of time, and finally exits from the economy in some exit configuration.

An exit configuration may be interpreted as a description of a set of
individuals who are trading with each other and of all the net trades between
these individuals. We assume that an exit configuration includes a description
of all the trades that are made by all the individuals belonging to it. 1In

this sense, the term "exit" is indeed appropriate, because an individual has



no further economic activities to be determined once he is assigned to an exit
configuration.

In this paper, we consider only matching problems in which the birth (or
arrival) rate of individuals of each type is constant over an infinite time
horizon. We assume that individuals have no cost of waiting to be matched,
and use a zero discount rate. Throughout this paper., we consider only matching
plans that are stationary, in the sense that an individual who is born at any
point in time would expect the same treatment as an individual with the same
type who is born at any other point in time.

A feasible matching plan is any plan for matching or allocating all
individuals into exit configurations that does not require any individual to
reveal information that is not in his own best interest. That is, a feasible
matching plan must satisfy the informational incentive constraints that arise
because each individual has an option to lie about his type. 8uch feasible
matching plans are characterized in Section 2.

An equilibrium of a dynamic matching problem should be a feasible matching
plan that can resist challenges from alternative matching systems. That is,
for a matching plan to be an equilibrium, it must be able to discourage or
inhibit all individuals from defecting to any alternative matching system.

In Sections 3 and 4, we consider alternative matching systems that are
absorbing, in the sense that all of the individuals who choose to enter such

an alternative must be matched by it into exit configurations. Equilibria

are defined in Section 3 to be feasible matching plans that can prevent
defections to absorbing alternatives, in the context of some expectations about
what types of individuals (if any) would be recruited by these alternatives.

In Section 4, we allow alternative matching systems to specify targeted types



that they aim to recruit first, and we define strong equilibria to be
equilibria that can inhibit defections in this case as well. 1In Sections 3,
6, and 7, we consider challenges from nonabsorbing matching systems. As
defined in Section 5, a sustainable equilibrium can, with a suitably
constructed waiting list, inhibit defections to short-term nonabsorbing
alternatives. Representatively sustainable eguilibria and competitively
sustainable equilibria are defined in Sections 6 and 7, and both are proven
to exist in Section 9. In Section 8, we show how these equilibrium concepts
are related to the core for matching problems without incentive constraints.
There is a wide literature on bargaining in economic models of search and
matching; see, for example, Butters [1984], Diamond [1982], Mortensen [1982],
Rubinstein and Wollinsky [1985], and Gale [1986]. These papers generally
assume that, following some exogenously given search process, individuals meet
each other in pairs and then each pair plays a given bargaining game that
results either in an agreement to trade or an impasse, in which case they
separate and search again for new trading partiners. In contrast, we do not
here assume any specific rules for search, meeting, and bargaining. Instead,
we assume only that these rules should lead to outcomes that are stable in some
sense. Our basic concept of equilibrium expresses the idea that we should
not expect to observe rules of search and trading from which individuals could
be easily persuaded to switch to an alternative market system. OQur concept
of sustainability expresses the idea that, whenever individuals meet at random
in a large market environment with no cost of search, they should have
essentially no latitude for bargaining, in the sense that no bargaining game
could offer them all expected utility payoffs that are higher than what they

expect to get in the market.



To be able to focus clearly on the role of informational incentive
constraints in matching problems, we ignore all other kinds of incentive
constraints here. That is, we assume that the only problematic incentive
constraints are the informational incentive constraints involved in getting
individuals to reveal their private information. To illustrate the kind of
moral hazard or strategic incentive constraints that we are ignoring here,
consider a matching plan that randomly assigns individuals to exit
configurations, some of which offer higher payoffs than others. Then an
individual who is assigned to one exit configuration might have an incentive
to refuse this assignment, if he can, and reenter the matching system in hopes
of getting a better assignment on the second pass. Also, after an individual
has accepted an assignment to an exit configuration that involves him in some
net trades, he might still have an incentive to reenter the market to try to
make additional trades, if he can, as in the model of Gale [1986]. 1In this
paper, we rule out both of these kinds of manipulation by assuming that, once
an individual has entered a matching system, he is committed to accept the exit
configuration into which he is assigned as mandatory and final.

Let us now consider a specific example, to illustrate the kind of
difficulties that Rothschild and Stiglitz found in defining equilibrium for
markets with informational incentive constraints. There are three types of
individuals in this economy: high-productivity workers, low-productivity
workers, and employers. In each generation, there are equal numbers of
low-productivity workers and employers, and there are nine times as many
high-productivity workers as employers. Each employer can hire up to twenty
workers for 40 hours each. An employer gets $30 profit per hour from each

high-productivity worker and %20 profit per hour from each low-productivity



worker that he hires. Every worker has 40 hours of labor to sell, which he
cannot divide among two or more employers. Each high-productivity worker has
a personal reservation price of $25 per hour for his labor, and each
low-productivity worker has a reservation price of $5 per hour for his labor.
Each worker knows his own type, but employers cannot distinguish between the
two types of workers when they are hired., except by offering a choice where
the different reservation prices would lead to different decisions for the
two types. All individuals are risk neutral, and money is freely transferable.
There are many possible matching plans that could be implemented in this
economy, but two plans stand out as the most promising candidates for being
equilibria. In both of these plans, the employers (who are effectively in
excess supply in this economy) get zero expected profits. In the first of

these plans, which we may call the standard pooling plan, all workers are hired

for 40 hours at a wage of $29 per hour, which is the expected productivity
of a randomly sampled worker in each generation. In the second of these plans,

which we may call the standard separating plan, the low-productivity workers

are hired for 40 hours at a wage of $20 per hour, but the high-productivity
workers are hired for 24 hours at a wage of $30 per hour and must have 16 hours
of unemployment. It is straightforward to check that, pecause the
high-productivity workers value their unemployed time at $25 per hour whereas
the low-productivity workers value their unemployed time at only $5 per hour,
neither type of worker could gain by imitating the other type in this
separating plan.

The standard separating plan is obviously very wasteful. In the
Rothschild-Stiglitz viewpoint, it could not be an equilibrium because an

employer with excess capacity could offer to hire additional workers full-time



wage of $28.50 per hour, which would attract all of the workers in the market
and, because 90% of all workers have high productivity, would leave the
employer an expected net profit on each worker hired.

On the other hand, the standard pooling plan also fails the test for a
Rothschild-Stiglitz equilibrium, because an employer could offer a wage of
$29.50 per hour for 38 hours, requiring that the remaining 2 hours be
unemployed. Relative to the full-time wage of $29.00 per hour, this offer
would be better for the high-productivity workers, who value unemployed hours
at $25, but it would be worse for the low-productivity workers, who value
unemployed hours at $5. Thus, when all other employers are implementing the
standard pooling plan, the employer who makes this offer of $29.50 per hour
for 38 hours would expect to attract only the high-productivity workers and
make a positive profit.

Thus, it seems that the standard pooling plan and the standard separating
plan each create opportunities for employers to gain by deviating from the
supposed plan. In fact, no matching plan can satisfy the criteria for a
Rothschild-Stiglitz equilibrium in this example. (Dasgupta and Maskin [1986]
show that Nash equilibria in randomized strategies do exist for a static
version of this economy as a one-stage game.) However, the equilibrium
concepts developed in this paper all satisfy general existence theorems. For
this example, the standard pooling plan is a representatively sustainable
equilibrium, the standard separating plan is a competitively sustainable

equilibrium, and there are many other sustainable equilibria, as defined here.



2. The basic model.

Consider an large stationary economy into which a new generation of
individuals is born {or arrives) every day. Each individual is born into the
economy with a fixed type which he knows as his private information. Let N
denote the nonempty finite set of different types for the individuals in the
economy. In the example from Section 1, we may have N = {1.,2,3}, where type
1 denotes the high-productivity workers, type 2 denotes the low-productivity
workers, and type 3 denotes the employvers.

