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Abstract

We introduce a lexicographic domination between local strategies for
players in an extensive game in order to investigate " undominatedness "
property of a perfect equilibrium point. We show that a lexicographically
undominated behavior strategy combination is a subgame perfect equilibrium
point in an extensive game with perfect recall. We also provide two types
of disequilibrium behavior for a player which a Nash equilibrium point may

prescribe and the lexicographic domination can eliminate.



1. Introduction

The purpose of this paper is to investigate some properties of a lexicographic
domination between local strategies for players at information sets of an extensive
game, in particular, to what extent the lexicographic domination can be useful
for eliminating disequilibrium behavior for players which a Nash equilibrium point
may prescribe on unreached information sets. We also investigate relationships
between a lexicographically undominated equilibrium point and other refinements
of the Nash equilibrium point such as a subgame perfect equilibrium point,

a perfect equilibrium point, and a sequential equilibrium point.

Selten (1975) introduced the concept of a perfect equilibrium point in an
extensive game with the two interdependent purposes : (1) to eliminate disequilibrium
behavior for players which a Nash equilibrium point may prescribe on unreached
information sets, and (2) to select an equilibrium point which is stable against
some slight imperfection of rationality of players. Selten defined a perfect
equilibrium point so that it can directly accomplish the second purpose. He
modeled imperfection of rationality of players by a game, called a perturbed game,
in which each player may err or " tremble " with very small probability.

A perfect equilibrium point is defined to be a limit of equilibrium points for
some sequence of perturbed games as imperfection of rationality vanishes. Selten
showed that this definition of a perfect equilibrium point is equivalent to
require that on every information set of every player the equilibrium point
induces a local strategy which is a best response to some sequence of completely
mixed behavior strategy combinations converging to the equilibrium point.

This approach by Selten is sometimes called the " trembling-hand " approach.

Kreps and Wilson (1982) recasted Selten's definition of a perfect equilibrium



point forcusing on the first purpose of it, and introduced the concept of a
sequential equilibrium point from the viewpoint of Bayesian decision theory.

They argued that a noncooperative solution concept for an extensive game must
embody a belief of every player at his every information set concerning how the
game has evolved before the information set. A sequential equilibrium point is
defined to be a pair of a behavior strategy combination and a system of beliefs,
called an assessment, such that every local strategy at every information set is
part of an optimal strategy for the remainder of the game under the belief at the
information set, assuming that no deviations from the behavior strategy combination

will happen after the information set. The system of beliefs is required to be

consistent among all information sets of all players. This criterion of a

sequential equilibrium point is called the sequential rationality.

As Kreps and Wilson (1982, p.864) pointed out, Selten's definition of a
perfect equilibrium point satisfies the sequential rationality because the
trembling-hand approach implicitly generates beliefs at information sets and
requires that players' strategies be optimal with respect to those beliefs. In
addition, Selten's perfect equilibrium point possesses an important property
which a sequential equilibrium point drops. That is, a perfect equilibrium point

does not include any dominated strategies for players.

In this paper, we will further investigate this undominatedness " property

of a perfect equilibrium point in an extensive game. Although Kreps and Wilson

proved that almost every sequential equilibrium point is perfect for

almost every extensive game, we feel that it would be necessary for us to
investigate a perfect equilibrium point from the viewpoint of the domination

concept between strategies for players because the gap between these two equilibrium

concepts mainly comes from the undominatedness property. The ordinary



domination, however, is too strong for investigating a perfect eguilibrium point.
Especially, it is not a very effective tool to eliminate disequilibrium behavior
for players on unreached information sets in an extensive game. For this reason,
in Okada (1984), we weakened the ordinary domination relation so as to fit better
Selten's model of a perturbed game underlying a perfect equilibrium point, and
introduced the notion of a lexicographic domination between strategies. We showed
that in a game in normal form a perfect equilibrium point is undominated in the
sense of a lexicographic domination, and also that the lexicographic domination
can narrow down the set of undominated equilibrium points in the ordinary sense
when there are more than two players in a game. Based on these results, we will
further develop our investigation of the lexicographic domination to an extensive

game in this paper.

