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COMPETITIVE LOCATION IN THE PLANE

by

Zvi Drezner and Eitan Zemel

Abstract

Two questions in competitive environment are presented in the
literature. One question deals with finding the best location for new
facilities in order to attract the most buying power away from existing
facilities. The second question is to find the best location for the
defendingvfacilities, so that a future competitor Wiil be able to capture the
least buying power. In this paper we study the second problem for the case of
. a large number of customers spread independently and uniformly over a given

region A < R2

and a large number of original facilities. We show that, under
these conditions, a very simple solution, the "honeycomb™ heuristic, is almost

surely guaranteed to be within 2.5 percent from optimality. This is the case

for any number of facilities contemplated by the competitor.



1. Introduction

Two questions in competitive environment are presented in the
literature. One question deals with finding the best location for new
facilities in order to attract the most buying power away from existing
facilities. The second question is to find the best location for the
defending facilities, so that a future competitor will be able to capture the
least buying power. These questions date back to Hotelling [14] that defined
the problem on a line. If the transportation cost is a monotonically
increasing function of the distance and if the same price is charged by the
competitors, then the customers select to buy at the closest facility. Hakimi
[11,12,13] introduced these problems on a network and showed that the problem
is NP-hard. Drezner [6] solved the discrete problem in the plane. For a
review of the literature and a list of references see Gabszewicz et al. [9].
For results concerning the first question, see also [5,6,13,17,18,22].

In this paper we study the second problem for the case of a large number
of customers spread independently and uniformly over a given region A.S_R2 and
a large number of original facilities so that the impact of facilities located
near the boundary of the area is negligible. Under these conditions we show
that a very simple solution, "the honeycomb,” is guaranteed to be within 2.5%
of being optimal., This is the case for any number of facilities contemplated
by the competitor.

We carry out our analysis in three stages. First, in section 2 we
considef the customers as a continuum, let the region A be the entire R2
plane, and examine the case of one intruding facility. We show that the
ﬁexagonal pattern (the honeycomb), which is well known to be optimal for

numerous noncompetitive location problems [2,3,4,7,8,17,19,20], is at most 2.5



percent away from being optimal for the competitive problem. Next, in section
3 we study the continuous problem over a finite region A with k defenders and
m intruding facilities, for large values of k. Finally, in section 4 we
consider the case of discrete customers, using probabilistic techniques
developed for other Euclidean optimization problems such as the traveling

salesman problem, p-median and p-center problems, etc. [e.g., 8,15,19,23].

2. The Infinite Continuous Case

In this section we study the amount of area that can be captured by one
intruding facility away from an infinite number of existing facilities
covering the entire two dimensional plane RZ. For any configuration of
existing facilities, let S be the lim sup of areas of the regions served by
the facilities. It is obvious that an intruding facility can be located
arbitrarily close to an existing facility serving a large enough region, thus
guaranteeing for the intruder an area which is arbitrarily close to .5S. It
is rather surprising that the defender can limit the amount of area captured
by the intruder to just slightly above this figure. Below we demonstrate that
if the original facilities are located such that the area served by each is a
simple hexagon of area S, the intruder can capture at most .5127S. Thus, the -
hexagonal pattern is within 2.5 percent from being optimal for the defender.
We conjecture that this remarkable pattern, which is well known to be optimal
for a variety of noncompetitive covering and packing problems, is in fact the
exact optimal for the infinite continuous competitive problem as well.
Curiously, the hexagonal pattern has some appealing advantages from the
perspective of the intruder as well. 1In particular, he is guaranteed an area
of at least .5S independent of the location of his facility. As a comparison
to the hexagonal grid, we also consider the behavior of the other two simple

polygonal patterns which cover RZ, namely the square and triangular grids



(Figure 1). Our findings are in agreement with other covering and location

2, in which the hexagonal pattern is optimal, and in which the

problems over R
triangular pattern is the worst among the regular grids.
Let a new facility be located at a point (u,v), among existing facilities