Although each individual in the economy knows his own type, he cannot
necessarily identify the types of others. Thus, an employer may be uncertain
as to which of his potential workers are high-productivity workers and which
are low-productivity workers. We let J be a subset of N X N which represents
the type pairs that may be problematic to verify. That is, (j,i) € J iff
i# j and an i-type individual could imitate a j-type individual if he were
given any incentive to do so. For the above example, J might equal
{(1,2), (2,1})}, if the different types of workers can imitate each other but
cannot pretend to be employers (who own factories).

We assume that there is no aggregate uncertainty in the economy, so that
everyone knows the relative number of each type in every generation. For each
i in N, let p(i) denote the rate at which i-type individuals are born in this
economy, per unit of time. We assume that, for each i, p(i) is strictly
positive and constant over time. For our example, we could let p(1) = 9,
p(2) =1, p(8) = 1.

In this simple model, an individual may search or wait over a period of
time, and then he exits from the economy as a part of some coalition.

A coalition consists of a specified number of individuals of each type. When



individuals exit together in a coalition, they may also may choose to make some
net trades themselves, and they may perform other nontrade activities. An exit

configuration is a pair consisting of a coalition and a feasible vector of

net trades and other activities for the members of the coalition. For example,
a coalition might consist of nine high-productivity workers, one
low-productivity worker, and one employver. An exit configuration might consist
of this coalition together with a specification that "each high-productivity
worker sells 24 hours of labor to the employer for a total payment of $720,

and each low-productivity worker sells 40 hours of labor to the employer for

a total of $800."

We let E denote the set of all possible exit configurations. 1In
developing the technical definitions and results of this paper, we shall assume
that E is a finite set.

For any e in E, and any i in N, we let ri(e) denote the number of i-type
individuals belonging to the coalition in the exit configuration e. Clearly,
we must require

ri(e) >0, VYieN, Ve c€E.
For the exit configuration described above, we would have rl(e) = 9, rz(e) =1,
and r3(e) = 1. For every e in E, there must exist at least one type i in N
such that ri(e) > 0.

An individual's payoff in this economy is completely determined by the
configuration in which he exits, that is, by the coalition that he joins and
by the trades and activities that are implemented by the members of the
coalition. We do allow that an individual's payoff may depend on the types
and activities of all the members of his coalition, but we assume that there

are no externalities imposed on him by individuals outside of his coalition.



We assume that there are no costs of waiting or searching before an individual

joins a coalition. For any e in E and i in N, we let ui(e) denote the expected
payoff, measured in some von Neumann-Morgenstern utility scale, that an i-type

individual would get from exiting in the configuration e, if all the members

of the coalition in e are honest about their types. For any e in E and any

(j,i) in J, we let ui(e,j) denote the expected payoff to an i-type individual
if he pretended to be a j-type individual, while everyone else was being honest
about their types, and exited as a part of an ostensible configuration e (which
actually contained rj(e) -1 j-types and ri(e) + 1 1i-types, because of
his misrepresentation).

For each type i, we assume that there exists an exit configuration éi

such that ri(ei) =1, ui(ei) = 0, and, for every j # i, rj(ei) = 0, and

uj(éi,i) = 0. Here éi represents the exit configuration in which an i-type

individual must exit alone, without trading with anyone else. That is, we
are normalizing our utility scales so that an individual who exits alone

without trading gets a payoff of zero.

Th N ~%y y L i i 2 : N _' 3 i
ese structures (N, J, E, (p(i) r, u, u1 el)leN) completely specify

the model of the dynamic matching problem to be studied in this paper.

Given this dynamic matching problem, we define a matching plan to be any

function x that assigns a nonnegative number u(e) to every exit configuration
e, where u(e) represents the rate at which instances of the exit configuration
e are to occur in the plan x. In this paper, we consider only stationary
matching plans, in which these rates are constant over time. We let M denote
the set of all matching plans, so that
M= R

+

We assume that this is a very large economy, so it may be useful to imagine
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that the exit rates u(e) and the birth rates p(i) are both expressed in units
like "millions per day."

For any type i and any matching plan u, we define the following functions:

=
=
I

T r.(e) ule)

i
e€E

Vi) = L r;(e) u,(e) ule)
eckE

and, for any type j such that (j,i,) € J, we let

-~ -~

V.(u,3) = £ u.(e,j) r.(e) ule).
1 e€eE 1 1

Notice that these three functions are all linear in 4. For any 4 in M and any
i in N such that Ri(#) > 0, we define
U, (k) = Vi(ﬂ)/Ri(#).

Similarly, for any 4 in M and any (j,i) in J such that Rj(ﬂ) > 0, we define

~

Uy 9) = V(D) /R ()

To interpret these functions, notice first that Ri(u) is the rate at which
i-type individuals are being matched, per unit time, in the matching plan u.
The expected payoff to an individual of type i is Ui(u) if everyone is honest
about their types as they participate in the matching plan . On the other
hand, if an individual of type i pretended that his type was j then his
expected payoff would be ﬁi(#,j), if everyone else participated honestly in
the plan . Since Ui(y) and 6i(ﬂ,j) are nonlinear in g, it will often be more
convenient to work with the functions Vi(y) = Ui(ﬂ) Ri(y) and
&i(y,j) = 6i(y,j) Rj(ﬂ), which are linear.

We say that a matching plan g is feasible iff
(2.1) Ri(ﬂ) = p(i), Vi € N,

and
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(2.2) U (1) 2 U (), V(1) €.
Notice that, when (2.1) is satisfied, (2.2) is equivalent to
(2.2) Vi (u)/p(1) 2V (1, 3)/0(3), ¥(i,1) €7,
‘so the set of feasible matching plans is defined by a finite collection of
linear inequalities in u.

Condition (2.1) asserts that u should clear the market, creating exit
opportunities for i-type individuals at the same rate that new i-type

individuals arrive in the economy. Condition (2.2) lists the informational

incentive constraints for this economy, which assert that no individual of

any type i should expect to gain in the plan u by pretending that his type

is some other j that he can imitate. Thus, if u satisfies (2.1) and (2.2),
then g could be implemented by a centralized matching system to which every
individual is asked to report his type, and which then assigns each individual
to a randomly determined exit configuration, so that his probability of exiting
in configuration e is y(e)ri(e)/Ri(y) if he reports that his type is 1i.
Condition (2.2) then guarantees that it would be a Nash equilibrium for all
individuals to report their types honestly to such a matching system, and
condition (2.1) guarantees that this matching system will actually match
everyone. Conversely, under weak assumptions about the structure of E, one
can guarantee that any matching plan that could be implemented by any market
system must satisfy the constraints {2.2), by standard revelation-principle

arguments.

3. Eguilibrium matching plans.

The concept of feasibility defined above is sufficient to describe what

an incumbent matching system could accomplish in this economy if the
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individuals in the economy could never refuse to participate in its plan and
go to some alternative market or matching system instead. We now define an

equilibrium to be a matching plan that is feasible and can repel challenges

from rival matching systems.

So suppose that some alternative matching system has become available,
and the individuals in the economy can choose whether to be matched by the
incumbent or by the alternative system. We assume, for now, that an individual
who chooses the alternative does so irrevocably, and cannot later return to
the incumbent; that is, the alternative is absorbing. (This assumption will
be dropped in Section 5.)

The alternative matching system cannot guarantee how it will match
individuals until it determines the relative proportions of each type of
individual that are choosing it over the incumbent. For example, a matching
system cannot guarantee that it will match every man with a woman, in a
two-person coalition, because it might attract more men than women. Thus,
the matching plan that is actually implemented by the alternative system must
depend on the relative proportions of each type that are choosing it. These
relative proportions can be represented by a vector in A(N), where

A(N) = {q:N - R| EjeN gq(j) =1, and g(i) =2 0 VieN}.
Let AO(N) be the relative interior of A(N), that is
A°(N) = {qg € A(N)] q(i) > 0 VieN}.

