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Abstract

This study considers committees whose task is to select ome
alternative from a set of three or more alternatives. Committee
members cast ballots which are counted by a voting procedure. The
voting procedure is strategy proof if it always induces every
committee member to cast a ballot that reveals his preferences.
Thé first theorem proves that no strategy proof voting procedure
exists that is not dictatorial. The second theorem proves that
this paper's strategy proofness condition for voting procedures
is equivalent to Arrow's independence of irrelevant altermatives

and Pareto optimal conditions for social welfare functioms.
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1. INTRODUCTION

Almost every participant in the formal deliberations of a committee
realizes that situations may occur where he can manipulate the outcome
of the committee’s vote by misrepresenting his preferences. For example,
a voter in choosing among a Democrat, a Republican, and a minor party
candidate may decide to follow the "sophisticated strategy' of voting
for his second choice, the Democrat, instead of his '"sincere strategy"
of voting for his first choice, the minor party candidate, because he
thinks that a vote for the minor party candidate would be a "wasted" vote
on a hopeless cause. 1 This paper asks if we can eliminate this type of
phenomenon by constructing a voting procedure that is "strategy proof"
in the sense that under it no individual will ever have any incentive to
use a sophisticated strategy. We show that if a committee is choosing
among at least three alternatives, then every strategy proof voting pro-
cedure gives one committee member absolute power over the outcome. In
other words, every strategy proof voting procedure is dictatorial. Given
this result, which is reminiscent of Arrow's classic impossibility theorem
for social welfare functions [ 1], we address a second question: what is
the relationship between the requirement of strategy proofness on one
hand and Arrow's conditions of Pareto optimality and independence of
irrelevant alternatives on the other hand? The answer is that they are
logically equivalent. Demonstration of this fact is this paper's second
major result.

The questions of this paper are not new. Black [3,p 182] quotes

the vexed retort, "My scheme is only intended for honest men!", which



Jean-Charles de Borda, the eighteenth century voting theorist, made when
a colleague pointed out how easily his Borda count can be manipulated by
sophisticated strategies. - More recently Arrow [1, p. 7] raised, but did
not pursue, the question of constructing strategy proof voting procedures.
Dummett and Farquharson [4] hypothesized and both Gibbard [8] and
Satterthwaite [15] proved that for the case of three or more alternatives no
non-dictatorial strategy proof voting procedure exists. z Zeckhauser [20]
has independently proven a similar existence theorem. Vickery [19] and
Gibbard [8] speculated about, but did not definitively establish, the re-
lationship between strategy proofness and Arrow's conditions of Pareto
optimality and independence of irrelevant alternatives. Finally, Farquharson
[5], Sen [18, p. 193-194], and Pattanik [11] [12] [13] each comment on
different aspects of the vulnerability that all non-dictatorial vofing
procedures have to manipulation through the use of sophisticated strategies.
This paper is in six sections. 5ection two formulates the problem
and estéblishes notation. Section :three states and explains theorem one
which concerns the existence of strategy proof voting procedures. Section
four and section five each contain a distinct proof of Theorem 1. The
first proof is constructive while the second uses Arrow's impossibility
theorem to create a conttradiction. Both proofs are included because each
gives different insights into the problem of strategy proofness. Section
six states and proves the equivalence theorem that defines the equivalence
relationship between strategy proofness and Arrow's conditions of Pareto

optimality and independence of irrelevant alternatives.



2. TFORMULATION

Let a committee be a set In of n, n > 1, individuals whose task is
to select a single alternative from an alternative set Sm of m elements,

m 3. Each individual 1i € In has preferences Ri which are a weak order

I\

on Sm’ i.e., Ri is reflexive, complete, and tramnsitive. 3/ Thus if
X, y € srn and i € In’ then x Ri y means that individual i either
prefers that the committee choose alternative x instead of y or is
indifferent concerning which of the two alternatives the committee chooses.
Strict preference for x over y on the part of individual i 1is written

as x Ei y. Thus x ﬁi y 1is equivalent to writing x Riy and not y Ri X.

Indifference is written as x R, ¥ and vy Ri x. Let T represent the

collection of all possible preferences and let ﬂ; represent the n-fold

4
cartesign product of T

The committee makes its selection of a single alternative by voting.

Each individual i € N casts a ballot B, which is a weak order on S |
m

i.e., B, € ua The ballot Bi is a sincere strategy if and only if indi-
vidual i has preferences Ri = Bi' The ballot Bi is a sophisticated
strategy if and only if R, # B,. Every individual may choose to employ
either his sincere strategy or any one of his sophisticated strategies.

Any requirement limiting individuals to sincere strategies would be unen-

forceable since ballots are observable while preferences are not.

nm .
The ballots are counted by a voting procedure v . Formally a voting

procedure is a singlevalued mapping whose argument is the ballot set

n . . . .
B = (Bl""’Bn) € . and whose image is the committee's choice, a

. nm .
single alternative x € Sm' Every voting procedure v has a domain of



n .
o and a range of either Sm or some non-empty subset of S . Let the
m

range be labeled Tp where p, 1 < p < m, 1is the number of elements con-

tained in Tp' Given these definitions, let the tetrad [ In’ S , vnm, TS
m P

be called the committee's structure.

A voting rule v 1is a specified collection of voting procedures
Vnm where n =1,2,3,,.. and m = 3,4,5.... Thus, given a committee
I considering an alternative set Sm, each voting rule v wuniquely
defines a voting procedure v € v which the committee can use to make
its choice among the alternatives. 1In other words, a voting rule is a
general rule applicable to any committee whereas a voting procedure is
applicable only to committees of a specific size considering a specific
number of alternatives.

This formulation of the committee decision problem incorporates
two assumptions which particularly merit further comment. First, the
committee's task is specified to be selection of a single alternative
from a given alternative set. The assumption that the committee is making
only one choice excludes from consideration such committee behaviors as
logrolling which may occur whenever a committee is making a sequence of
choices. Second, the assumption that the committee through the mechanism
of its voting rule must select a single alternative contrasts with
Arrow's [1] and Sen's [16] [17] [18] specification of
set valued decision functions. They made that specification because
their focus was social welfare where partitioning the alternative set
into classes of equal welfare is a useful result. Nevertheless speci-
fication of set valued decision functions (voting rules) is inappropriate

here because committees often must choose among mutually exclusive courses



of action. &/ For example, a committee can adopt only one budget for a
particular activity and fiscal period.

With the basic structure of the committee defined, it is possible
to define the concept of a strategy proof voting procedure. Consider a

nm

committee with structure ¢ I Sm; v, Tp\. An individual member

ic¢ In with admissible preferences Ri € T has an incentive to use

a sophisticated strategy if and only if there exists a set of n-1 ballots

i _ n-1
B = (Bys.-vsBy g5 Biigs--5B ) € (1)

and a sophisticated strategy Bi € T such that
nm i, = _nm i
B .
vi(B,,BD) R, vT(R,,BD) 2)

i
If n=1, then B is the null set. In words, individual i has an
- i
incentive if and only if the other individuals may cast their ballots B
in such a manner that he can secure for himself a more favorable outcome

by playing the sophisticated strategy B, instead of playing his sincere

. nm . .
strategy R,- The voting procedure v is strategy proof if and only
. . . i n-1
if there exists no i €I , no R, €nm, and no B € ¢ such that
n i m m
individual i has an incentive to use a sophisticated strategy. Simi-
larly a voting rule v 1is strategy proof if and only if every voting

procedure vnm € v 1is itself strategy proof.

o 3 nm . . .

If a voting procedure v is strategy proof, then no situation
can arise where an individual 1i € In can improve the vote's outcome
relative to his preferences Ri by employing a sophisticated strategy.

nm

Consequently, if a voting procedure v is strategy proof, then every

n . e s .
set of sincere strategies R = (%_,...,Rn) € m, 1is an equilibrium as



defined by Nash [10]. If the voting procedure is not strategy proof, then
there must exist a set of sincere strategies R = (Rl,...,Rn) € ﬂ; which
is not a Nash equilibrium.