(uj,vj), j € J. The region captured by the new facility is a convex polygon

P(u,v), defined by the inequalities:
2 2 2
(x-u)+(y-V)<(x—uj)+(y—vj),j€J

or

(1) 2x(uj - u) + 2y(vj -v) < u§ + v? - u2 - vz, jeJ

We denote the area of P(u,v) by S(u,v). The following well-known formula is
useful for calculating the area of general polygons (not necessarily
convex). Consider a polygon P with vertices (xi,yi), i=1,...,n ordered in a

clockwise direction, with (xo,yo) = (x,,y,) and (x4, Yn+1) = (x1,¥7). Then,

the area of P is given by

(2) S =
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Formula (2) is given in terms of the vertices of the polygon. For our
purposes, these vertices are obtained as the intersection points of lines such
as given by (1). Specifically, let (ul,vl),...,(ur,vr) be the centers from
which some area is captured by (u,v), afranged in counterclockwise order.

Then the vertices of the polygon captured by (u,v) are given by:
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2 2 2 2 2 2
39 . - (v - Vi)(ui+1 + Vi+1) - (Vi+1 - Vi)(u +v) = (v - Vi+1)(ui + vi)
i 2[(u, ; —u X v =-v.) ~ (v, . -v.)(u-u,)]
i+l i i i+l i i
G- I L R U T B CRER DI SR
¥i T 2[(ui+1 - ui)(v - vi) - (Vi+1 - vi)(u - ui)]

Thus, S(u,v) can be obtained by plugging the values (x1,y;) of (3) into
the formula (2). Below we examine the extremal values of S(u,v) for the three

regular grids. We summarize our results as Theorems 1-3 below.

Theorem 1l: 1In a square regular grid: 0.5 € S(u,v) € 0.5625.
Theorem 2: 1In a hexagonal regular grid: 0.5 < S(u,v) <€ 0.5172.
Theorem 3: 1In a triangular regular grid: a € S(u,v) < B

where 8 > 6/9 and o < 4/9.

We devote the rest of this section to the proofs of Theorems 1-3.

2.2 Analysis of the Square Grid

Assume that all existing facilities (uj,vj), j € J are arranged in an
infinite square grid of area 1 per cell (Figure la).

We divide the area inside a square into two domains——-the "star shaped”
area SS and the region outside SS (figures 2 and 3, respectively). SS is
bounded by four circular arcs, each a part of the circle enclosing an adjacent
square. It can be easily verified that in SS a new center (u,v) captures an
area only from the four corners of the square, while outside SS (u,v) captures
an area from six existing facilities: the four at the corners of the square
and two of an adjacent square. When the center of the square is at (0,0) and
the four corners of the square at at (£l,tl), the left arc formula of SS is
v2 + (u + 2)2 = 2. When we move the origin to the middle of the left side of

2

the square, then the left arc formula is v° + (u + 1)2 = 2,
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Inside SS P(u,v) is a tetragon. Plugging the value (xi,yi), i=1,.00,4

obtained in (3) into the formula (2), we get, after manipulations detailed in

Appendix A,

- VZ)

(u
8(u2 - l)(v2 -1

(4) S(u,v) =

DN —

consequently we get:

- Lemma 1: Inside SS S(u,v) > 1/2.
We now turn to finding the maximum of S(u,v) in SS. The minimum of

S(u;v) is obviously for u = + v which are the diagoﬁals of the square.

Equating 8S/3u = 3S/3v = 0 yields

(5) u(v2 + v2 - 2)(v2 - 1)(u? - v2)

il
o

+ v2 - 2)(u2 - l)(u2 - v2) =

|
o

Inside SS (excluding the corners of the square) u and v must satisfy:

u2 + v2 2 2, ul % 1, v2 2 1. Therefore, the solution to (5) is u= 4+ v
(including u = 0, v = 0) which are the minimal values of S{u,v). The maximum
of S(u,v) is therefore obtained on the boundary of SS. By symmetry we can
select any of the arcs. The left arc's formula is vZ + (u + 2)2 = 2 or

v2 = =2 - 4u - u2. Substituting into (4) we get S(u) = S(u, v(u))

g
1 - w(u + 3)