One easy way to create expectations that would prevent any individuals from
choosing to enter the alternative matching system would be to assume that
everyone believes that nobody else will choose to enter the alternative. Then
any one individual who did choose the alternative would find himself with no

one else to join him in a coalition. Under this assumption, any feasible plan
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could be supported as an equilibrium, provided that it gave every individual

at least the payoff of zero that he could get on his own. To avoid such a
trivialization of the equilibrium concept, we require that, even if the
alternative matching system could somehow guarantee that it would attract a
positive proportion of each type of individual (perhaps because some individuals
would always enter it by accident), it still could not guarantee that any
individuals would get substantial gains from choosing it over the incumbent.

We define an alternative-response mapping to be any upper-semicontinuous

point-to-set correspondence @:AO(N) -+ M such that, for every q in AP(N),

®(q) is a convex subset of M, and, for every v in &(q),

(3.1) Ri(vJ = qg(i), Vi € N,
and
(3.2) Ui(v) > ai(v,j), Y(i,i) € J.

We interpret &(gq) as the set of matching plans that could be implemented by
the alternative matching system that & represents, if the relative proportions
of the various types in the subpopulation choosing the alternative are as in
the vector q.

We say that an alternative-response mapping ® freely blocks a matching

plan u iff there exists some strictly positive number £ such that, for every
q in AO(N) and for every v in ®(q), there exists some i in N such that

U;(v) 2 T () + e,
So if ® freely blocks u, then, for subpopulation that might be recruited into
an alternative matching system, and for any matching plan that this alternative
could then implement according to ®, there is always at least one type that

would do strictly better in the alternative system than in the plan k.

We say that u is an equilibrium iff there does not exist any
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alternative-response mapping that freely blocks u. To interpret this
definition, suppose that the incumbent is planning to implement an
equilibrium x, and suppose an individual must pay some small positive search
cost £ if he chooses the alternative instead of the incumbent. Then, for any
alternative matching system that can be characterized by any
alternative-response mapping ® as above, there exists a conjecture g about
the characteristics of the subpopulation that (perhaps by accident only) would
be recruited into this alternative system, and there exists some matching plan
v in &(q) that this alternative system could implement with this subpopulation,
such that no individual could gain by choosing the alternative matching system
over the incumbent.

Section 9 contains the proof of the following existence theorem, along

with all other theorems in this paper.

Theorem 1. The set of equilibria is nonempty.

4, Strong equilibria.

In some egquilibria, there may be a set of types that could all do better
if they all chose to join some alternative matching system, but no one does
so because he is afraid that the others will not do so. For example, suppose
that there are some exploited but highly productive types who could together
produce more than they are getting in the incumbent plan u, but there are also
a few unproductive drones who can imitate productive types. Then the
type-distribution vector g which supports the incumbent plan u as an
equilibrium might have an unrepresentatively large number of drones in it.

That is, even if there are relatively few drones in the economy overall, u
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could be supported as an equilibrium by the expectation that any alternative
matching system would be overwhelmed by drones, from whom the productive types
are hard to sort.

In the example discussed in Section 1, the standard separating plan can
be supported as an equilibrium in just this way. We only need to suppose that
the individuals who select the alternative matching system include relatively
few workers, most of whom are low-productivity types, (say, q(1) = .0182,

q(2) = .9932, q(3) =1 - 82), and we can guarantee that no
incentive-compatible matching plan can offer substantial (greater than €)
expected gains to any type, relative to the standard separating plan.

Such an equilibrium could be upset or blocked if an alternative matching
system could launch an effective marketing campaign aimed at the productive
types, so that no one would expect the productive types to be underrepresented
in the subpopulation recruited by the alternative. In our example, if the
high-productivity workers and the emplovers could be convinced to all choose
the alternative matching plan, then it could guarantee that all employers and
high-productivity workers would do better than in the standard separating plan,
regardless of how many of the low-productivity workers also chose the
alternative. (The alternative could do so by having all workers employed
full-time at a wage of $28.50 per hour.)

In general, the equilibrium concept developed in Section 3 may seem rather
weak because we assumed that an absorbing alternative matching system cannot
influence the relative proportions of the various types in the subpopulation
that it recruits. Let us now relax this assumption and allow that an absorbing
alternative matching system may, under certain circumstances, have an effective

marketing or recruiting campaign aimed at a particular set of types. If such
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a campaign is effective then the types in this targeted set should not be

underrepresented in the subpopulation that enters the alternative system.

For such a marketing campaign to be effective, however, the alternative system

must be able to assure these types that, if they all choose the alternative

matching system, they will in fact do better than in the incumbent. Thus,

we may consider an equilibrium to be weak if there is some set of types who,

once they are all recruited into the alternative matching system, would all

do strictly better, no matter what system the other types might choose. A

strong equilibrium should be any equilibrium that is not weak in this sense.
Let S be any nonempty subset of N. Let AP(NIS,p) denote the set of all

relative type-distribution vectors in AO(N) that could occur in a subpopulation

that includes all of the individuals in the overall population who have types

in S. That is, g € AO(NIS,p) iff there exists some vector m in RN such that

(i) p(i) for every i in S, 0 < w(j) £ p(j) for every j in N, and

a(k) “(k)/(ZQeN n(%)) for every k in N.
Let y be any feasible matching plan. We say that an alternative-response

mapping ® coalitionally blocks g on S iff there exists some strictly positive

number € such that, for every g in AP(NIS,p) and every v in ®(qj,

Ui(v) > Ui(#) + e, VYie€es.
That is, @ coalitionally blocks g on S if a matching system that responds
according to ® could guarantee that all individuals with types in S would gain
a strictly positive amount over what they get from u if they jointly all chose
to enter the alternative matching system, regardless of how many individuals
with other types chose the alternative as well.

We say that u is a strong equilibrium iff g4 is an equilibrium and there

does not exist any alternative-response mapping that coalitionally blocks u
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on any nonempty subset of N.

Theorem 2. The set of strong equilibria is nonempty.

Sustainable equilibria.

[¢]]

In the preceding two sections, we assumed that an alternative matching
system would have to match everyone who enters it. This assumption made it
easier to support many matching plans as eguilibria. In our example, the
essence of the Rothschild-Stiglitz objection to the standard pooling plan was
that an alternative matching system could be designed that would be better
for the high-productivity types and employers but worse for the
low-productivity types. Thus, any low-productivity workers who (accidentally
or deliberately) entered the alternative matching system could be induced to
return to the incumbent matching plan, so that employers could be guaranteed
higher productivity rates in the alternative systenm.

'So let us now consider the possibility that an alternative matching system
can return some of the individuals who enter it back to the incumbent. To
guarantee that the incumbent matching plan cannot be changed in response to
the existence of the alternative, we should now assume that the alternative
matching system only operates during a very short time interval. We may say
that an incumbent matching plan is sustainable (in a sense closely related to
that of Baumol, Panzar, and Willig [1986]) if it cén prevent such nonabsorbing
short-term alternatives from matching any portion of the population.

A short-term alternative that is offered at a particular point in time
can only match people who were born earlier but have not yet been assigned

to an exit configuration. Suppose that the incumbent matching system can match
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people into exit configurations very quickly, but not quite instantly after
they are born. Then, at any point in time there must be a strictly positive
number of all types of individuals who have arrived into the economy but have
not yet been matched for exit. These are the individuals whom a short-term
alternative can try to match.

Although we assume that there is some minimum time that individuals must
be available to alternatives before the incumbent can match them, we do not
assume that the incumbent must match everyone this quickly. That is, the
incumbent could make some individuals wait for a longer period of time before
being matched. If different types have different expected waiting times in
the incumbent system, then the steady-state numbers of each type who are
available for matching at any point in time will not be proportional to the
birth rates o(i). For example, if the birth rate of high-productivity workers
is 9 times the birth rate of low-productivity workers, but low-productivity
workers have an expected waiting time that is 18 times longer than the
high-productivity workers, then, in the steady state, the low-productivity
workers must actually outnumber the high-productivity workers by 2 to 1 at
any point in time. As Butters [1984] has shown, such nonproportionality may
have an important role in sustaining an eguilibrium.