With the problem's basic formulation complete, this is a convenient
point to define two useful functions, ¥ and 6. The
choice function Yig? defined for any W C Sm, is a mapping from T into
the non-empty subsets of Sm. It has the property that x € Ww (Bi) for
some B, € T if and only if x € W and x Bi y for all y €W, 1In
words, VY, picks out those elements of W which the weak ordering Bi
ranks highest. Turning to the function ew, let W be a subset of Sm
that has q < m elements. Define ew to be a mapping from . to ﬂq
with the property that if x, y € W, C; € T Di € o and Ci = ew(Di),
then x Ci y 1if and only if x Diy. Thus ew constructs a new weak
ordering ci from Di by simply deleting those elements of Sm that
are not contained in W. If B € nz and W ::Sm, then let ew(B)
represent the ballot set (ew(Bl),...,ew(Bi),...,Gw(Bn)).

Up until this point we have d:fined the preferences and ballots of
committee members to be weak orders over the alternative set. For the
purpose of proof this is an inconvenient convention. Therefore, through-
out a majority of this paper, we will recognize only strong orders as

admissable preferences and ballots. Let and p; respectively label

Pm
the set of strong orders over Sm and the n-fold cartesian product of
o Since strong orders exclude the possibility of indifference, if
X, y€S , X #y, and R, € p , then x R, y implies x R, y and not
m i m i i
y R; X. Similarly if x, y¢ S , x #y, and B, € p_, then x B vy
1 m 1 m i

implies x Eiy and not vy Bi x. We formalize this restriction with the
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following definition:

. . . . . n
Restriction D. Consider a committee with structure ¢( In,Sm, v m, T ).

If this structure is subject to restriction D, then only preference
n n
sets R = (Rl,...,Rn) € P and ballot sets B = (Bl""’Bn) € P

are admissible.

A committee subject to restriction D is called a strict committee. A

strict committee's voting procedure is called a strict voting procedure.

For strict committees the definitions given above must be revised through-
n n , .
out with the substitution of Pm for T Thus a strict voting procedure
nm . n . .
v has a domain of P and 1is strategy proof if and only if there
) i n-1 ..

exists no i € In’ no Ri € P and no B € IR such that individual
i has an incentive to use a sophisticated strategy.

We follow several notational conventions throughout. The letters B,
C, and D always represent ballot sets or, if subscripted, individual
ballots. The letters U, V, and W represent subsets of Sm or Tp- The
letters i and j index the individuals who are committee members and the

letters w, X, y, and z represent elements of Sm. Script upper case letters

represent collections of voting procedures.
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3. STATEMENT OF THE EXISTENCE THEOREM

This section states and explains this paper's existence theorem:
if a voting procedure includes at least three elements in its range and
is strategy proof, then it is dictatorial., A dictatorial voting procedure,
as its name implies, vests all power in one individual, the dictator, who
determines the committee's choice by his choice of that element of the
voting procedure's range which he ranks highest on his ballot. Formally,
consider a voting procedure vnm with range Tp' Define for all B € ng
and for some 1i € I, the function f;(B) so that it is singlevalued,
has range Tp’ and if f;(B) = x then x Biy for all y € Tp' The
voting procedure v is dictatorial if and only if an 1 € In exists
such that vnm (B) = f;(B) for all B € n;‘ Notice that f;(B) is
identical to the choice function YT(Bi) except that f%(B) has a tie-
breaking property which the set valued WT(Bi) does not have.

Since we define dictatorial voting procedures with reference to its

range Tp’ not with reference to the alternative set S , two varieties
m

of dictatorial voting procedures are possible. First, fullvy dictatorial

voting procedures have as their ranges the full alternative set, i.e.

Tp = Sm. Second, partially dictatorial voting procedures have as their

ranges proper subsets of the full alternative set, i.e. Tp cC S

o
In other words, if the voting procedure is partially dictatorial, then
imposed on the dictator's power is the constraint that he can not pick
such tha
any xésm u ttxéTp
A dictatorial voting procedure is strategy proof because the dictator

clearly has no reason to misrepresent his preferences since the committee's



choice is always that element of the range which he ranks first on his
ballot. The other individuals also have no reason to misrepresent their
preferences because their ballots have no influence whatsoever on the
vote's outcome. This last statement, in agreement with the definition
of strategy proofness, assumes that the dictator cannot punish those who
disagree with him. Otherwise individuals might have reason to curry the
dictator's favor through the sophisticated strategy of ‘“agreeing'" with him.
We can now state the theorem concerning the existence of strategy
proof voting procedures.

nm
<Iri) S J v J Tp>

Theorem 1. Consider a committee with structure o

nm
where n>1 and m > p > 3. The voting procedure Vv is strategy

proof if and only if it is dictatorial.

This is formally a possibility theorem, but its substance is that of an
impossibility theorem because no committee with democratic ideals will
use a dictatorial voting procedure. Such a voting procedure vests all
power in one individual, a distribution that is clearly unacceptable.

The theorem limits itself to the interesting case where the voting
procedure's range includes at least three alternatives. If the voting
procedure's range contains less than three elements, then a trivial result
is that two more types of strategy proof voting procedures exist: imposed
procedures and twin alternative voting procedures. 3/ These two types are
of little interest because committees usually wish to select among three
or more alternatives.

An imposed voting procedure is one where no individual's ballot has

any influence on the decision. Thus a voting procedure is imposed if there



exists a X € Sm such that vnm(B) = x for all B € v;- Imposed voting
procedures are strategy proof because no individual's choice of strategy
affects the committee's choice. 8/ Twin alternative voting procedures

have ranges that are limited to only two elements of the alternative set.
Formally, if a set T, = (x,y) © Sm, x # y, exists such that vnm(B) € T,

n nm . . .
for all B € T then v is a twin alternative voting procedure.

An example of a strategy proof twin alternative voting procedure for
a committee considering the alternative set S, = (w,X,y,2z) 1is defined
by the rule: select alternative x or z depending on which is ranked higher
on a majority of the committee members' ballots. Alternatives w and y
are excluded no matter how the committee votes. This twin alternative
wting procedure is strategy proof because each individual has only two
choices: vote for or against his preferred alternative. Obviously, in
this case, he has every reason to vote for his preferred alternative no
matter what his subjective estimate of how the other individuals will vote
is. Nevertheless not every twin alternative voting procedure is strategy
proof., For example, a twin alternmitive voting procedure might perversely
count a vote for one included alternative as a vote for the other included

alternative.
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4. CONSTRUCTIVE PROOF OF THE EXISTENCE THEOREM

In this section we develop a constructive proof for Theorem 1. The section
that follows contains a shorter proof that is a simplification of Gibbard's
proof. That second proof is not constructive and is based on Arrow's
impossibility theorem. Both proofs, except in their very last steps where
their result is generalized to committees not subject to Restriction D,
treat the case of strict committees.

A necessary preliminary before beginning the proof's substance is to
define weak and strong alternative-excluding voting procedures. A strict

nm
voting procedure v is weak alternative-excluding if and only if there

exists at least one alternative x € Sm such that vnm(B) # x for all
n nm . . .
B = (Bl""’Bn) € g Thus v is weak alternative excluding if and only
if Tpcc s, 1i.e. its range must be strictly contained in S,
The definition of strong alternative excluding voting procedures depends

on Condition U, a Pareto optimality condition.

nm
Condition U: Consider a strict committee <'In,Sm,V ,T = Tp$,
nm s s C .
The strict voting procedure v satisfies Condition U 1if and

. - n = = =
only if, for every B = (By,-..,B ) € p, Ssuch that Yo (B = vi(By) =...

v (B ), vi™(B) = v (B

Less formally, if v'™ satisfies Condition U and if the ballots unanimously

rank x € Tp higher than every other vy € Tp, then v " will select x as
. 1 . . . . . nm .

the committee's choice. Given this a strict voting procedure v is

strong alternative-excluding voting procedure if and only if it is weak

alternative-excluding and also satisfied Condition U.

Condition U is helpful in the proofs that follow because every strategy
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proof strict voting procedure must satisfy it. Lemma 1 establishes this

assertion.

Lemma 1. Consider a strict committee

{ In,S ,2v LT = Tp\ where

m

n>1l, m>3, and p > 1. 1If v s strategy proof, then it

satisfies Condition U.