We begin with two examples of extensive games. First consider a two-person

game r7

strategies

1 in Figure 1.1. [‘G has the four Nash equilibrium points in pure

All these equilibrium points are also subgame perfect equilibrium points. In
rja, player 2 never obtains a strictly lower payoff from L2 than from R2 whichever
node is reached in his information set, and obtains a strictly higher payoff from
L2 than from R2 if the right node is reached in the information set. Indeed,
L2 (weakly) dominates R2 in the normal form of r7l' Since it is hard to imagine

that player 2 will employ such a dominated strategy R2, we can say that the

equilibrium points ( L_ 1 R. ) and ( L_.r

R t b
IR 151 &y ) are not reasonable for

Figure 1.1




noncooperative solutions for r71. On the other hand, Lll1 and Llr1 give the
same payoffs to player 1 whichever strategy player 2 chooses and moreover both
strategies dominate his other pure strategies Rll1 and erl. Therefore,

( Llll , L2 ) and ( Llr1 , L2 ) are dominant equilibrium points ( hence undominated
equilibrium points ) in the ordinary sense. This means that we can not discriminate
between ( Lll1 , L2 } and ( Llr1 , L2 ) according to the criterion of the

ordinary domination in the normal form. However, we ask : are these equilibrium

points equally reasonable in rﬁ ?

In these equilibrium points, the information set of player 1 following Rl
is not reached. But, if it is reached, player 1 will never obtain a strictly

lower payoff from l1 than from r1 whichever strategy player 2 chooses, and obtains
a strictly higher payoff from l1 than from r1 if player 2 chooses R2. Therefore,

by the same reason as in the case of player 2's strategy R2, it is hard to imagine

that player 1 will choose rlat his information set, and thus the equilibrium

point ( Llr1 , L2 ) is not considered to be reasonable. ( Lll1 , L2 ) is the
unigue perfect equilibrium point of r_i. We remark that ( Llll , L2 Yy
({ Llr1 ’ L2 ) { Lll1 , R2 ) can be easily shown to provide sequential eqguilibrium

points of r71 with some appropriate beliefs.

Next, consider a three-person game [fg in Figure 1.2. rg has two Nash

equilibrium points in pure strategies, ( L. , L. , L_ ), ( L. , L, R_ ).
1 2 3 1 2 3

We can easily see from the normal form of r7; that these two equilibrium points
are undominated in the ordinary sense. In these equilibrium points, the
information set of player 3 is not reached, and they differ only in player 3's
behavior. Which of L3 and R3 is reasonable for player 3's behavior ? When
the information set of player 3 is reached, R3 gives higher payoff to player 3

than L3 if the right node is reached, and the situation is converse if the left

node is reached. In this case, we can not apply the same argument as in rjl-



Instead, the criterion of sequential rationality can give an answer to our
guestion. The left node of player 3's information set can be reached if player 2
deviates to R2 from each of the two equilibrium points. On the other hand, the
right node can be reached only if players 1 and 2 deviate to Rl and R2 from the
equilibrium points, respectively. Since in the theory of noncooperative games
any coordinated deviation of players is not allowed, player 3 will have a belief

at his information set that the left node is much more likely than the right node.

Then, in order to maximize his expected payoff under such a belief, player 3 must

have more concern about his payoff at the left node. Therefore, R3 is not
considered to be a reasonable behavior for him. Indeed, ¢ Ll , L2 , R3 ) is
not a sequential equilibrium point. ( Ll ’ L2 . L3 ) is a sequential equilibrium

point and also a perfect equilibrium point of r72.

The two examples above show that the ordinary domination in the normal form
is not very effective for investigating the problem of perfectness for an
equilibrium point in an extensive game. For this reason, in this paper, we will
employ the agent normal form of an extensive game introduced by Selten (1975) and

will consider a lexicographic domination between local strategies for players at

information sets of an extensive game. We will show in the next section that

the lexicographic domination can eliminate the equilibrium points ( Llrl , L2 ),
L.1. , R and L. r. , R f and L., L., R of ‘. All these

(I 2 ) CLry ;) ot 7 (L1 3! 2 N

equilibrium points are dominated in the sense of a lexicographic domination.