If is not necessary for every individual of a given type to wait the same
length of time. After an individual reports his type to the administrators
of the incumbent matching system, they could randomly decide whether to match
him without delay or to ask him to join a waiting list for some extended time
interval. Suppose that this time interval is much longer than the minimum time
that it takes to match individuals without delay. Then virtually all of the

individuals who are available to be matched at any point in time may be
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individuals on this waiting list, even if only a very small portion of the
population that is born in any period goes into the waiting list.

When the incumbent operates the matching plan g, the expected payoff to
a new-born or newly arrived individual of type i is Ui(y). We assume here
that there are no waiting costs. However, this does not imply that every
i-type individual who is waiting to be matched at any point in time has an
expected payoff of Ui(#), because the incumbent matching system might tend
to give less favorable exit configurations to the individuals who are asked
to wait than to the individuals who are matched without delay. That is, the
incumbent matching system could have a policy of discriminating against the
individuals on its own waiting list. (If only a very small portion of the
population is asked to wait, then discrimination against people on the waiting
list may require only a very small perturbation of the matching plan, which
describes the aggregate rates at which all exit configurations are used across
the whole population.) Thus, the expected payoff under the incumbent matching
system for the individuals of a given type who are waiting to be matched at
any given point in time may be different from the expected payoff for the
new-born individuals of the same type.

We define an environment to be any pair (w,q) in RN X mf_
For each i in N, g(i) is interpreted as the relative number of i-type
individuals that are waiting to be matched at any point in time, and w(i) is
the expected payoff, under the incumbent system, for the i-type individuals
who are waiting to be matched.

For any environment {(w,qg) such that
(5.1) g(i) > 0, Vi €N,

let G(w,q) denote the set of all plans v in M such that
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(5.2) Ri(v) < q(i), Vi €N,
(5.3) (Vi(v) - Ri(v) w(i))/q(i) 2 (Gi(M,J) - Rj(#) w(i))/a(j), V¥(j.i) € J,
(5.4) Vi(v) - Ri(v) w(i) 2 0, Vi €N,

and there exists at least one j in N such that
(5.5) Vi(v) - Ri(v) w(i) > 0.

We call G(w,q) the set of viable alternatives in the environment (w,q).

Condition (5.2) asserts that v does not match more i-type individuals
than are waiting to be matched at any point in time.

To interpret condition {5.4), recall that Ui(v) = Vi(v)/Ri(v) whenever
Ri(v) is positive. (Vi(v) equals zero and Ui(v) is undefined when Ri(v) is
zero.) So condition (5.4) assert that, for every i,

Ui(v) > w(i) or Ri(v) = 0,
that is, the alternative plan v offers a nonnegative expected gain over the
incumbent to every type that v ever matches.

Condition (5.5) asserts that there is at least one type of individual
that gets a strictly positive expected gain from the matching plan v. If there
were no such types, then there would be no one in the economy with any interest
in setting up the alternative matching plan v.

When Ri{v) and Rj(v) are positive, the inequality in (5.3) is
equivalent to

(U;(0) = W) (R (9)/a(1)) 2 (U;(v,5) - w(1)(R;(»)/a(3)).
Assuming that almost all individuals report their types honestly in the
environment (w,q), if an i-type individual reports his type honestly then the
probability that he will be matched by v is Ri(v)/q(i), and his expected gain
over the incumbent if he is matched by v will be Ui(v) - w(i). On the other

hand, if an i-type individual reported a type of j then the probability that
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he would be matched by v would be Rj(v)/q(j), and his expected gain if he were
matched by v would then be Gi(v,j) - w(i). Thus, condition (5.3) asserts
that no individual could increase his expected gain from the alternative
matching plan (relative to what he expects from the incumbent), by lying about
his type to the alternative matching system, when everyone else is honest.

Thus, the viable matching plans in G(w,q) are the matching plans that
could be implemented by a short-term nonabsorbing alternative in the
environment (w,q), such that at least one type of individual would do strictly
better than under the incumbent and none would do worse.

We say that an environment (w,q) is strongly inhibitive iff it satisfies

the strict positivity condition (5.1) and the set G(w,q) is empty. That is,
a strongly inhibitive environment is one that supports no viable alternatives.
The following technical result may be helpful in identifying strongly

inhibitive environments.

Theorem 3. Given any environment (w,q) such that g(i) > 0 for every i,
(w,q) is strongly inhibitive if and only if there exist numbers A(i} for all
i in N and «{(jii) for all (j,i) in N x N such that
A(i) > 0, Vi €N,
a(jli) > 0, and if (j,i) ¢ J then a(jli) =0, Vi € N, Vj €N,
and, for every exit configuration e in E,
Liey (1) + T a(ili) ugle) - %

jen ®13) Uil 1)) r(e)/ai)

S Tiey (A1) * Iy ali11)) w(i) - 3

i a(ifj) w(j)) ri(e)/q(i).

JjeNn

We say that an environment (w,q) is inhibitive iff there exists some

sequence {(wk.qk)};:=1 such that (wk,qk) is strongly inhibitive for every Kk,
and limk wk =w and lim qk = q. That is, an inhibitive environment
—00 K=o
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may support viable alternatives, but only as a knife—-edge condition; so that
there are arbitrarily small perturbations of the environment that would
eliminate all viable alternatives.

We say that 4 is a sustainable matching plan iff u is feasible (that is,
M satisfies conditions (2.1) and (2.2)) and tﬁere exists some inhibitive
environment (w,q) such that
(5.6) Ui(#) > w(i), Vi e N.
Thus, an incumbent matching system that implements a sustainable plan u could
use its waiting list to create an inhibitive environment in which the waiting
individuals have expected payoffs that are not better than new-born individuals
of the same type. If condition (5.6) were violated then, by offering expected
payoffs that were greater than Ui(u) but less than w(i), an alternative could
attract the small number of new-born i-type individuals who are available at
any point in time and separate them from the individuals on the incumbent's
waiting list, so that the inhibitiveness of the environment created by the
waiting list would be irrelevant.

The following theorem asserts that all sustainable plans are equilibria,
in the sense of Section 3, so the expressions "sustainable matching plan" and

"sustainable equilibrium” may be hereafter used synonymously.

Theorem 4. Any sustainable matching plan is an egqguilibrium.

Theorem 5 will follow from the more fundamental existence theorems to

be presented in Sections 6 and 7.

Theorem 5. The set of sustainable equilibria is nonempty.

To illustrate how equilibria are sustained, let ﬁ denote the standard
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pooling plan in our example from Section 1. Under this plan, the expected
payoffs are 40%x(29 - 25) = 160 for the high-productivity workers (type 1),
40%x(29 - 3) = 960 for the low-productivity workers (type 2), and 0 for the
employers (type 3). Let € be any small positive number, and let
wo(1) = 160 + 360e, w-(2) = 600, w
Recall that the birth rates in this example are p(1) = 9, p{(2) =1, and
p(3) = 1. The environment (we,p) is strongly inhibitive, as can be proven
by applying Theorem 3 with
A1) = 10/(1 + ), X(2) =8e/(1 + ), X(8) =1, oa(lj2) = (1 - 9e)/(1 + ¢)
and @(2]1) = 0. Let w = lim w". So (w,0) is inhibitive and w(i) < U, (k)
for every i in N, so the standard pooling plan ﬁ is a sustainable equilibrium.
Notice that, although q(i) = o(i) for every i in this inhibitive
environment, we have w(2) < Uz(ﬁ). That is, the pooling plan can be sustained
by an environment in which every type has the same expected waiting time, but
low-productivity workers who go onto the waiting list are treated worse than
the low-productivity workers who do not wait. Such discrimination against
the low-productivity workers who wait creates a reservoir of low-productivity
workers who are relatively more eager to join alternative matching systems.
There would have been viable alternatives, such as the one listed at the end
of Section 1 {(in which high-productivity workers are hired at $29.50 per hour
for 38 hours and low-productivity workers are returned to the incumbent plan)
if we had let w(2) equal Uz(ﬁ).
Now let ; denote the standard separating plan in this same example. Then
Ul(L) = 24%(30 - 25) = 120, Uz(;) = 40%(20 - 5) = 600, and US(L) = 0. Let
;(i) = Ui(;) for every i, and let &(1) =5 = &(2), &(3) = 1. Then the

~ o~

environment {w,g) is strongly inhibitive, as can be proven by applying Theorem 3
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with 2(1) = 6.25, Xx(2) = 3.75, X{(3) =1, a(if{2) = 1.25, and «(2|1) = 0.
Thus, the standard separating plan is also a sustainable equilibrium.