Proof: Suppose v

is strategy proof and does not satisfy Condition
U. Consequently for some x & T there exists a ballot set C € p; such
_ nm _
that YT(Cl) = YT(CZ) = ..., = WT(Cn) and v (C) x # WT(Cl).
n nm
. D 1 = . i
Since wT(Cl) € Tp,a € o exists such that v (D) YT(Cl) Consider

the sequence of ballot sets and outcomes:

nm
v (ClchJ"')cn) =X # \yT(Cl)J

nm
v (Dlyczy---:cn):

nm

V(D5 e D 15CL5C0 s, C),
nm

v (DlJ' 'JDi_lJDiJ i+1} Jcn)i
nm
v (Dl""’Dn—l’cn)’

nm

v (Dl""’Dn~1’Dn) = YT(Cl)'

Label, for later reference, such a sequence S(C,D). At some point in this

sequence of n + 1 elements the outcome must switch from not YT(Cl) to

WT(Cl). Therefore an 1 € In must exist such that
nm
v (Dl’ v, Di-l’ci’ci+1’ cees Cn) =y # YT(Cl) and
nm -
v (D), ey Do 1,D,Ch g ees C) = YA€)

(3)

(4)
(5)
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where y € Tp and y # WT(Cl). Let individual i have preferences R, = C..
i i

This means that WT(Cl) is that alternative contained within Tp which

individual i most prefers. Consequently his best strategy is the sophisticated

strategy D, rather than his sincere strategy Ci' Therefore if v fails

to satisfy Condition U, then it is not strategy proof. ||

n
The next three lemmas prove that if a strict voting procedure v ’

defined for a three element alternative set is strategy proof and has a

range Tp’ 1 < p < 3, then it must be either fully dictatorial or strong

] n,3
alternative-excluding. The main task of these lemmas is to show that if v’

3
is strategy proof and Tp = S3, then v'7° is fully dictatorial. The result

n n,3 .
’ then v’ is strong

that if v is strategy proof and Tp —C S

37
alternative-excluding is secondary because it can be derived immediately. By

3
definition Tp cc S3 implies that v is weak alternative-excluding.

n,3

Since v is both strategy proof and weak altermative-excluding, Lemma 1

n,3 ; , .
implies that v’ is necessarily strcag alternative-excluding.

The method of proof which the three lemmas together employ is mathematical
induction over n, the number of individuals who are committee members.

Lemma 2 begins the inductive chain by proving the result for single member

committees.
. . . 1,3
Lemma 2. Consider a strict committee (11,83,v ,T = TPS where

1,3
1< p< 3. If v’ is strategy proof, then it is either fully

dictatorial or strong alternative-excluding.

Proof: Suppose the lemma is false. Therefore a vl’ exists that is

strategy proof and neither fully dictarorial nor strong alternative-excluding.

1,3 L
Then one of the following must be true: (a) v’ satisfies Condition U
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. 3 P ..
and is not weak alternative-excluding, (b) vl’ satisfies Condition U

1,3 , ‘s

and is weak alternative-excluding, or (c) v’ does not satisfy Conditionm U.

. . 1,3 ;e
Case (a) cannot be true because if Tp = S3 and if v satisfies
Condition U, then vl’3 must be fully dictatorial. This conclusion follows
directly from the fact that for a single member committee Condition U is
equivalent to a dictatoriality requirement. Case (b) cannot be true
because any weak alternative-excluding voting procedure that satisfies Condition U
is strong alternative-excluding. Case (c) also cannot be true because

Lemma 1 states that every strategy proof restricted voting procedure satisfies

Condition U. ||

Statement and proof of Lemma 3 depends on the fact that we can

. , . n,3 . ‘.
write any strict voting procedure v’ as an n~dimensional table. For

example, let (x y z) represent the ballot Bi with the properties

that x Ei y, X Ei z, and y Ei z where x, y, z'€ S3. Charts 1 and 2 are then
equivalent representations of an arbitrary, assymétric strict voting procedure
2,3
v ’7. If individuals one and two respectively cast ballots (x z y) and
(y z x), then the committee's choice is =z
Lemma 3. Consider a strict committee (¢ I S vnﬂ"3 T )y where
n+1} 3} b p
n>1land 1< p< 3. Let B = (Bl""’Bn)' The strict voting
+
procedure v L,3 may be written as
= (xy 2)
nt+l,3 =(xzvy
oL (6)

(z y x)




CHART

(x
(x
(y
(y
(z
(z

y)
z)
x)
y)
x)

2,3

(xy z)
X

X

(x 2z y)
X

X
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By

(y x 2)

(y z x)

(z x y)

(z vy x)



CHART II.

where

(xy
(x z
(y x
(y 2
(z x

(zy

z)
y)
z)
x)
y)
x)

v

2,3

if

(Bl) if

if

if

if

(x

(x
(y
(y
(z

(z

z)

y)
z)
x)
y)

x)




n,3 . . ;
where VT) ,...,v6’ are strict voting procedures for committees

n+l1,3 .
with n mwmembers. The voting procedure Vv ’ never gives any

individual i, where 1i € In(individual n+l is excluded), an
incentive to use a sophisticated strategy if and only if each of the

n n
six voting procedures Vireeea Ve are strategy proof.

Despite the if and only if phrasing, this lemma states that a necessary

but not sufficient condition for constructing a strategy proof voting
n+l,

procedure v is that it be constructed out of a set of strategy proof

voting procedures VE’3’ k=1,...,6. The condition is not sufficient

. n,3 . .
because some sets of voting procedures vk’ exist such that the resulting
. - n+l,3 . e ) .
voting procedure v : gives individual n+l an incentive to employ
a sophisticated strategy in specific situations. Obviously, in such cases,

n+l,3 .. . . ..
v ’” 'is not strategy proof which means that Lemma 3 is not a sufficient

condition.

‘ +1,3 .
Proof: Suppose the necessary part is false. Therefore a v with

n,3 ,
its set of constituent vk’ must exist such that (a)

n,3 ,
proof for all individuals j € I and (b) some vk’ , L< k< 6, is not

nt+l,3 .
v L is strategy

strategy proof for some individual 1i € I - Without loss of generality suppose

that VT’B is not strategy proof for individual i. Consequently there exists
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preferences Ri € Py, @ sophisticated strategy Bi € Ry and a ballot set
i_ n-1
B = (Bl"'"Bi-l’Bi+1""’Bn) € P3 such that

n,3
1

n,3 i, —
v’ (Bi’B ) R, Vv

" ®, B, (7

i.e. individual i has an incentive to use his sophisticated strategy Bi

instead of his sincere strategy R, .

Let individual ntl cast ballot B.y1 (x y z). This implies, based on

®), that
n+l,3 i _ . n,3 i
v (Bi’B ’Bn+1) = v (Bi’B ) and (8)
n+l,3 i n,3 i
v ? (Ri,B ,BnH) = vl’ (Ri,B ). (9)
Substitution into (7) gives
n+l,3 i = nt+l1,3 i
. , n+l,3 . . .
which is proof that v is not strategy proof. This contradicts our

assumption that the lemma's necessary part is false.

.. . n+l,3 . ,
Suppose the sufficient part is false. Therefore a v with its
3 3
set of constituent VT’ ,...,vg’ must exist such that (a) VT’B,...,VE’B
e . n+l,3 .
are strategy proof for all individuals j € I and (b) v is not

strategy proof for some individual i € In' This implies that preferences
s s i n
Ry € P35 sophisticated strategy Bi € P35 and ballot set (B ’Bn+1) € P3

exist such that

n+l,3 i —  n+l,3 i
v (Bi»B»B ) By v UT(R;,BLB L) (n
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Assume without loss of generality that Bn+1 = (x y z). Equations (8) and

n,3
(9) hold and therefore vl’ may be substituted for vn+1’3;

n,3 i, = n,3 i
vy (BB Ry v (Ri,Bl). (12)

n,3
Thus vl’ is not strategy proof, a contradiction of the assumption that

the sufficient part is false. ||
Lemma 4 starts with the assumption that every strategy proof strict

n,3 . . . .
voting procedure v ’ is either fully dictatorial or strong alternative-
excluding. Then,with Lemma 3 as justification, it uses equation (6) and those

voting proecdures that we assume to be strategy proof to construct every

. . ntl,3 . . . .
strategy proof strict voting procedure v . The complication in this

nt+l,3 . .
procedure is that a voting procedure v ’ is not necessarily strategy

s r se s . n,3
proof if it is constructed out of strategy proof voting procedures v .