The paper is organized as follows. In Section 2, we define the notion of
a lexicographic domination between local strategies of players at information

sets in an extensive game. We also provide a necessary and sufficient condition

for a lexicographic domination in terms of a local domination proved in
Okada (1984). In Section 3, we show a decomposition property of the lexicographic

domination which says that a lexicographically undominated behavior strategy



combination in an extensive game induces a lexicographically undominated
behavior strategy combination on any subgame of the extensive game. By using
this decomposition property, we prove that a lexicographically undominated
behavior strategy combination is a subgame perfect equilibrium point in an
extensive game with perfect recall. In Section 4, developing the argument of
the two examples of this section, we provide two classes of disequilibrium
behavior which the lexicographic domination can eliminate. We also discuss

a relationship between a seguential equilibrium point and a lexicographically

undominated equilibrium point. In Section 5, we have concluding remarks.



2. Definitions
A ( finite ) n-person game in extensive form, called extensive game in
brief, is represented by r7 = (K, P ,U, p, h) where K is the game tree,
P = p ,P., ... , P is the player partition, U = v ,U0., ... , U
[0 1 n] player p [0 1 n]

is the information partition, p is the probability assignment to chance moves,

and h = ( hl s e hn ) is the payoff function. Let N = { 1, ..., n-} be
the set of players. For detailed definitions of an extensive game, see Kuhn
(1953) and Selten (1975). In this paper, we assume that r7 has perfect recall.

For an information set u E;Ui of player i, let Ai( u ) be the set of his

alternatives at u. A local strategy biu for player i at u is a probability
distribution over Ai( u ). A local strategy b'u is said to be pure if it
i pure
assigns the probability 1 to some alternative at u. A local strategy b,u is
i

said to be completely mixed if it assigns a positive probability to each

alternative at u. The set of all local strategies for player i at u is denoted
by Bi( u ). A behavior strategy bi for player i in r7 is a function that
assigns a local strategy biu to each information set u & Ui. We write bi =
( biu :116Ui ) - A behavior strategy bi = | biu ;lleUi ) is said to be
completely mixed if all biu's are completely mixed. The set of all behavior
strategies for player i is denoted by Bi. Let B = Bl){ .. }:Bn. B is the
set of all behavior strategy combinations b = ( bl y oeee bn ).for n players.
For a node x of the game tree K and a behavior strategy combination b = ( bl ’
ey bn ). let p( x] b ) be the realization probability of x when b is played.
Given a behavior strategy combination b = ( bl fee ey bn ), the expected payoff
Hi( b ) for player i in r7 is defined by

Hi(b>=§f p( z | b)h (z)

z E 2



where Z is the set of all endpoints of K and hi( z ) is the payoff for player i

assigned to each endpoint z & Z.

Let x, y be two nodes of the game tree K, and let e be an alternative at vy.

x is said to follow from y via e if y and e are on the path connecting x and the

origin of K. We simply say that x follows from y if x follows from y via some
alternative at y. Given an information set u, x is said to follow from u via
an alternative e at u if there exists a node y in u suCh that x follows from y
via e. Given two information sets u and v, u is said to follow from v ( via
an alternative e ) if there exists a node X in u such that x follows from v

( via e ).

Definition 2.1 : An extensive game [_7 is said to have perfect recall if the

following condition is satisfied for every player i = 1 ,..., n and any two
information sets u and v of player 1 : If a node x in u follows from v via an

alternative e at v, then every node in u follows from v via the same alternative e.

Selten (1975) discussed that the ordinary normal form is an inadequate
representation of an extensive game for the purpose of investigating perfect
equilibrium points. As a more adequate one, he proposed the agent normal form

where players are thought of as agents associated with information sets in the

extensive game. Following Selten, we will define the agent normal form of an
extensive game [_7 . Let all information sets for player i in [_7 be numbered as
U, = { yeee, U } , m,>1, i=1,..., n.
i il im, i=
i
Associated with each information set u,.  ( i=1 ,..., n , j=1 ,..., mi ), we consider
13

agent ij who selects a local strategy for player i at uij and obtains the expected
n
a
payoff for player i. Let m = g Z mi. Formally, the agent normal form G (rf7)
i=1

of the extensive game l is defined as an m-person game in normal form




a
G(W)z(M'{Sij'fij}ijeM)'

where M = { 11 ,..., Im ; ... ; nl ,..., nm } + S,.=A (u.. ) and £, = H,
1 n ij i ij ij i

for all ij € M. M is the set of all agents in r7 , and Sij and fij are the set
of pure strategies and the payoff function for agent ij, respectively. Let Qi

be the set of mixed strategies for agent ij. Note that Qij = Bi( uij ).