S(u) = (

for =1 < u < V2 = 2. dS(u)/du = 0 yields u = -1. At u = -1, S(u) = 1/2, so

the maximum occurs at u = ¥2 - 2. S(¥2Z - 2) = %(2 YZ - 1) = 0.5224077,



Outside SS the region P(u,v) is a hexagon, as in Figure 3. By similar

calculations we show in Appendix A that

2
(6) S(u,v) = % + % v __u

4 - u2 1 -v
Lemma 2: Outside SS, S(u,v) > 1/2.

Proof: OQutside SS u and v mﬁst satisfy: ve + (u + l)2 < 2, or
1 - v2> (u + l)2 - 1= u(u+ 2). Therefore,
(1 =93/ - u?) - u?/(1 - v3) > u(u + 2)/(2 - WQ2 + ) - v?/[uu + )] =
u/(2 - u) - u/(2 + ) = 2u2/(4 - u2) > 0.
We now find the extreme areas captured by (u,v) outside SS, i.e., in the

. 2 .
region 0 < u < //2 - v -1; 0<v <1, Setting 3S/du = 3S8/5v = 0 yields:

(7) 2ul(1 - v)2 - (4 - uH?] = 0

2w[(1 - v2)2 - WP - uH] = 0
The fifteen solutions for (7) are: (0,0); (0, x1); (& V3, 0); (+ V5, 0);
(£2, +1); (x /2, ¢ Y3). The only feasible solutioms are (0,0); (0,1);
(0, -1). S(0,v) = 1/2 + (1 - v2)/16. Therefore, S(0,0) = 9/16 = 0.5625 is
the maximum, and S(0,1) = S(0, -1) = 1/2 are the minima. What is left to do

is to check for a possible maximum or a minimum on the boundary

u = //2 - v2 -1 for 0 < v<gl, or:
v2=2-(u+1)2=1-2u-ufor0<uc<vZ-~1.

Substituting into (6) yields:
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(8) S(u) =
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0 (S(u) = 1/2) and the maximum is at u = v2 - 1 with

i

The minimum is at u
S(u) = %(2 ¥2 - 1) as in the previous case.

Summarizing the results for the square grid, we get that
«5 < S(u,v) < .5625. The best point for the intruder, yielding an area of
.5625 is midway between two adjacent centers, as depicted by O in Figure 4.
The worst is any point oﬁ the line connecting two diagonally adjacent

facilities. We formulate it as a theorem:

Theorem 1: In a square grid, 0.5 < S(u,v) < 0.5625.

O
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Figure 5
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2.3 Analysis of the Hexagonal Grid

If the centers (uj,vj), j € J are positioned in a triangular pattern, the
cells served by each are hexagons (see Figure 1b). Let the area of each
hexagon be 1. Consider the arc bounded between three centers (ui,vi),
i=1,...,3, as in Figure 5. A point (u,v) located in this area can
potentially capture the area from these three centers, plus from up to two
additional centers from the set (ui,vi), i=4,,.06. The relevant partition
of the triangle (ui,vi), i=1,...,3 is depicted in Figure 6. If (u,v) is in
Area I, it then captures some areas (ui,vi), i=1,0ee,4. In area II, it

captures an area from (uj,vy), 1 = 1,...,5.

(u,,v,)

Figure 6

For the area I analysis we select the system of coordinates such that the

origin is at the center of the lower side of the triangle, and the lower side
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is on the x axis. The arcs defining area I are parts of circles bounding
adjacent triangles. The formula of the lower arc is: u2 + (v + /5/3)2 = 4/3.

Let (u,v) be in area I. It is shown in Appendix B that

l6u2v2
2 2 2 2

9) S(u,v) = >
(v +3u -3) - 12uv

+

N}

Lemma 3: In Area I, S(u,v) > 1/2 with S(u,v) = 1/2 only at u = 0 or v = O.