+1,3 :
Depending on precisely how v is constructed individual nt+l may find

that in specific situations his best strategy is a sophisticated one.

. . . n+l1,3
Lemma 4. Consider a strict cotmittee ( In+1,s3,v ’ ,Tp\
where n>1 and 1 < p < 3. If every strategy proof
n,3
strict voting procedure v °  is either fully dictatorial or

strong alternative-excluding, then a necessary condition for

+1,3
Vn L to be strategy proof is that it be either fully dictatorial

or strong alternative-excluding.

-+
Proof. Let I 1 be the collection of all strict voting procedures

+1,3 + +
Vn 1, for committees with n+l members. Let Zn 1 C'Vn 1 be the

ntl,3 n+l

collection of all strict voting procedures v €V that are fully

n n
dictatorial or strong alternative-excluding. Let ¥ and X  be the

collections of strict voting procedures for committees with n members



-23-

n+1

+ +
ntl n+l ‘ally/s be the

+
that correspond to ¥ and 2" 1 respectively. Let %

. . . n+l,3 , nt+l
collection of all strict voting procedures Vv eV that are constructed

. +1,3 +1 . +
from voting procedures vn’3E Zn, i.e., vy E%ﬁ if and only if v 1,3

can be written as

n,3 . -
vy (B) if Bn+1 (xy 2)
nt+l,3 _ n, 3 . _
v (B,B ) = v’ (B) if B ., = (xzY) (13)
a3 e )
Ve (B) if Bn+1 = (zy %)
n n,3 n,3 n . n¥*
where B = (Bl"'"’Bn) € P and vl’ ,...,v6’ € X . Finally let 7 and

nt+l* .
be the collections of all strategy proof strict voting procedures

n nt+l
contained respectively in the sets ¥ and 7 .

% +1% .o+
Assume that ¥ %™, Lemma 3 therefore implies " 1 c #" 1.

n+1,3 c Wn+1*

Consequently every v can be identified by repeatedly parti-

+1

n . . . . R
tioning ¥ and discarding at each step those subsets which are disjoint

+1* R -+
with Wn . This partitioning of %" 1 depends on the fact that 2" contains

seven classes of fully dictatorial and strong alternative-excluding voting

procedures:
v 3By = f; (B) where T =S, and i€ I, (14)
W3y = h‘;<’3(B) = x, (15)
v 3By = h;’?) (B) = v, (16)
Pm) = n @) = (17)
@) = n @), (18)



2l

v 3By = h™2 (B), and
p

<
~~
o
p—g
"

hg’3 (),

where the notation h8’3 represents a strong alternative-excluding voting
procedure with range U and where B € p;,33 = (x,y,2), K= (x), L = (y),
M= (z), N= (y,z), P = (x,2), and Q = (x,y). Type (l4) clearly represents
every possible fully dictatorial voting procedure for a committee with n
members. Types (15) through (20) exhaustively represent every possible
strong alternative-excluding voting procedure because (X, L, M, N, P, Q)

is the collection of all possible proper non-empty subsets of Sy = (x,y,2).

+1 A .
The set %n can be partitioned into seven subsets:

+ 3 +1,3 i
%? 1 _ {vn+1, \ o0 1, c Wp+l 2 vn+1’3[B,(x g 2)] = f;(B)
where T = 83 and i € I },
n
%;+1 - {Vn+1,3 | Vn+1,3 ¢ %p+1,3 & Vn+1,3 (B,(xy z)] = h;’3(B)},
+ + + + 3
A e e A It e WO S IR L¢3 )

+
nt+l _ {vn+1,3 vn+1,3 c Wp+1 % vn+1,3

Q
!

[B{x y z)] = hg’3 ®]}.

Each of these seven subsets can itself be partitioned into seven subsets:

a0+l nt+l nt+l n+l
/11 ""’%17 ? %21 ""’%77

nt+1*
Most of these subsets are easily proved to be disjoint with ¥ .

For example, consider

oot - € 'u;_‘” g yot1s3

n+1 n+l1,3 nt+l,3
27 = v | v

(8, (x 2 ] = b (B

Let individual n+l have preferences and sincere strategy Rn+1 = (x2zYy)

and let the other n individuals cast identical ballots By = B2 = ...=Bn

(19)

(20)

(21)

(22)

(23)

(24)
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+
n+l hn,3

= (z y x). The definitions of %é7 > by

, and Condition U imply that
n+l,3 3

v 7[B,(x z y)] = hg’ (B) = y. This is the least preferable outcome for
individual nt+l. He can improve the outcome relative to his own preferences

nt+l,3

by employing the sophisticated strategy B+~ (x y z) because v [B,(xy 2)]

+1,3
= h; ’7(B) = x. Therefore every Vn+1,3 € %2¢1 is not strategy proof, i.e.
+1 nt+l%*
2Ny = 9.
27

We may continue this procedure of elimination and partition through

n+l R
six levels until we identify seventeen subsets of ¥ that are not disjoint

. otl*x | . n+1l#*
with 7 , i1.e. these seventeen subsets contain ¥ . For example, one
o+l . .
of these subsets %343344 contains a strategy proof voting procedure of
nt+l1,3 .
type hy . Inspection of these seventeen subsets reveals that each one

contains only strong alternative-excluding or fully dictatorial voting
procedures. The specifics of this procedure are found in Satterthwaite [15].
Thus CVn+1* N Wp+1) CZZn+1, which implies that Wn+1* c Zn+1. []

Lemma 4 establishes an inductive chain on n whose initial assumption
is validated by Lemma 2. Therefore Lemmas 2 and 4 together prove that if a
strict voting procedure Vn,3 is strategy proof, then it is either fully
dictatorial or strong alternative-excluding. An inductive chain may
also be established on m to generalize the results to any number of alterna-
tives equal to or greater than three. The specifics of this step are not

included here because of their length; they may also be found in Satterthwaite

[15]. Lemma 5 summarizes this result.

. , . nm
Lemma 5. Consider a strict committee ( I,S,vV

m ,Tp3 where n> 1, m > 3

and p>1. 1f Vnm is strategy proof, then it is either

fully dictatorial or strong alternative-excluding.



Two more lemmas are required to prove Theorem 1 for the limited case of

strict committees. Lemma 6 states that every strategy proof voting

procedure must satisfy what is essentially an "independence of irrelevant
alternatives" condition. Lemma 7 uses 6 to prove that every strong alternative-
excluding voting procedure with a range of at least three alternatives must

be partially dictatorial.

. . . nm
Lemma 6. Consider a strict committee ¢ In, Sm, v , T= %3 where

n>2,m>3, p>1, and m> p. 1If v is strategy proof
and two ballot sets C, D € p; have the property that, for

. = nm = M
all i € I, 6,(C;) =6.,(D,), then v (C) = v (D).

The condition that GT(Ci) = OT(Di) for all i € In means that each pair of
ballots --Cy " and Di -- must have identicai ordinal rankings of the elements

contained within Tp'

Proof: If T = Sm, then the lemma is trivial because the condition
placed on C and D implies that C must be identical to D. If T CC Sm;
om
assume that v is strategy proof and, as a consequence of Lemma 1, strong
alternative-excluding. Now suppose that the lemma is false. This means that
a pair of ballot sets C, D € p; exist such that (a) vnm(C) # vnm(D) and
(b)y for all i € In’ eT(Ci> = GT(Di). Examine the sequence of ballot sets

S(C,D). An i € I, and distinct x, y € T must exist such that

vnm(Cl,...,C. D)

1—1’Di’Di+l""’ a x and (25)

nm
v (Cl""’Ci—l’ci’Di+l""’Dn) y.

(26)

Since we are considering strict committees indifference is ruled out. Therefore,

because eT(ci) = eT(Di), two cases are possible: either (a) x Ei y and x ﬁi y or
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(b) vy Ei x and y 51 x. 1If the former is true, let individual i have
preferences R, = Ci; he then has an incentive to use the sophisticated
strategy D, 1f the latter is true, let individual i have preferences
R, E Di; he then has an incentive to use the sophisticated strategy Ci'

1

nm
Therefore, contrary to assumption, v cannot be strategy proof. |

Lemma 7: Consider a strict committee ¢( In,Sm,vnm, T=T ) where
p

19t
n>2andm > p > 3. The strict voting procedure v T s strategy

proof if and only if it is dictatorial.