Notice that the standard separating plan can be sustained by an inhibitive
environment in which the individuals who are waiting have the same expected
payoff as they had at birth, but low-productivity workers have higher expected
waiting times than high-productivity workers. Thus, the set of individuals
available at any given time contains egual numbers of the two tyvpes of workers,
instead of nine times more high-productivity workers than low-productivity
workers as there are in at birth in any new generation. This increase in the
relative number of low-productivity workers available is what prevents the
standard pooling plan from being a viable alternative in this environment.

Once we have verified that (&,&) as above is an inhibitive environment
for this example, we have also proven that any feasible matching plan Z that
satisfies

U () 2 120, U,(@) 2 600, and U (i) 2 0
is a sustainable equilibrium as well. {The standard pooling plan could also
be sustained by (&,&) in this way.) In particular, there exist sustainable
equilibria in which the employers make positive profits, even though employment
opportunities are in excess supply, compared to the labor force.

Qur definition of an environment gives us twice as many variables as there
are types, and one might suspect that this is more than we need to guarantee
existence of equilibrium. To reduce the number of free variables, one natural
restriction would be to require that ¢g{(i) = p{i) for every i, as in the
sustaining environment (ﬁ,p) for the standard pooling plan in our example.

This restriction would guarantee that all individuals have equal expected

waiting time and the distribution of types who are available to be matched at
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any point in time is the same as the distribution of types in every generation
at birth. A second natural restriction would be to require that w(i) = Ui(u)
for every i, as in the sustaining environment of the standard separating plan
in our example. This restriction would guarantee that an individual's expected
payoff does not decrease when he is asked by the incumbent to wait. 1In general,
either of these restrictions can be imposed without losing existence of

sustainable equilibria, as we show in the next two sections.

6. Representatively sustainable equilibria.

Let w be any vector in RN, to be interpreted as an allocation of expected
payoffs to the various types of individuals in N. We say that w is a

representatively inhibitive allocation iff there exists a sequence of

allocations {wk}ol:=1 such that (wk,p) is strongly inhibitive for every k, and

limkdm wk = w, That is, an allocation is representatively inhibitive if, with

arbitrarily small perturbations, it could be the payoff allocation of a

strongly inhibitive environment in which the distribution of types is the same

as in any generation at birth.

We say that a matching plan x4 is a representatively sustainable

equilibrium (or, for short, a representative equilibrium) iff it is feasible

and there exists some representatively inhibitive allocation w such that
Ui(ﬂ) > w(i) for every i in N. That is, representatively sustainable
equilibria are feasible matching plans that can be can be sustained by
inhibitive environments in which all types of individuals have the same
expected waiting times, although there may be some types who suffer
discrimination when they are asked to wait. We have seen that the standard

pooling plan in our example is representatively sustainable in this sense.
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Some sustainable eqguilibria, like the standard separating plan in our
example, may be strongly Pareto-dominated by other feasible matching plans.
However, it is easy to see that representatively sustainable equilibria are
always weakly Pareto-efficient. Any feasible matching plan, satisfying (2.1)
and (2.2), that Pareto-dominates the allocation w would be a viable alternative
to (w,p), since the individuals available to alternative matching systems a
any point in time are representative of the overall population in the dynamic
matching problem. Baumol, Panzar, and Willig {1986] have argued that
sustainability against short-term entry by potential competitors is a
sufficient condition to guarantee Pareto-efficiency of economic systems. This
conclusion does not generally hold in dynamic matching problems with incentive
constraints; but it is valid if we impose the additional restriction that,
at any point in time, the set of individuals who are available to be matched
should be representative (in terms of the distribution of types) of the
population of that arrives into the market during any period of time.

In fact, the set of representatively sustainable eguilibria is contained
in an important subset of the Pareto-efficient matching plans: the strong

equilibria, defined in Section 4.

Theorem 6. Every representatively sustainable equilibrium is a strong

equilibrium.

We can now state our first fundamental existence theorem, which implies

all existence theorems stated previously in this paper.

Theorem 7. The set of representatively sustainable equilibria is

nonempty.
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7. Competitively sustainable equilibria.

For theoretical convenience, we have been assuming that the incumbent
matching system is implemented by some centralized matching agency. This
involved no reduction of the feasible set, because (when computation costs
and moral hazard within the agency are ignored) a centralized agency could
implement any matching plan that any decentralized matching system could
implement, by simulating the workings of the decentralized systenm.

The assumption of centralization is really only needed to permit the kind
of waiting-list discipline that can create an environment (w,qg) in which
w(i) < Ui(ﬂ) for some i. If the incumbent matching system were to be
implemented by a decentralized system of matchmakers, there would be nothing
to prevent an individual who is asked to wait by one matchmaker from reapplying
to another matchmaker as if he were a new-born individual who had never applied
anywhere. (If the individuals on the waiting list were somehow branded as
such, then alternative matching systems could also use the brands to separate
new-born individuals from wait-listed individuals, which would defeat the whole
purpose of the waiting list.) So a necessary condition for a matching plan
to be sustainable in a decentralized or competitive matching system is that,
at any point in time, every individual who is waiting to be matched must have
the same expected payoff as any new-born individual of the same type.

Thus, we say that a matching plan g is a competitively sustainable

equilibrium (or, a competitive equilibrium, for short) iff it is feasible and

there exists an inhibitive environment (w,q) such that w(i) = Ui(ﬂ), for every
i in N. That is, competitively sustainable equilibria are feasible matching
plans that can be sustained against short-term nonabsorbing alternatives by

environments in which individuals who wait to be matched are not discriminated
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against, relative to individuals of the same type who are matched without delay.
Notice that, in our example, the standard separating plan is a

competitively sustainable equilibrium, even though it is Pareto-dominated by

the standard pooling plan. Thus, competitively sustainable equilibria may

fail to be Pareto-efficient in dynamic matching problems with informational

incentive constraints. Such inefficiency may be viewed as a cost of

decentralization. Our second fundamental existence theorem guarantees that

some competitively sustainable equilibrium always exists.

Theorem 8. The set of competitively sustainable equilibria is nonempty.

8. Relationship to the core.

We now show that, when there are no incentive constraints, all our
equilibrium concepts are closely related to the core of a cooperative game.
Given the finite set N, let z be a game with transferable utility in
characteristic function form (or coalitional form). That is, for anyv S that
is a nonempty subset of N, z(S) is a number that represents the monetary worth
that could be earned by the members of the coalition S if they cooperated.

We assume that z({i}) = 0 for every i in N, and z(S) =2 0 for every set S.

For any S € N, let Z(S) denote the set of all vectors x in RN such that

x{i) 20 VYieN, x{(j) =0 V¥Yj¢s, and } x{k) £ z(S).

keS
Let Z(S) denote any finite subset of Z(S) such that the convex hull of Z(S})
is equal to Z{S). That is, Z(S) can be any a finite subset of Z(S) that
includes the zero vector and, for each i in S, includes the allocation vector

in which the i-component eguals z(S) and all the other components are zero.

We can construct a dynamic matching problem that is based on the
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characteristic function game z as follows. Let the set of types in the dynamic
matching problem be N, and let p(i} = 1 for every i in N. Let J, the set

of type pairs with problematic incentive constraints, be the empty set. Let
the set of possible exit configurations E be the set of all pairs (S,x} such
that S €N, S *g, and x € 2(8). For any i in N, the functions ri and

ui are defined so that

ri(S,x) 1 if i €8S, ri(S,x) =0 1if 1 ¢ 8§,

ui(S,x) x{(i).
S0 every generation in this dynamic matching problem looks like another
replication of the game z, except that players here are allowed to form
coalitions with members of other generations.