Proof: Evident by (9).

Maximizing S(u,v) is equivalent to minimizing (by (9))

(105 A TRl LS TR Y.
2.2 uv
u'v
Solving
2 2
oF _ v2 + 3u -3 --v2 + 3u + 3
= = 2 ) =0
du uv 2
u'v
oF _ 2(VZ + 3u2 - 3) v2 - 3u2 + 3 0
9V uv 2 -
uv
yields:

v2 + 302 = 3

which is outside area I, or
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which is a contradiction,
Therefore, the only possible points where a maximum can lie are on the
boundary of area I. The line v = 0 yields the minimum S(u,v) = 1/2. The

formula of the arc connecting (ul,vl) and the center of the triangle is:

vEY 4
(u + 1)2 + (v - 23—302 =3

or
(11) w2 + 2u = —v2 + 4u/VT - 1

Substituting v = t V3 yields (by ignoring the square in (10))

v2 + 3u2 -3 t2 + u2 -1 =

F = = /3
uv
tu

9F .
T 0 yields

du du 2 2 _
(12) (2t + 2u‘dt)ut (u+t Ezo(t +u"  -1) =0
by (11)
(13) 2(u+ 1) W e+ 4

dt

Substituting (13) into (12) and repeatedly substituting

u2 = —3t2 + 4t - 1 = 2u reduces all the terms to be at most linear in u and

eventually yield
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(14) u(2 - t) = —2t2 + 3t -1

or

~2¢2 4 30 - 1 _ 2t% 4ot 41
2 -t 2 - t

by (11) (u + 1)%2 = =3t2Z + 4t and thus:

(-th + 2t + 1
2 -t

)2 = —3t2 + 4t

This yields a fourth order polynomial
(15) 7e% = 2463 + 282 - 12t + 1= 0
Fortunately, 1 is a double root of (15). Dividing (15) by (t - 1)2 7ields
7t2 - 10t +1=20
whose smaller root is t = (5 - 3 V2)7. Therefore, an optimum on the arc is
(5 -372) /3 Y2 - 4

= ;u='—'—_‘o

7

Substituting this value in (9) yields

5v2 -1
(16) S(u,v) = =— 57— = 0.5059222.

We have thus shown:
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Lemma 4: In area I, S(u,v) < 0.5059... .
The analysis for area II is much more complicated. By the analysis in

Appendix B we get (after substituting v = t V3):
; 1 2 2
(17) 24(8(u,t) - 5)[(2 - )" - u'lt(l - t)
2 2 2
=t (2-3t) (2-1t) - 2u (3t3 - 6t + 4) + ua(z - t)

Lemma 5: In Area II, S(u,t) > 1/2.

Proof: Area II is symmetric around the y axis, and S(-u,t) = S(u,t).

Therefore, consider half of area I1II, namely 0 < t < 2/3,

/

0 <uc</v'1l+2t- 3t2 - 1. We prove the theorem for a larger area as

follows. The definition of Area II is u2 + 2u < 2t - 3t2 which is included in

u < 533—%-351. The multiplier of S(u,t) - 1/2 is positive in Area II. The
last term of the right side is nonnegative, so we prove that

£2(2 - 3t)2(2 - t) - 2u%(3t3 - 6t + 4) > 0. Indeed,

t2(2 - 3t)2(2 - t) - 2u2(3t3 - 6t + 4)

2 2
> t2(2 - 3t)2(2 -t) - E_SZ_%_QE)_{3t3 - 6t + 4)

= %tz(z - 3t)2[4 - 2t - 3t3 + 6t - 4] = %t3(2 - 3t)2(4 - 3t2) >0

Q.E.D.

Since S(u,t) is a function of u?