Proof: Obviously every voting procedure that is dictatorial is strategy
proof. Lemma 5 states that if vnm is strategy proof, then it is either
fully dictatorial or strong alternative-excluding. Consequently all we need
to prove here is that if v ois strategy proof and strong alternative-
excluding, then it is partially dictatorial. Assume that vnm is strategy
proof, strong alternative-excluding, and has a range T = Tp, m>p > 3.

For all i € In we may rewrite ecach ballot BiE p; as B: € pg where B:
is a strong ordering, defined over Tp, with the property that Bi = GT(Bi)-
Each Bi is identical to Bi except that the m-p alternatives that are not

included within the range of v'" are deleted. Consider any C € pg and

D¢ p;, C # D, such that

(8.5(C)) v s®p(€ )T = [8,(D)), ... ,0,(D )], @7)

Lemma 6 implies that vnm(C) = vnm(D). Consequently a strict voting procedure

Vnp for p alternatives exists such that for all B ¢ p;

;B ). (28)

np _ _nm
v [GT(Bl),...,eT(Bn)] = vy (Bl"" a



-28-

Since v'™ is strategy proof, v'P is also strategy proof and, by Lemma 5,

is either dictatorial or strong alternative-excluding. It can not be strong
alternative-excluding because its range includes all p elements of T

. n
Therefore it is dictatorial, i.e. an i€ I exists that for all B € o

np _ i
v [eT(Bl)""’eT(Bn)] = fT[eT(Bl),...,eT(Bn)]. 29
Substituting v for 'P gives
nm A
v (Bl""’Bn) = fT[GT(Bl),...,eT(Bn)] (30)
i
= fT(Bl""’Bn)’ (3D)

. om - . .
i.e., v is partially dictatorial. ||

Lemma 7 is identical to Theorem 1 except that it is for strict committees,
We extend the result to committees that are not strict as follows. Consider

nm

a committee (I v ,T = Tp\ where¢ n>1 and m> p > 3. Assume that

S
n’“m’
nm

v is strategy proof. We can decompose v"™ into two functions:
. n
d(B) if B € P

v'(B) = (32)
e(B) if B € (n; - p:)

Function d 1is just a strict voting procedure. Clearly if vnm is strategy
proof, then d must also be strategy proof. Lemma 7 states that if the
range of d 1is Tp’ then d must be dictatorial in order to be strategy
proof.

Thus we must first prove that the strategy proofness of v'™ implies that

the range of d is Tp' Suppose that the range of d 1is not Tp, but
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rather is U where U CC Tp. This means that we can find an x &€ T
P

such that x Q U. Therefore a ballot set C € (n; - O;) exists such
that v""(C) = e(C) = x. Define a ballot set D € o such that, for all
i€ In,Di = (xy ...) where vy € U.§/Since X ¢ U and y € U, Lemma 1

implies that vnm(D) = d(D) = y. Examination of the sequence S(C,D) shows

that a j € I must exist such that

nm

v (C "Dn) # x and

proresCi g DDiys

nm
v (Cl""’cj*l’cj’Dj+1"'"Dn) = X.

If we let individual j have preferences Rj = Dj, then his best strategy

. nm
is the sophisticated strategy Cj. Therefore, contrary to assumption, v

n .
is not strategy proof. Thus we have proved that if v M s strategy proof,
then U = Tp' Finally, because d 1is a strategy proof strict voting
procedure and has a range U = Tp with at least three elements, Lemma 7
implies that d 1is dictatorial; i.e. there exists an 1i € In such that
i n
d(B) = fT(B) for all B € o -
1 .
Now relabel the individuals' ballots so that d(B) = fT(B) instead of
i nm 1 n .
fT(B). Assume that v (B) # fi(B) for some B € o This means that there
. n n 1 _ . n
exists a C € (nm - pm) such that e(C) = x # fT(C) = y. Define DE€ e

9/

such that, for all i € In’ Di = (w ... Xy)E€ p; where w € T. Notice that

vnm(D) = f%(D) = w, Examination of the sequence S(C,D) shows that a

j € In must exist such that either case A or case B is satisfied:

nm ! -
V(Cyy e sCy gy D D) = £.(C) =y

[ISERR

I
«

nm 1
v (Cl""’cj-l’cj’D ..,Dn) # fT(C)

1

(33)

(34)

(35)

(36)
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nm

1
v (Dl’DZ""’Dn) = fT(D) =w
B:
nm 1
v (Cl,Dz,...,Dn) # fT(C) =y
If case A is true let individual j have preferences R, = Dj' His best

strategy is then the sophisticated strategy Cj; thus v is not strategy
proocf. 1If case B 1is true define the ballot Di =(y ... wx) € pm. Since

n nm 1
(Di’DZ""’Dn) € pm,v (Di’DZ""’Dn) = fT(Di’DZ""’Dn) = y. Eruation (38)

continues to be true. Let individual one have preferences R1 Cl' This
s . nm
makes the sophisticated strategy Di be his best strategy; thus v is
. nm .
not strategy proof. In summary, if v is strategy proof and not
dictatorial, then either case A or case B must be true. If, however, case A
nm
or case B is true, then v cannot be strategy proof. Therefore a

nm
necessary and, obviously, sufficient condition for v to be strategy proof

is that it be dictatorial. This completes the proof of Theorem 1.

37

(38)



5. PROOF BASED ON ARROW IMPOSSIBILITY THEOREM

This section presents a second proof of Theorem 1, The proof
is based on showing that an Arrow type social welfare function, which
must by necessity be dictatorial, underlies every strategy proof voting
procedure. It is then easy to show that every strategy proof voting
procedure is dictatoria%. While this proof's strategy imitates Gibbard's
proof [8] of Theorem 1, its tactics are modeled on the work of Hansson
[9, theorem 3].

We begin by restating Arrow's result [l1]. Arrow defines a social

welfare function for a committee with n members considering m alter-

. . . nm L n
natives to be a singlevalued mapping u whose domain is n_ and whose

m
AB where

_ n , . . .
B = (Bl""’Bn) € o and AB € m A social welfare function is iden

. nm
range is m or some non-empty subset of mo Thus u (B)

tical to a voting procedure except that its image is a weak order on Sm

instead of a single element of S_- A committee that is using a social

welfare function u"" 1is described ny the triplet (In. S . unm\ With

m
these definitions in hand, Arrow pcsits three conditions which. he argues.
any ideal voting procedure should satisfy. The importance of the first

two is obvious. Fishburn [7] and Plott [14] contain excellent discussion

concerning the importance of the third.

nm
Condition Al: Pareto optimality. Let AB =u (B). If any

B € " has the property that x'Eiy for all i € In and some
m
X, ¥y € Sm, then x KB v.

nm

Condition A2: Non-Dictatorship. Let AB = u (B).. No 1 € In



exists such that, for all X, y €8 and for all B ¢ nn » X B, vy
m m i

implies x KB v.

Condition A3: Independence of Irrelevant Alternatives. Let

_ nm _ nm )
Ab =u (C) and AD =u (D). If for all i ¢ In’ for some

. n n
WcC Sm, for some C < o and for some D € o ew(ci) = Gw(Di),
10/

then v (A)) = ¥ (A)
Arrow asks if any u™ exists which satisfies these conditions. His con-

clusion is negative.

Theorem 2. (Arrow Impossibility Theorem). Consider a committee
(In, Sm, unm) where n>2 and m> 3. No social welfare function

nm X s s ‘s
u exists that satisfies conditions Al, A2, and A3.

The obvious corollary is that if a social welfare function satisfies con-
ditions Al and A3, then it is dictatorial in the sense that an 1 €I
exists such that condition A2 is not satisfied.