Let z denote the balanced cover of z. This is defined so that
z(S) = z(8) if S # N, and

zZ(N}) = max ¥ 8(S) z(S)

SEN
subject to
ZS_D_{i} 8(s) =1, Vi eN,
8(S) 20, V¥YS cN.
The core of z is the set of all allocations x in RN such that
Liey X(1) = z(N) and I, o x(i) 2 z(S), VS cN.

The core of z is always nonempty (see Shubik [19821. page 170, for example.)
Theorem 9. For the dynamic matching problem constructed above from the
game z, the sets of equilibria, strong equilibria, sustainable equilibria,
representatively sustainable equilibria, and competitively sustainable
equilibria are all egual. A matching plan g is in any of these sets if and

only if the vector (Ui(y))ieN is in the core of z and Rj(#) =1 for

every j in N.
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9. Proofs.
Let B denote a bound on the absolute value of all utility payoffs on the
finite set E. That is,
lu,(e)l £B, Vi €N, Ve €E, and
lu;(e, i)} =B, V(j.i) € J, Ve € E.
We prove first the existence theorem for representatively sustainable
matching plans.

Proof of Theorem 7:

Let |pl = X;y o(i).

Given any allocation vector w in RN, let Ho(w) denote the set of all
matching plans g that satisfy the following conditions:

Vi (#) - R (u) w(i) 20, Vie€N,

(V; () = Ry(m) w(i))/p() = (V(u.3) - Ry(u) w(i))/p(d) 2 0. V¥(j,i) € J.

Liey Ri(W) = 1ol
If there are any viable alternatives to (w,p), then, by homogeneity of
conditions (5.3) and (5.4), this set Ho(w) must be nonempty.

For any matching plan g, let R{u) = (Ri(/.t))ieN € RN, and

\|

p=(p(i)); oy € R

It is straightforward to check that that the set of allocations w at which

H (w) is nonempty is a closed set, and that H

0 is an upper-semicontinuous

0
convex-valued correspondence on this closed set.
For any w in [-2]pj, B+2ip|], let Hl(w) denote the set such that,
if Ho(w) = @ then Hl(w) = {w - p},

and

if Ho(w) # @ then Hl(w)

{w + R(u)] w € Hy(w)}.

Suppose first that w(i) < 0 for some i in N. Then Ho(w) # @. To prove
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this, let L{w) = (ieN] w(i) < 0}. Then the matching plan g is in Ho(w) if

ﬂ(éi) = p(i) [pl/(Z e(J)), Vi € L(w),

JEL(w)
and u(e) = 0 for all other e in E. (Recall the definition of éi in
Section 2.) Thus, for any x in Hl(w), x{(i) = w(i).

Suppose now that w(i) > B for some i in N. Then the first condition
of the definition of Ho(w) cannot be satisfied by any u such that Ri(ﬂ) > 0,
because Vi(ﬂ)/Ri(u) can never be larger than B when Ri(ﬂ) > 0. Thus, for any
X in Hl(w), we must have x(i) <€ w(i), when w(i) > B.

From the preceding two paragraphs, we can conclude that Hl(-) maps
allocations in [-2|pe|, B + 2|p|] into subsets of [-2|p|, B + 2{pf].

Let Hz(-) denote the minimal upper-semicontinuous convex-valued extension
of Hl(-), as a correspondence mapping allocations in [-2|p|, B + 2}|p|] into
subsets of ([-21p|], B + 2|p|]. By the Kakutani fixed-point theorem, there
exists some w in [-2ipl, B + 2|pl] such that w € Hz(ﬁ).

Since H, has no fixed points, Hz(ﬁ) # Hl(ﬁ). Thus, w must be on the
boundary of the closed set on which HO(-) is nonempty-valued. That is, w must

be the limit of a sequence of allocations {wk} such that, for each k,

«©
k=1
Ho(wk) and the set of all viable alternatives to (wk,p) are empty.
Furthermore, since H, evaluated at such sequence contains only points that
converge to w - p, the allocation w + p must be in Hl(ﬁ). That is, there
must exist some xu in Ho(ﬁ) such that, for every i in N, Ri(ﬁ) = p(i). Such
a matching plan ﬁ must therefore be feasible, satisfying (2.1) and (2.2), and

must also satisfy Ui(ﬂ) > w(i) for every i. Thus, w is representatively

inhibitive and ﬁ is a representatively sustainable matching plan. Q.E.D.

We next prove the existence theorem for competitively sustainable matching

plans.
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Proof of Theorem 8:

Let € be any small positive number, less than 1/2. Let n denote the
number of types in the set N.
Let ©Q denote the set of all (A,w,q,u) such that
xe (e2/(zen), 11V, we [-B + 1), B + 17V,
q & % [o(1), p(1)(1 + (1/6))],
M €M, and Ri(ﬂ) < p(i), Vi € N.
Thus, ©Q is a compact convex subset of a finite dimensional vector space.

({Recall that M = Rﬁ.) We now define some point-to set correspondences on €.

Given any (\,w,q.x) in Q, let Fl(A,w,q,y) denote the set of all X in

[83/(3Bn), l]N such that, for every i in N,
A1) =1 if V() - R;(y) w(i) <0,
A1) = €%/(3Bn) if V() - R (4) w(i) > 0.

~

Let Fz(k,w,q,u) = {w}, where, for every i in N,
w(i) = € + v, (W /p(i).
Let FS(A,w,q,#) = {&}, where, for every i in N,
a(i) = p(i) + (p(i) - R ()/e.

Let F4(A,w,q,y) denote the set of all optimal solutions v to the following
linear programming problem:

maximize ZieN A(i)(Vi(v) - Ri(v) w(i))/p(i)

subject to v € M,

Ri(v) < p(i), Vi € N, and

(Vi) = Ry(v) w1)/a(i) 2 (V;,3) = Ryw) (i) + €9))/ati), ¥(3.1) & J.
Finally, let F{()\,w,q,u) = X:=1 FQ(A,w.q,u).

It is straightforward to check that F(e) is an upper-semicontinuous

correspondence from points in  into convex subsets of . The only issue
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requiring some care is showing that F4 is upper-semicontinuous; to do so we
use the €2 term in the linear programming problem to show that there always
exist feasible solutions that satisfy all of the constraints strictly, so that
the set of optimal solutions does vary upper-semicontinuously in the
parameters.

By the Kakutani fixed-point theorem, there exists some (),w,q,u) such that
(9.1) (Zw,q,u) € F(h,w,q, u).
At such a fixed point, for any i and j in N, we have

p(i) - R, (1) = ¢ (a(i) - o(1)), p(J) - Rj(#) = ¢ (q(j) - p(3)),
and

e + v, (w/p(i).

w(i)
Furthermore, for any (j,i) in J,
(V(0) - Ry w(i))/a(i) 2 (Vi (3) - Ry w(i) + €9))/a(d).
Applying the preceding three equations to each side of this inequality, we get
(e (a(i) - p(i)) V () /p(1) - €% Ry(m)/ali)
2 (P(J)(Gi(#,J)/p(J) - Vi) /p(i)) + ela(j) - P(J))Vi(#)/p(i) - 2€2Rj(#))/Q(j)
and so
e(1 - qJ)p(1)/(p(Hali))V, () /(i) + 2€2Rj(#)/p(j) - esz(#)q(j)/(q(i)p(i))
2V (1,3)/005) - V(@ /p(i).
Since all variables in the above expression are nonnegative, Rj(#) < p(j),
and Vi(y)/p(i) is bounded above by B, this inequality implies that
(9.2)  eB + 26% 2 V. (w.3)/p(5) -V, (W/p(i).
Let u* denote the matching plan such that

u*(éi) = #(éi) + p(1) - Ry(u), Vi €N,

-

and wu*{e) = u(e) for all other e in E. Then,
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(9.3) R - p(1) and U (u*) =V, (u)/p(1) = w(i) - &%, Vi &N,
(9.4) Ut 3) = VD) /p(1), V(1) € J.