, 98(u,t)/%u = 0 at u = 0. We show that
BS(u,t)/au2 < 0 in Area II and this proves that the maximum of S(u,t) is

obtaiend at u = 0. Let us first find the maximum at u = 0.
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2 2 2
(18) s (t) = s(0,t) = 1 t(2-30)7(2-1¢t) 1 t(2- 3t) .
0 2 24e(1 - £)(2 - t)Z 2 241 - £)(2 - )
as
T 0 yields:
(19) (2 - 3 3 2 _
- 3t)(3t” - 16t° + 18t - 4) =0

at t = 2/3, SO(t) = 1/2, which is a minimum. Solving 3t3 - l6t2 + 18t - 4 =0

numerically, yields three roots:

= 0.2955766

T
y—
I

= 1.164703

rt
N
i

ty = 3.873054
The relvant root is t for which
(20) So(ty) = 0.5127130195...

In Appendix C we get an explicit expression for t; and max{S(u,v)}:

9 V1077 9 V1077
1 _ arctan(——SZT—— _ arctan ——;=—
(21) t, = z{16 - Y94 [cos( ) + V3 sin ( )1}
1 9 3 3
1 £, (2 - 3tl)2
(22) maX{S(ub,V)} = E + 24(1 — tl)(z - tl) = 0.5127130195...

What remains to be shown is that as(u,t)/a(uz) < 0 in Area II and the proof

that Sy(t;) is the maximum S(u,t) in Area II is complete. By (17):
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2

(23) 24 3800, r 0 2 | (21001 - )

3(u?)

1 3 2
= 24(8(u,t) - 5)t(1 - t) - 2(3t" - 6t + 4) + 2u (2 - t)
In Area II 0 < t < 2/3 and |u| < V473 - 1. Now, t(1 = t) < 1/4 so the first

term is bounded by 6(S(u,t) - 1/2). 3¢3 - 6t + 4 is monotonically decreasing

2/3 with value of 8/9. Therefore, the

with t and attains its minimum at t
second term is bounded by -16/9. The third term is bounded by 4u or 0.096.

Therefore, the right side of (23) is bounded by
1
6(S(u,t) - 5) - 16/9 + 0.096 = 6(S(u,t) - 0.78).

At t = 0,S(u,t) < 0.5127 by (22); therefore, the derivative at t = 0 is
negative. Since S(u,t) cannot increase as long as the derivative is negative,
the derivative remains negative in Area II.

In conclusion:
Theorem 2: In a hexagonal grid the area S(u,v) satisfies
0.5 < S(u,v) < 0.5127...

The points which achive the maxima and minima of S(u,v) are depicted in Figure

7.
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xO xO

fan [A]

Figure 7

2.4 Analysis of the Triangular Grid

When the facilities are arranged on he vertices of simple hexagons then
the area of influence of each facility is an equilateral triangle (see Figures
1(c) and 8). At the center of the hexagon the area captured by a new facility
is 2/3. Near an existing facility, facing the center of the hexagon, the area
captured is 4/9 while on the other side of the facility it is 5/9. Thus, we
have established a range of 4/9 to 2/3 for S(u,v). An analysis similar to the
other two cases can be developed and it is possible that the range is even
larger. However, the information available thus far suffices to establish

that the triangular case is much worse than the other two.
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X X X
X X
X X X
X X X

Triangular grid

Figure 8

3. The Continuous Problem

We now consider the case of a bounded regaion A ¢ Rz, and a finite number
k and m of existing and intruding facilities, respectively. We denote the

area of A by IAI, and the area captured by the new facility as S. Then, using

the analysis of the previous section we obtain for m < 2k:

Theorem 4: For every € > 0, the intruder can guarantee:

S > (.5 - e)mlA'/k

Proof of Theorem 4: TLet X]X9,ee0,X, be the existing facilities, and

Ay,Ag,.e¢,Ap be the regions served by these facilities. Let |Ai| be the area
of A;. Let d be an arbitrary direction in R. For each facility x consider

the two points y; = x; + gd, zy = X4 - Bd where B8 is a small constant. If the
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new facilities are placed at z; and y;, then the area of A; is split between

i i
Xj, yi and z; such that the amount assigned to x; is proportional to 8 and

could be made arbitrarily small, say, less than IAIe/k. Thus, the total area
assigned to the 2k points y; and z; (if centers were to be established in each
of them) is at least lAI(l ~ 2e). Choose m of the centers Yis Zi»

i=1,se.,k, in decreasing order of their areas. Then, the total area

assigned to the intruding facilities satisfies:

s> (1 - 2e)m|a|/2k = (.5 - e)nm|a|/k

Theorem 5: For every ¢ > 0 there exists kg such that for k > kg the defender

can guarantee:

S < (.5127 + s)mlAl/k

Proof of Theorem 5: ILet L be the boundary of A with length ILI and let K(s)

2

be an infinite grid of perfect hexagons of area s“ each. The number of

different hexagons which intersect L is bounded from above by cL/s for some
constant c¢. Thus the combined area of all the hexagons which intersect A is
bounded by IAI + cLs and their number cannot exceed (IA‘ + cLs)/sz. Choose s

such that (IA, + cLs)/s2 = k. Let the existing facilities be placed at the

2

center of each hexagon which intersects A. We note that the area s“ of each

cL
YA « Yk

. this is at most (1 + e)/k. All that remains to be seen is that each new

hexagon is at most-lél(l + ). Select kO = T%T{CL/s)z. For k » ko>

facility cannot capture more than .5127s2. But this was established in

Theorem 3.

Taken together, Theorems 4 and 5 indicate that for large enough k, the
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honeycomb pattern is at most 2.5% away from being optimal when customers are
considered as areas. In the next section we demonstrate that almost surely,

this is the case for the discrete problem as well.

4. The Discrete Case

We now consider customers as discrete points V = {vl,vz,...,vn} located
within the region A. Let X = {xl,xz,...,xk} and Y = {yl,yz,...,ym} be the
defending and intruding facilities, respectively. Let U c V be the set of
demand points whose closest center is Y, and let |U| be the cardinality of
U. The objective of the defender is to locate X such that |U| is minimized.
We assume that the set V is uniformly and independently scattered in A, that
k = o(n/log n), and k = Q(1). Under these conditions, Qe can obtain the

analogs of Theorems 4 and 5:

Theorem 6: For every € > 0 the intruder can guarantee:
|U| > (5 - g)nk/m

The proof of Theorem 6 is an easy modification of the proof of Theorem 4.

Theorem 7: For every € > 0 there exists ko such that for k > ky, the defender

can guarantee that, almost surely:

|U| < (.5127 + e)nk/m

We wish to adopt the proof of Theorem 5 so that it yields Theorem 7.
This requires that we convert arguments about areas of regions within A into
arguments about the number of points that fall in those regions. In

preparation for the proof, we need the following lemma which asserts that the
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points V are "evenly spread” throughout A and thus each region gets more or
less its fair share of the points. Such a lemma is essential to arguments of

this type, e.g., [19]. The following version is from [23]:

Lemma 7: Let n points be distributed uniformly and independently in a region
A.E_Rz. Let Aj,Ap,...,A; be a partition of A into t = t(n) equal regions and

let n; be the number of points in A;. Then, the following inequalties hold

simultaneously almost surely:

n; - % < /12 Tog o - /nft.

It follows from the lemma that for t which satisfies t = o(n/log n),

almost surely, n; € (1 + €/3)n/t. Scale the units so that the area of A is

i
1. Let X be as in Theorem 4 and let Y be arbitrary. Let the region served by
center y;, i = 1,...,m be denoted B;, with B = v B;, 1 = 1,...,m. Clearly, Bj
has at most five sides, each of length bounded by c/Yk for some positive
constant c. Thus, the combined length of all the boundaries of the m regions

of B; does not exceed cm/Yk. Let the total area served by these centers be

S. From Theorems 4 and 5 we know that for large enough k:
(5 - €/3)k/m < S < (.5127 + €/3)k/m

Consider a partition P of R into simple squares of side r each, where r
_ e . 1/2y - 1/2 '
satisfies r = o(1l/k Y, r = Q(log n/n) . Let P be the set of squares of P
: )
which intersect B, Clearly, the number of squares of P which are crossed by
a boundary of B cannot exceed cm/r/k where ¢ is a new constant. Using the
lower bound on S, and the relation between r and k, we get that the total