We define a strict social welfare function analogously to a strict

. . . . nm
voting procedure. The domain of a strict social welfare function u
n . n .

is limited to elements P> 1-e- only B ¢ p, are admissable as ballot
sets. Similarly the range of a strict social welfare function is limited; it
may be either pp, ©OTF any of its non-empty subsets. Theorem 2 holds un-
changed for restricted voting procedures provided the appropriate substi-

. n m . ‘s 11/
tutions of P for m ~are made in conditions Al, A2, and A3. —

The proof which we construct in this section considers only the case

of strict voting procedures. Consequently the final result which we derive



in this section is identical to Lemma 7 of the previous section: a strict
voting procedure with a range of at least three elements is strategy proof
if and only if it is dictatorial. This, however, is not constraining
because we may generalize this result to voting procedures which are not
strict by using the identical argument which we used to generalize Lemma
7 from the case of strict committees to the case of unrestricted committees.
In outline form this proof's contents are as follows. We pick an
. nm
arbitrary strategy proof v that has a range T = Tp, m>p > 3. Based
nm . .
on Vv we construct a singlevalued function T (B,U) = x where
n . . .
B € I U c Tp, and x € Tp' We show that T implies that with every
n . : . . .
ballot set B € m, 1is associlated a unique strong ordering AB; i.e.
. . . . n
I' implies that a mapping vy exists such that, for all B ¢ ™o

nm(B). Thus y 1s the social

vy(B) = AB where AB [ o and WT(AB) =v
welfare function which, we may legitimately say, underlies the strategy

proof voting procedure v™. We then prove that if, as is being assumed,
v is strategy proof, then vy necessarily satisfies conditions Al and
A3. Therefore y must be dictatorial. Finally, to complete the proof,

. . . . nm . .
we show that since y 1is dictatorial, v must also be dictatorial.

The results of this proof are summarized by Theorem 3.

Theorem 3. Consider a strict committee ([n, Sm’ Vnm} T = Tp )
where n > 2 and m>p > 3. Suppose that v is strategy
proof. 1t follows that a singlevalued mapping vy(B) = AB with

. n . . .
d omain o and non-empty range contained in Dp must exist such

that (a) vy 1is a strict social welfare function satisfying Conditions

Al and A3, (b) <y 1is a dictatorial strict social welfare function,
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and (¢), for all B ¢ p;, vnm(B) = WT(AB). Moreover conclusions
(b) and (c) together imply that the strict voting procedure v

must be dictatorial.

Gibbard [8] has proven a stronger version of this result that applies to
unrestricted as well as strict cormmittees.

His version, which we will use in section six's equivalence theorem
proof, requires definition of what we call strong social welfare functions.

. , . nm . .
The domain of strong social welfare function u , like that of a social

welfare function, is ﬁ;- Its range, however, is restricted to P
exactly as is a strict social welfare function's range. Thus a strong
social welfare function is intermediate in generality between a strict
social welfare function and a social welfare function. Theorem 2 is valid
for strong social welfare functions because the set of strong social wel-

fare functions is a subset of the set of social welfare functions.

Theorem 3' (Gibbard). Consider a committee 0’ S, v , T= Tp>

m
where n>2 and m>p > 3. Suppose that vi™ s strategy proof.
It follows that a singlevalued mapping vY(B) = AB with domain n;
and non-empty range contained in Dp must exist such that (a) vy 1is
a strong social welfare function satisfying Conditions Al and A3,

(b y 1is a dictatorial stroang social welfare function, and (c), for

all B ¢ n;, vnm(B) = WT(AB). Moreover conclusions (b) and (c¢)

. . nm . .
together imply that the voting procedure v must be dictatorial.

This result is not proved in this paper because it is proved in Gibbard's

paper [8].
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The first step in the proof of Theorem 3 is to define the choice
function T(B,U). It itself is based on the mapping AU(B) where
B € o; and U C Tp. The mapping AU(B) reshuffles the order in which
the elements of Sm are ranked within each ballot Bi. All the elements
of U are moved to the top of the ballot without disturbing their ranks

relative to each other. For example, if, for all 1 € In’ B. = (wxvy 2)

i
= AU(B\.

oI,
, and

ke
w
ot ota ata

and U = (x, z), then Bi" = (x z w y) where B = (Bla""’Bn

w

o <
w w

Formally, if B = oy(B) where UCT, B = (B

n .
1,...,Bn) € om, then (a) for all x, y € U and all 1 ¢ In, X Bi y
*

if and only if x Bi y, (b) for all x € U, y ¢ U, and 1i € In’ x Ei V.

)
* n
»eesB Y€ R

B = (B

ke

and (c) for all x, y ¢ U and all i €1, x Bi" y if and only if
X Bi y. Given this definition, the definition of T is: T (B,U) =

v [AU(B)] where B ¢ p; and U C Tp. Notice that if v is strategy

proof, then Lemma 6 implies that F(B,Tp) = vnm(B) for all B ¢ p;.

If v™ is strategy proof, the function T(B,U) 1is a valid choice

function since its image is (a) nevar the null. set and (b) is always an

12/

. . . nm
element of U. The first property is obvious because v always has

a non-empty image and T (B,U) 1is defined as vnm[AU(B)]. Suppose the

second property is not true. Therefore a B ¢ p; and a UC Tp exist
nm *

v

such that T (B,U) ¢ U. Let B = A,(B). Therefore T'(B, U) = ().

Pick a y € U. Since y 1is an element in the range of Vnm’ a Ce¢ o;

e

must exist such that vnm(C) = y. Examine the sequence S(B",C). An

i€ In must exist such that

vi™@B.,..., B. c., C ..., C)Y=weUu and (39)
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nm * * *
. B, , C

i1 B 4170 C) =z & U (40)

Jo

Let individual 1 have preferences Ri = B;. The definition of AU(Bi*)
implies that w ﬁi*z because the effect of AU is to move all elements
of U to the top of the ballot Bi*. Therefore individual 1 has an
incentive to play the sophisticated strategy Ci' This, however, contra-
dicts the assumption that v is strategy proof.

We use T to show that with every B € p; we can associate a strong
order AB € pp defined over the elements of Tp. Arrow [2, theorem 3]
has proved that if for all U CV C.Tp and for all B ¢ p; either
FTB,V) NU=¢ or [ (B,V) NU =T (B,U), then with every B € p;
there is associated a unique AB € pﬁ ll/ Additionally Arrow's result
states that if AB exists, then T(B,U) = WU(AB) for all UC Tp. Thus

if the conditions of Arrow's theorem are met, then [ is the choice function

MRy is

. . nm
for the ordering AB and, since v (B) = F(B,Tp) = WT(AB), v
merely a specific value of the choice function T[. Stated formally Arrow's

theorem on choice functions is:

Theorem 4 (Arrow). If for some B € p; the choice function T
satisfies the condition that for all UcC V C TP either

rB,v) N U=¢@ or [(B,V) N U =T(B,U), then there exists a
unique strong ordering AB € Dp such that, for all

WcC Tp, F'(B,W) = ww(AB)-

On the assumption that the T satisfies the theorem's conditions for all

B ¢ p;, define the mapping vy to represent the correspondence between each
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n . . n
B ¢ o and the appropriate AB € pp, i.e., for all B ¢ P’ Y(B) = AB
and AB has the property that WU(AB) = T(B,0) for all UC Tp. Lemma
8 proves that if v is strategy proof, then the assumption that T
satisfies the theorem's conditiomsis true and such a mapping Yy must

exist.

. . . nm
Lemma 8: Consider a strict committee (In, S, v , T=T)

m P
where n> 2 and m>p > 3. If v is strategy proof, then
a singlevalued mapping vY(B) =AB with domain o; and non-empty

range contained in pp exists such that T(B,U) = WU(AB) for

all UcCT
P

Proof. All that we need to show is that T'(B,U) satisfies the con-
ditions of Theorem 4. Suppose that v s strategy proof and does not
satisfy the condition that, for every B ¢ oi and for all UcCcVcC Tp.
I'(B,V) N U 1is either the null set or I'(B,U). There consequently must

exist a we€U and a x € U, x # w, such that T[(B,U) =w and

I'(B,V) = x for some B ¢ p;, some V C Tp, and some U < V. Recall that

T (B,U) vnm[AU(B)], etc. Let 4 .(B) =C and A,(B) =D where

Cc = (Cl,...,C ) € p;, etc. This means that T(B,U) = vnm(C) = w and
n

r'(8,V) vnm(D) = x. The mappings AU and AV imply systematic differ-

ences in how each pair of ballots Ci and Di rank the elements of S

In particular, (a) if y, z € U, then, for each i € In’ v Ei z if and

only if y 5iz and (b) if y € U and z ¢ U, then, for each i € In, v Ci z.