Consider again the linear programming problem that was used to define F4.
The optimal value of the objective cannot be negative, because letting v egqual
the zero vector satisfies the constraints. However, at a fixed point
satisfying (9.1), the optimal value of the objective cannot be positive
either. To see why, suppose to the contrary that the optimal value were
positive. Since the only inhomogeneous constraint in this problem is
"Ri(v) < p(i)," this constraint would have to be binding at the optimal
solution v = u, for at least one i* in N. But for this i* we must have

2 _ w(i*) = -2,

(Vix (@) = Ryg(p) w(i*))/p(i*) = w(i*) - €
and so

A(i*) = 1.
On the other hand, any term in the objective function that is positive must
have a A-coefficient of 83/(38n), while (Vi(#) - Ri(y))w(i))/p(i) cannot be
larger than 2B + 1, so the objective function would have to be negative.
(We may assume that B > 1, without loss of generality.) This contradiction
proves that the optimal value of this objective must be zero.

We can now show that, at a fixed point satisfying (9.1), (w,q) must be

a strongly inhibitive environment. If it were not, then there would exist

some v in M such that

X A1) (Vi (v) - Ry(v) w(i))/e(1) > 0O

ieN
Ri(v) < g(i), Vi € N, and

(V;0) - Ry (v) w(i))/a(i) 2 (V;(v,5) = R0) (w(i) = &%)

)/a(j), Vv(j.i) € J.
But if these inequalities could be satisfied, then we could multiply v by the

scalar ¢/(1 + €), which is never more than p(i)/q(i), and we could generate
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a feasible solution with a strictly positive objective value for the linear
programming problem that defines F4. Thus, (w,g) is strongly inhibitive.
Thus far in the proof, we have kept £ fixed. Now let € go to zero and,
using compactness, find a convergent subsequence of the resulting fixed
points. Let g be the limit of the wu* plans, and let (w,q) be the limit of
the (w,q) environments generated by this subsequence. Then (w,qg) is an
inhibitive environment. Furthermore, (9.2)-(9.4) imply, as € goes to zero,
that U, (%) = w(i) and R (&) = p(i) for every i in N, and U (R) 2 U, (i 3)
for every (j,i) in J. Thus, ﬁ is a competitively sustainable matching plan.

Q.E.D.

We now prove that any sustainable matching plan is an equilibrium.

Proof of Theorem 4:

Suppose that, contrary to the theorem, g is a sustainable matching plan
but 4 is not an eqguilibrium. Then there exists some alternative-response
mapping ® and some positive number £ such that, for every p in AO(N) and for
every v in &(p),

(9.5) 3i € N such that Ui(V) > Ui(ﬂ) + g,
Also, since u is sustainable, there exists some strongly inhibitive environment
(w,q) such that Ui(y) + € > w(i) for every i in N.

The domain of the alternative-response mapping can be extended

homogeneously to all of R§+, by letting &(yp) = {Yw} v € &(p)} for every

positive scalar ¥ and every p in AO(N). Notice that ¢ still satisfies

Ry(v) = p(i), Vi €N,
Ui(v) 2 Ui(v,j), Y(j,i) € J,
and (9.5) at every p and every v in ®(p) in this extended domain, because the

expected utility functions are invariant under multiplication by a positive
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scalar.

For any small positive number 4, less than the smallest g{i), let

Q [6,q(1)] <K .

= X
é ieN
and let

M

P {v.e M| § < Ri(v) < q(i), Vi € N}.

Define a correspondence ¥ from M6 to subsets of QJ so that, for any v in M6'

p € ¥(v) iff, for every i in N,

p(i) d if Ui(v) < w(i),

p(i) = q(i) if Ui(v) > w(i)

p(i) € [d,q(i)]} if Ui(v) = w(i).
By the Kakutani fixed-point theorem, there exists some (pd’VJ) such that

ps € ¥(v and Vg € @(pd). By (9.5), we know that there is at least one i

J)
in N such that

Ui(v > Ui(y) + € > w{(i) and Ri(vd) = q(i).

s 2
By compactness, there exists some (p,v) that is the limit of a convergent
subsequence of the (pa,vd) pairs, as 8§ =+ 0. There exists at least one k in N,
such that Uk(v) > Uk(y) + € > w(k) and Rk(v) = q(k), so that
Vk(v) - Rk(v) w(k) > 0.
Furthermore, for every i in N we must have
Vi(v) - Ri(v) w(i) =2 0.

This is because, for any i, if vi(VJ) - Ri(v6) w(i) < 0 for all & in the tail

of the subsequence then R, (v i) = & for all & in the tail of the

i 6) 6(

subsequence, and so, as § - 0, we get Ri(v) =0 =V, (v).

We now show that, for every (j,i) in J,

-~

(Vi(V) - Ri(V) w(i))/aq(i) 2 (Vi(v,J) - RJ(V) w(i))/q(j).

There are two cases to consider. First. suppose that Ri(v) = g(i). Then
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(Vi(v) - Ri(v) w(i))/q(i) = Ui(v) - w(i) = llm6~0 Ui(VJ) - w(i)
. . Sy 14 S , .
> llmaqo Ui(va,J) w(i) llmaqo (Vilv6’J) levg) w(1))/Rj(v6).
If the last of these expressions is positive, then changing the denominator
from Rj(v) to q(j) will decrease the value of the expression. On the other
hand, if it is zero or negative, then dividing by q(j) instead of Rj(#) will
still not make it positive. Thus,
(Vi(v) - R;(v) w(i))/a(i)
> 14 . . oy o , ,
2 Hmg o (V. (vg,J) Rj("a) w(i))/a(j) (V. (v.3) RJ.(V) w(i))/a(J).
Second, suppose that Ri(v) < q(i). If Ri(v) > 0 then
Vi(v)/Ri(v) = lim(y__,O Ui(va) = w(i).
So whether Ri(v) is zero or positive we get (Vi(v) - Ri(v) w(i))/q(i) = 0.

Furthermore,

(V,(v,3) = Ry0) w(1))/a(3) = Timg o (V,(vg,5) = Ry(vg) w(1))/a(3)

]

ling o (U (g, ) - w(i)) Ry(wg)/a(d)

1A

limcg_.0 (Ui(VJ) - w(i)) Rj(Va)/Q(j) <0,
so that
(V;(v) = Ry(v) w(D)/a(i) = 0 2 (V;(v.3) = Ry(v) wli))/a(j).
Thus, we have proven that v is a viable alternative to (w,q). But this
is impossible, because (w,q) is strongly inhibitive. Thus, any sustainable

matching plan g must be an equilibrium. Q.E.D.

We now prove that every representatively sustainable matching plan is a
strong equilibrium.

Proof of Theorem 6:

Suppose that, contrary to the theorem, u is a representatively sustainable
equilibrium but u is not a strong equilibrium. Then there exists some set §

that is a nonempty subset of N and there exists some alternative-response
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mapping ® and some positive number & such that, for every p in AO(le,p) and
for every v in ®(p),
U, (v) 20U, (0) + €, Vies.
Also, since u is representatively sustainable, there exists some strongly
inhibitive environment (w,p) such that Ui(“) + ¢ > w(i) for every i in N.
The domain of the alternative-response mapping ® can bhe extended
homogeneously to all of R§+, as in the proof of Theorem 4.
For any small positive number §, less than the smallest p(i), let
Qs = (e Rl p(i) = o(i) Vies, &=p()) <po(i), Vien,
and let

= {v € MI (Rj(v))'

jeN € Qé,S and Ui(v) > Ui(u) + g, VYi € S}.