number of cells in P' is almost surely bounded by (1 + 25/3)S/r2 which is in
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turn almost surely less than (1 + 2¢/3)(.5127 + ¢/3)k/m. Apply Lemma 7 to the
squares in P'. Then for large enough n, the number of points in each one of
these squares is almost surely at most n/ré(1 + e/3). Combining these bounds

we get

|u] < (1 + €/3)(.5127 + ¢/3)n + k/m < (.5127 + &)n -+ k/m.
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Appendix A

The points of the square are (uj,vy) = (1,1); (uy,vy) = (1, -1);

(u3,v3) = (-1, -1); and (u4,v,) = (-1, 1), see Figure 2. Let (x4

l,yi) be the

intersection points defined by (ui,vi) and (ui+l’vi+l) (recall that

(u5,v5) = (ul,vl)). Then by (3):

2 2
x, =2 +v -2 y. =0
1 2(u = 1) ° 1
2 2
< =0 _u + v -2
2 ) bp) (v + 1)
X, = o+t oo =0
3 2(u + 1) ° Y3
2 2
< =0 _ (u + v -=-2)
4 ’ Y4 2(v = 1)

By (2) and after some manipulation

(u2 + v2 - 2)2
2(u2 - 1)(v2 - 1)

S =

The proportion of the area of the square taken by (u,v), S(u,v) is

\

(u2 + v2 - 2)2

8(u> - 1)(v> - 1)

S(u,v) =

By the identity (a + b)% = (a - b)2 + 4ab,

(u2 + v2 - 2)2 = (u2 -1+ v2 - 1)2 = (u2 - v2)2 + 4(u2 - 1)(v2 - 1.
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Therefore,

@ - s aG - D - 1)
8(u? - 1)(v° - 1)

S(u,v)

or
2 2.2

(v = v)

8(u2 - 1)(v2 -1

N —

S(u,v) +
Now let us turn to calculating S(u,v) in a sector outside SS. 1In this
sector (u,v) takes areas from six points, see Figure 3. Change the system of
coordinates such that the six points are (2,1), (2, -1), (0, -1), (~2, -1),
(-2, 1), (0,1). The intersection points by (3), as done in the previous case,

lead to:

2 2
X, = 3——i—z——:—2 =0
1 2(u-2) > N1
< =1 _ u2 + v2 - 2u -1
2 » Yo = 2(u + 1)
2 2
% = -1 _u + v 4+ 2u -1
3 » Y3 2(u + 1)
2 2
< =4 +v =5 -0
4 2(u + 2) * 4
= -1 _ u2 + v + 2u-1
g 5 T s (v = 1)
-1 _u +v = 2u-1
%6 ’ Vg = 2(v = 1)

Substituting into (2) yields after some manipulation to:

_ u2 + v2 -1 u2 + v2 -5




which leads to:

S(u,v)

S(u,v)
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i{u + v - u + v - 5}
4 v2 -1 u2 - 4

l l{l -V u2 }

2 4 2
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Appendix B

Analysis of Area I

The coordinates of the points (see Figure 5) are (ul,vl) = (1,0);
(uz,vz) = (0, ¥3); (u3,v3) = (-1, 0); (u4,v4) = (0, =¥3). Then for a point at

(u,v) by (3):

- V3 (u2 + v2 - 1) - 2v g, = 2u + u2 + v2 -3

1 2[v + /3(u - 1)] L v+ /3 (- D]
‘= V3 (u2 + 2 - 1) - 2v g = 2u - u2 - v2 + 3
2 2[-v + V3 (u + 1)] 2 2[-v + V3 (u + 1)]
< = V3 (u2 + v2 - 1) + 2v g = -2u + u2 + v3 -3
3 2v+ /3 (u+ D) 3 2+ /3 (u+ D]
V3 (u2 + v2 - 1) + 2v -2u - u2 - v2 + 3