Consider the sequence of S(C,D). An 1 €¢I must exist such
n

that
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nm

v (C1’°"’Ci—1’Di’Di+l" .,Dn) =x €U and (41)

nm
v (Cpse-esC 15CL,D D)) (42)

1l
<

i+

If y € U, then either (a) x Ei y and x 61 y or (b)y Ei x and

y Bi x. If case (a) is true, then let individual i have preferences

nm . .
R, = Ci and observe that v , contrary to assumption, is not strategy
1

proof. If case (b) is true, then let individual i have preferences

. nm .
Ri = Di and observe again that v is not strategy proof. If, however,
y ¢ U, then x Ei y. Let individual i have preferences Ri = Ci and
nm : nm .
observe that v is not strategy proof. Therefore, if v is strategy

proof, then T cannot violate the conditions of Theorem 4. |
. : , . . . nm
The final major step in this proof is to show that if v is strategy
. . nm . . .
proof, then the vy which underlies v is strict social welfare function
that satisfies Conditions Al and A3. Arrow's impossibility theorem then

implies that <y 1is dictatorial.

Lemma 9; Consider a strict committee (In, Sm, v , T= Tp> where

n>2, and m>p > 3. If v s strategy proof, then the mapping ¥y

which underlies v is a strict, dictatorial social welfare function.

Proof. Assume that v is strategy proof. The mapping y exists by

virtue of Lemma 8 and vy 1is obviously a strict social welfare function.

We use Lemma 1 to show that <y satisfies Al. Suppose for some B € p;

14/

and some x, y € Tp’ X Ei y for all i € In Set U = (x,y) and let

C = AU(B). For all 1i ¢ In and all w ¢ Sm, X Ci w 1s true, i.e.,

WT(Ci) = x for all i € In. Therefore, according to Lemma 1,
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T'(B,U0) = vnm(C) = x. Moreover if we let vy(B) = AB, then Theorem &4 states
that TI'(B,U) = YU(AB). Therefore, since TI'(B,U) = x, WU(AB) = x which
implies that x Kﬁ y. This is exactly what Condition Al requires.

Now suppose that <y fails to satisfy Condition A3. This means that
two ballot sets C, D & p; and a U C Tp must exist such that (a)
SU(Ci) = SU(Di) for all i ¢ Irl and (b) WU(AC) = x and WU(AD) =y,
X # y, where AC = y(C) and AD = y(D). Consider the set V = (x,y) C U.
For each i ¢ In either (a) x Ei y and x ﬁi y or (b) vy Ei x and
v ﬁi X because SU(Ci) = SU(Di) for all i ¢ In

Theorem 4 states that T[(C,V) = WV(AC) =x and T(D,V) = WV(AD) =vy.
Let C* = AV(C) and D* = AV(D). Since x, y € V the mapping AV does
not disturb the relative orders of x and y within each ballot, i.e.,
for each 1i ¢ I either (a) x E: y and x ﬁ? y or (b)y’E? x and

e
w

vy Di X. Moreover vnm(C“) = x and vnm(Dd) =y because T(B,V) =

¥ *

vnm[AV(B)]. Consider the sequence S(C . D). An 1 € In must exist

such that
nm, _* * % % * _
v (Cl""’ci-l’Di'Di+l’""Dn) =y and (43)
Ve, . e el D) = x 44
1 tie1 i i

*

nm n v —
bepause v [AV(B)] €V for all B ¢ Py If vy Ci x and y D, x,

i

o

* _k
let individual i have preferences Ri c,. If x Ci y and x Di v,

st He

let individual 1 have preferences R,  D,. 1In both cases we then get
i

=]

. . nm
the contradictory conclusion that v is not strategy proof. Therefore

. nm . .
if v is strategy proof, then Yy cannot violate Condition A3. Conse-

quently, in summary, if v is strategy proof, then vy must satisfy Al
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and A3. Finally Theorem 2 implies that <y must be a dictatorial social
welfare function. !
The conclusion that a dictatorial, strict social welfare function
. . . nm .
underlies every strategy proof strict voting procedure v directly
implies that every strategy proof strict voting procedure is dictatorial.
Consider a particular strategy proof v'™  and its underlying vy. For
all B € p", y(B) = A, and v ' "(B) =V _(A). The fact that is dicta-
=0 Y Ay (8 2 Y
torial implies, based on the definition of dictatorship contained in

Condition A3, that there exists an i such that
v (A) = £ (B)
T AB T ’

i.e., v is dictatorial. Thus Theorem 3 is proved. We can extend the
result, which is valid only for strict committees, to prove Theorem 1 in

exactly the same manner that in section four we generalized Lemma 7.
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6. EQUIVALENCE THEOREM

In sections three through five of this paper we have proved that
every strategy proof voting procedure with a range of at least three
elements is dictatorial. This section has a different focus: it shows
that the '"Arrow question'" is equivalent to the 'strategy proofness question".
In brief this section's substance is as follows. Theorem 3' of section
five states that every voting procedure has underlying it a unique strong
social welfare function that satisfies Arrow's Conditions Al (Pareto
optimality) and A3 (irrelevance of independent alternatives). This section
shows that a strategy proof voting procedure can be derived from
every strong social welfare function which satisfies Conditions Al and A3.
These two results together imply an equivalence between strategy proofness
on one hand and Conditions Al and A3 on the other hand. Thus constructing
a strong social welfare function which satisfies Conditions Al and A3 is
equivalent to constructing a strategy proof voting procedure.

Formal statement of the equivalence theorem requires that we explicitly
define what requirements a strong social welfare function must meet in
order to '"underlie' a voting procedure and, conversely, how a voting pro-
cedure is ''derived'" from a strong social welfare function. The strong

, . . nm
social welfare function vy underlies the voting procedure v if and

, n nm _ .
only if, for all Be&nmn , v (B) =¥ (AB) where A_ = y(B). Similarly,

m T B
the strict voting procedure p derives from the strong social welfare

function u™ if and only if, for all B € n;, WT(AB) = A(B) where
15/

nm

AB =u (B).



. nm .
Theorem 5. Consider a voting procedure v and a strong social
, nm nm
welfare function u where n>2 and m>3. If v is strategy
proof and has a range that includes at least three elements of Sm.
then a strong social welfare function <y exists which both underlies

nm . e .. nm . e ..
v and satisfies Conditions Al and A3. If u satisfies Conditions

Al and A3, then the voting procedure p which derives from W™ s

strategy proof.

The interest of this theorem lies in the fact that strategy proofness and
Conditions Al and A3 reciprocally imply each other independently of the fact
that each by itself implies dictatorality. This equivalence suggests a
new justification for the significance of Condition A3. Since Pareto
optimality (Al) is a minimal requirement for efficiency, independence of
irrelevant alternatives (A3) can rightfully be called a strategy proofness
requirement.lé/

Proof of the theorem's first statement follows immediately from points
(a) and (c¢) of Theorem 3'. Taken together these points assert exactly what
we want to prove: 1if v is strategy proof, then a strong social welfare
function vy exists which both underlies v'™ and satisfies Conditions Al
and A3.

We now turn to the second statement contained in Theorem 5. It
asserts that if u'" satisfies Conditions Al and A3  then the derived
voting procedure A 1s strategy proof. Its proof requires the introduction

of two new conditions which we may use in place of Condition Al.

nm

Condition Ala: Citizen's sovereignty. Let AB = u (B). For every



X, v € Sm there exists a ballot set B € w; such that x KB y.

Condition Alb: Non-negative response. For some x € Xm let
W=S8 - (x) and let C, D ¢ w; be any two ballot sets which
m
have the properties that (a), for all i ¢ In, ew(Ci) = ew(Di),
(b), for all 1i € In and all y €W, xD,y 1if x Ci y, and
i
(c), for all i €I and all y €W, x Ei y if x Ei y. Let

nm _ nm -
u (C) = AC and u (D) AD. If, for any z € W, x KC z,

then x KD zZ.