Ms.s

Notice that every vector in QJ s is a positive scalar multiple of a vector

in AO(NIS,p), so that ® maps points in QJ s to subsets of M We define a

$,8"

correspondence ¥ from MJ,S to subsets of QJ,S so that, for any v in MJ,S’

p € ¥(v) iff, for every i in N,

]
—_—
[y
~—

[t}

§ if Ui(v) < w(i),

fe]
—_
[urs
~

I

p(i) if U (v) > w(i)
p(i) € [6,p(1)] if U, (v) = w(i).

By the Kakutani fixed-point theorem, there exists some (pa,va) in x M

.5 ¥ ¥s s
such that Pg € ?(va) and Vs € @(pa). Notice that, for all i in S,
Ui(va) 2 Ui(#) + € > w(i) and Ri(va) = p(i}.
By compactness, there exists some (p,v) that is the limit of a convergent
subsequence of the (pJ,vJ) pairs, as § - 0. So, for all i in S,
Vi(v) - Ri(v) wi{i) = p(i)(Ui(v) - w(i)) > 0.

Furthermore, for every i in N we must have

Vi(v) - Ri(v) w(i) =2 0.
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This is because, for any i, if Vi(vg) - Ri(va) w(i) < 0 for all § in the tail
of the subsequence then Ri(va) = pg(i) = § for all § in the tail of the
subsequence, and so, as 8§ » 0, we get Ri(v) =0 = Vi(v).

Exactly as in the proof of Theorem 4, we can show that, for every (j,i)
in J,

(V;(v) = Ry(v) w(i))/o(i) 2 (V;(v,5) - R, () w(i))/p(3).

{The argument is the same, except that g(i) is replaced by p(i) throughout.)

Thus, we have proven that v is a viable alternative to (w,p). But this

is impossible, because (w,o) is strongly inhibitive. Thus, any sustainable

matching plan x must be a strong equilibrium. Q.E.D.

Theorems 1, 2, and 5 follow immediately from Theorems 4, 6, 7, and 8.
Next we prove Theorem 3, which gives technical conditions for identifying
strongly inhibitive environments.

Proof of Theorem 3:

Given that g(i) > 0 for every i in N, the constraint (5.2) is really
irrelevant to the question of whether (w,q) is strongly inhibitive. The other
constraints (5.3)-(5.5) are all homogeneous in v, so there exists a solution
to (5.2)-(5.5) iff there exists a solution to (5.3)-(5.5).

On the other hand, conditions (5.3)-(5.5) are equivalent to the following
conditions (9.6)-(9.8):

(9-6)  (Vi(v) - Ry(w(1))/a(1) + (Ry(uw(i) = V,(#,3))/a(3) 2 0. ¥(5.0) € J,
(9.7) (Vi(v) - Ri(v) w(i))/q(i) 2 0, Vi € N,

(9.8) Iy (V,() - Ry(¥) w(i))/q(i) > 0.

ieN
Thus, (w,q) is strongly inhibitive iff there are no matching plans v that

satisfy v(e) = 0, for every e in E, and (9.6)-(9.8).

A matching plan is a vector in the nonnegative orthant of RE, a finite
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dimensional vector space, and inegualities (9.6)-(9.8) are all linear in v.
Thus, we can apply Farkas' Lemma for linear systems (see, for example,
Corollary 22.3.1 in Rockafellar [1970]1) to these conditions. Substituting

the formulas for Vi(v), %i(v,j). and Ri(v) into (9.6)-(9.8) and applying
Farkas' Lemma, we can show that (9.6)-(9.8) have no solution v in RE iff there
exist numbers «(jli) 2 0 for every (j,i) in J, B8(i) =2 0 for every i in N,

such that, for every e in E,

Z(j'i)eJ a(jli) (r;(e) u;(e) - r (e) w(i))/q(i)
* By i)ey ®311) (rj(e) w(i) - ri(e) u;(e,3))/qld)
+ ZieN 8(i) (ri(e) ui(e) - ri(e) w(i))

+ - i <
ZieN (ri(e) ui(e) ri(e) w(i)) €0
When we reverse the roles of j and i in the second summation and let

X(i) =1 + g(i), then the above inequality becomes equivalent to the

inequality in the theorem. Q.E.D.

It remains to prove that, for dynamic matching problems that are generated
by replicating a cooperative game that has complete information and
transferable utility, ail of our solution concepts coincide with the core of
the balanced cover,

Proof of Theorem 9:

Notice first that, when J = &, the vector q is irrelevant to the
determination of whether an envirnment (w,q) is inhibitive, because constraint
(5.3) becomes trivial to satisfy. Constraint (5.2) also involves g, but
dropping (5.2) would not affect the definition of inhibitiveness, because by
homogeneity of (5.3)-(5.5) in v, the set of viable alternatives at (w,q) is
nonempty if and only if there exists a solution to (5.3)-(3.3). Thus, when

J = &, the sets of sustainable equilibria and representatively sustainable



_41_

equilibria coincide.

Furthermore, when J = &, an increase in the compohents of w cannot make
an inhibitive environment into a noninhibitive environment, because the only
viability constraint that is not monotonic in w is (5.3), which has been
eliminated. Thus, when J = &, the sets of sustainable equilibria and
competitively sustainable equilibria coincide.

For the dynamic matching problem of Section 8, suppose that g is a
matching plan such that Ri(#) = 1 for every i in N, and the vector (Ui(ﬂ))ieN
is in the core of z. Let w(i) = Ui(y) for every i. We now show that (w,p)
is a strongly inhibitive environment (where p(i) = 1, for every i in N}.

If (w,p) were not strongly inhibitive, then there would exist some v in

M such that Vi(v) - R.(v) w(i) 2 ¢ for every i in N, with strict inequality

1

for at least one i. But then we would get

0 < Ziey (Viv) - R (v) w(i))

i
= ZieN ZeeE vie) r;(e) (u;(e) - w(i))

= Zgcy Leez(s) V(e) Lijeg (ujl(e) — wli))

1A

Zgey Leez(s) V(e (2(8) - Lj.q w(i)) =20,

where the last inequality holds because w is in the core. This contradiction
proves that (w,p) must be strongly inhibitive. Thus, if Ri(y) =1 for every

i in N, and the vector (U, (u)) is in the core of z, then u is .

ieN
representatively sustainable.

Suppose now that g is any equilibrium of this dynamic matching problem.

-~

Then Ri(y) = 1 for every i, from the definition of feasibility. We show

now that (Ui(ﬂ)) is in the core of z. If it were not, then there would

ieN
exist some S such that =z(S) > Zies Ui(y). (Any allocation that can be blocked

in the balanced cover z can also be blocked by a strict subset of N in the
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original game z.) Thus, there would exist some allocation vector x such that
x(i) 2 Ui(#) for every i in S, and Zjes x(j) = z(S). For any g in AO(N),
let m(g) = minies gq(i). Then we could construct an alternative-response

mapping & such that v € &(g) Iiff

v(éi) = q(i) - m(q) and V,(v) = m(q) x(i), Vies,
v(éj) = q(j), V¥Yj ¢S, and
Rk(V) = g(k}), Vk € N.

Such a response mapping could be implemented by an alternative matching system
that uses a combination of efficient exit configurations in i(S) at the total
rate of m(g), and clears out all remaining individuals separately in their
no-trade exit configurations (éi). Then the type in S that is least
represented q (that is, for which gq{(i) = m(q)) would get an expected payoff
of Vi(v)/q(i) = x(i) > Ui(;). Thus, this alternative-response mapping would
freely block L, which contradicts the assumption that ; is an equilibrium.
So any equilibrium must generate expected payoffs in the core of z.

We have shown that the conditions
(9.9) (U, (1)) ey € Core(z) and Rj(,u) =1, Vje€N,
imply that u is representatively sustainable, and are implied by u being an
equilibrium. Since representative sustainability is equivalent to competitive
sustainability in this context, and since all the other solution concepts
listed in Theorem 9 are implied by representative sustainability and imply

equilibrium, all of these solution concepts must be equivalent to the core

condition (9.9). Q.E.D.
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