X[+ = y[;, =

2[-v + VY3 (u - 1)] 2[-v + ¥3 (u - 1)]

By (2) after some manipulation

2 2 2 2 2
S=/§(V + 3u - 3) + 4uv

2 2 2 2 2

(v +3u -3) =-12uv

S(u,v) = 8/(2 V3),
S(u,v) = 1 (v2 + 3u2 - 3)2 + 4u2v2 -1 16u2v2
2V T2 2
(v2 + 3u2 - 3)2 - 12u2v2 2 (v2 + 3u2 - 3) - 12u2v2

Analysis of Area II

We rotate the system of coordinates so that the origin is at (uA,VA) and
(u3,v3) on the positive x axis. We also renumber them so the coordinates of

| " the points are (uy,vq) = (-1, /3); (UZ’VZ) = (1, ¥3); (u3,v3) = (2,0);
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(U4,V4) = (0,0); (US,VS) = (-2, 0).

The vertices of the area as calculated by (3) are:

u2 + v2 - 4

x1 = 0, i y1 =
2(v = ¥V3)
Y3 (u2 + v2 - 4) u2 + v2 - 4
x2 = s y2 =
2v + u V3 - 2 V3 2(v + u V3 - 2 Y3
-1 _ u2 + v2 - 2u
X3 ’ 3 = 2v

2 2
% = =] _uw +tv + 2u
4 ’ Yy 2v

_ Y3 (u2 + v2 - 4) - u2 + v2 -4
2{v —u /3 - 2 /f]’ 2[v - u V3 - 2 V3]

Calculating the area by (2) yields

25 = /3-(u2 + v2 - 4) [uz + v2 -4 u2 + v2 - 2u] +
20v + u V3 - 2V3]  2(v - /3) v
u2 + v2 - 4 u2 + v2 + 2u
+ — — - 5 +
2{v + u v3 - 2 V3]
u2 + v2 - 4 . u2 + v - 2u
+ - 5 +
2{v - u V3 - 2 V3] v
+ V3 (u2 + v2 - 4) [uz + v2 -4 u2 + v2 + 2u]

2(v - u V3 - 2 V3] 2(v = /3) v

Substituting v = t /3 and calculating S(u,t) = S/2V3 yields after long
calculations (the identity between the two expressions was verified by
generating 10,000 pairs of (u,v) and checking the difference between the two

“expressions).
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26(5(u,0) - P2 - D = «’Jed - ©)

= t2(2 - 3t)2(2 - t) - 2u2(3t3 - 6t + 4) + u4(2 - t)
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Appendix C

The solution to the third order polynomial in (19) is [1]:

3
(c.1) t = é—6+ 3—4///694 + 18 V1077 i + //694 + 18 Y1077 i/9

The third square root has three possible answers corresponding to the three

is¢

roots of the cubic equation. Now, in general, a + bi = re where

r = /a2 + b 8 = arctan 2. For the cubic root in (C.1l): a = 694,
T e A 3 V1077 Y1077

b =18 V1077, r // » O = arctan lé—gg%—— = arctan 2—3%%——.

3 3
Therefore, va + bi = v/t eie/3 and in our case we get

94 e i(9/3)} -

{16+m+ Y9 e

O\ b=

{16 + /52-(e—i(6/3) + ei(e/B))} = é{lé + 2 /9 cos g}.

O} =

& has three possible values, 6, 6 + 27 and 6 - 2w. t; is obtained by 6 - 2w

or:

_— 9 2 1 — 9 . B
{16 + 2 Y94 cos(§ - 31)} = §{16 - ¥94[cos 3 + /3 sin 3]}.

o
O -

This expression for t; was calculated and agreed with the numerical value for

t; given above. In conclusion:

t(2 - 3t)
$o(t) = 3 + T = =

obtains its maximum at
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9 v1077 9 Y1077
1 arctan(———347 )] _ arctan ——gys—
t, = 5{16 - Y94 [cos( 3 ) + /3 sin ( 3 )1}
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