In less formal language Condition Alb requires that if the only change in
ballot set D is that on some individual ballots within ballot set D
alternative x hés been moved up relative to some other alternatives,
then within the committee's final composite ranking AD alternative x
cannot have moved down in relation to its position within the original
composite ranking AC.

The usefulness of Conditions A'a and Alb stems from Arrow's demon-
stration [l, p.97] that Ala and Alb in conjunction with A3 are equivalent
to Al. Given these facts we can prove the following lemma.
nm

Lemma 10. Consider a coomittee ( In, S, u

Y where n > 2,
- >

nm . . nm
m >3, and u is a strong social welfare function. If u

satisfies Conditions Ala, Alb, and A3, then the voting procedure

A which derives from u is strategy proof.

This lemma together with the equivalence of Al and A3 to Ala, Alb, and

A3 implies a corollary: 1if u™ satisfies Al and A3, then A 1s strategy
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proof. This corollary is exactly what the second statement of Theorem
5 asserts. Thus all that remains in the proof of Theorem 5 is the
proof of Lemma 10.

Proof. Suppose a strong social welfare function ™ satisfies
conditioms Ala, Alb, and A3 and its derived voting procedure p 1is not
strategy proof. Let T = Sm. Since A 1is not strategy proof there
exists an i € In, a ballot Bi € ™o preferences Ri € Ui and a

n-1
B ,...,Bn) € o such that

i
ballot set B = (Bl""’Bi-l’ i+l

A(B,BD R 4 (R ,BY. (45)

i i nm i n i
Let A(B;,B) =x, A(R,B) =y, u (B,B) =A;, and u (R,B)) =A.
Note that WT(AB) = x and WT(AR) = y. Consequently (45) may be

rewritten as
¥y(ap) K vp(A)  or as (46)
(47)
Thus we know what individual 1i's preferences between x and y are.
Focusing now on Bi three possibilities exist: y B, x, x B, y, or
x B y and y B, x.
i 1

Consider the first case where vy Bi x. Let U = Sm - (y). Construct

ot
v

a new ballot Ri\ = [y GU(Ri)], i.e., alternative y 1is now ranked first
and the other alternatives in Sm are unchanged in their relative rankings.
This is exactly the type of shift which Condition 1lb describes. If we let

nm * 1 * - . AP
u (Ri ,B) = AR’~ then Condition 1b, which we assume to be true, implies



45

that, for all z¢ U, ¥y K; z. This is because VT(AR) = y; consequently

Condition 1b implies vT(Ag) = y.

Let X = (x,y). Notice that Rih has been constructed so that

K]

GX(Ri ) = GX(Bi); this is true because y Ri x and vy Bi X.
Condition 3, which we also assume to be true, states that we must therefore
have WX(A;) = WX(AB). This, however, gives us a contradiction:
¥e(Ap) 7 ¥o(Ap) because vy (A) =y and vy, (A = v, (A) = x. There-
fore, if y ﬁi X, then A must be strategy proof.

Consider the second case where x Ei y. Observe that eX(Bi) = eX(Ri)
where X = (x, y). Therefore Condition A3 implies that WX(AB) = x and
YX(AR) = y. Consequently, if x Ei y, then A must be strategy proof.

Consider the third case where x Biy and y Bi X. Recall that

oo
~

X Ri y, i.e., y 1is ranked below x. Form the ballot Ri’ by moving

y higher up on the ordering until it is indifferent with x. More formally

ot -

construct the ballot Rih with the properties that (a) x RiA y and

% _ % e ;= _ . PR
y Ri x and (b) ew(Ri) ew(Ri ) wher i Sm (y) Condition 1b

* %* *
then implies that WT(AR) = YT(AR) = y where AR = unm(Ri ,B7) and

AR = unm(Ri,Bi). Observe that eX(Bi) = eX(Ri*) where X = (x, y).

Condition A3 then implies WX(AB) = WX(A:). This however, is a contra-

diction because YX(AB) = YT(AB) = x and VX(AZ) = XT(AR) =y. Iherefore,

if vy Bi x and x Bi y, then pJ must be strategy proof. Finally, since

in all of the three possible cases the assumption that A 1is not strategy
n

: o . m . ‘s
leads to a contradiction of the requirement that u satisfy Conditions

Ala, Alb, and A3, we conclude that A must be strategy proof. |
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FOOTNOTES

1/ Farquharson [5] introduced the terms sophisticated strategy and sincere
strategy.

2/ In [15] I stated Theorem 1 (existence of a strategy proof voting procedure)
and proved it using the constructive proof presented in section four of
this paper. This work was done independently of Gibbard. Subsequently
an anonymous referee informed me of Gibbard's paper. The alternative
proof of Theorem 1 presented in section five is based directly on his
proof. In addition the statement and proof in section six of Theorem 5
(equivalence of strategy proofness and independence of isrelevant alter-
natives given Pareto optimality) followed directly from the insight which
I gained from_reading Gibbard's paper.

3/ The following symbols of mathematical logic are used: € element of, C
subset of, <CC strict subset of, (! union of two sets, and M intersection
of two sets.

4/ Set valued decision functions can give unambiguous choices if they are
coupled with a lottery mechanism that randomly selects one alternative
from among any sets of tied alternatives. This is the approach which
Fishburn [7], Pattanaik [11] [12] [13], and Zeckhauser [20] have adopted.
I reject this approach here because I think that the use of decision
mechanisms with a random element would be politically unacceptable to
almost all committees. A detailed discussion which argues in favor of
this paper's appraoch may be-found in Gibbard [8].

5/ Another class of strategy proof committee decision rules exist, but they
do not satisfy our definition of a voting procedure because they involve

a lottery. Let a lottery be held among the committee members' ballots
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with each ballot having an equal opportunity of winning. The top ranked
alternative on the winning ballot is then declared the committee's choice.
This rule is strategy proof, but its probabilistic nature would undoubtedly
offend most committees. For a full discussion of lotteries as strategy
proof social choice mechanisms see Zeckhauser [20].

One may argue here that individuals have no incentive to play any strategy
at all, whether sophisticated or sincere. Yet an imposed voting procedure
is strategy proof according to the definitions established above.

The sequence S(C,D) is defined in lemma one's proof.

The notation D = (xy ...) means that x D and, for all =z ¢ Sm,
z#x, ybD z.
The notatiomn D = ( ... x y) means that, for all =z ¢ Sm, Z w, wD z;

for all =z ¢ Sm, z #%, z#y, zD x; and x D y.

The mappings v and 6 are defined in section two.

If the domain of a social welfare function u " is sufficiently restricted,
then it may staisfy conditions Al, A2, and A3. Nevertheless restricting
the domain of u™ to p; is not sufficient to prevent the occurrence of
the voting paradox. Therefore Al, A2, and A3 cannot be simultaneously
satisfied.

Gibbard's proof of Theorem 3' has the minor flaw of assuming without any
proof that property (b) is true. He implicitly makes this assumption when
he defines the relationship x P vy.

Hansson [9] has also proved this theorem. The ordering AB is necessarily
a strong ordering because T (B,U) 1is a singlevalued functiom.

The case where x ¢ Tp or y ¢ Tp is ignored because we define <y to be

a social welfare function that is defined over the set Tp. We can legit-

. nm
imately do this because Lemma 6 states that if v is strategy proof,

then the ranking of those elements have no bearing on the committee's choice.
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15/ Given that we have defined voting procedures to be singlevalued, it

follows that the social welfare functions which underlie each voting
procedure must be strong social welfare functions. Otherwise YU(AB),
where AB = y(B), could be set valued for some B ¢ n; and some

Uc Sm. Since ' 1is singlevalued by definition this possibility con-
tradicts the requirement that WU(AB) = 7(B,U) for all B ¢ n; and
all Uc Sm. Symmetry then suggests that if voting procedures imply
only strong social welfare functions, then only strong social welfare
functions should be permitted to imply voting procedures. Moreover to
do otherwise and to define the derivation of a voting procedure from a
social welfare function whose range includes elements of the set

(nm - pm) would introduce awkward problems of tie-breaking.

Theorem 5 in conjunction with section four's constructive proof.of
Theorem 1 constitutes a new, albeit inefficient proof of Theorem 3

(Arrow impossibility theorem).
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