We will introduce some notations necessary for the definition of a
lexicographic domination between local strategies for players. For a behavior

strategy b, for player i, the local strategy biu assigned to uij by bi
i -
ij

is simply denoted by bij' Let b = ( bl ooy bn ) and b' = ( b_.' ,..., b ')

n
be any two behavior strategy combinations in r7 , Where bi = b_j : 3 =1 ,..., mi )
i

and bi' = ( bij' : =1 ,..., mi ) for each i =1 ,..., n. For any subset D

of M, we define a behavior strategy combination b/bD' = bl",..., bn“ ) by

b_"=(b_'f:j=l,...,m_),i=l,---,n
i ij i

by" = by, (i3€D ) or bt (1JED ).

b/bD' is the behavior strategy combination obtained from b by replacing b.,. with
1]

bij' for all ijé&€D. When D is partitioned as D = Dl \J ... \/Dk , we also write

b/bD' = b/bD /o, /bD ', For any subset S of N, we can also define a behavior
1 k

strategy combination b/bs' in the same manner as above. For a finite set A,

we denote the cardinality of A by |A} .

Definition 2.2 A behavior strategy combination b = ( bl ,--+e, b ) for r7
n

is said to be a ( Nash ) equilibrium point of r7 if

H, (b)) > Hi( b/bi' ? . \vd bi' & Bi-' Y ienN.



We introduced the notion of a lexicographic domination between mixed
strategies for players in a game in normal form in Okada (1984). By applying
it to the agent normal form of an extensive game [_7 , we can define the

lexicographic domination between local strategies at each information set in r7 .

Definition 2.3 Let b= ( b, ,..., b ) and b = ( El ,-+-s b_ ) be two behavior

strategy combinations for f7 . Let bij and bij be the local strategies for

player i assigned to an information set uij G:Ui by b and 5, respectively.

(1) bij is equivalent to Eij w.r.t. the deviation from b to 5, written
b.. ~o_ b, ., if
J b—>b J ) o
H b/b_/b = H b . D M - i .
(0 P/By/by ) = H(b/by/b ) Vocwm-{ij}
(2) bi’ lexicographically dominates Bij w.r.t. the deviation from b to 5,
written b, . >~ b,. , if b, CXL b, . and
ij - ij ij = ij
b —b b->b
i H.( b/b H.( b/b .
(lo) i( / i ) 2: i( / i )
(i,) Let 1 <k<m-1 and D_be any subset of M - {13} with )Dkl = k.
I1f
H.( b/b_/b,. ) = H.( b/b_/b,_. , ¥YDbpCpo
3 B/by/b ) R NEI V;k
then H.( b/b_ /b, ) > H.( b/b_ /b, . ).
i D 1j = 1 D 1]
k k
The symbol b,, > b,. is used to mean either b.. -~ b. or b.. > b, ..
ij o~ = "ij ij - ij ij -~ ij
b-sb b—b b—b
(3) bij lexicographically dominates Bij w.r.t. the deviation from b , written
b,.>b,  , if
ij i? ij *
b, . b,. , b £ B nd b ., 3Ab .
ij 2 - ij Ve 2 P13 > ij pes®
b—=b b—b
The symbol b, . 5_, is used to mean b, . b f 11 b .
y 132/ i3 i3 > _ i3 fora b €B

b b—>b



In Selten's model of a perturbed game underlying the concept of a perfect
equilibrium point, each agent in the game may deviate from an equilibrium point
independently with very small probability. In this situation, how can each

agent ij € M decide that a local strategy bij is better to him than another

local strategy Bij at an equilibrium point b = ( b1 P bn ) 2 Suppose
that all other agents jk&M, jk # ij, may deviate from bjk to Bjk independently
with very small probability. Agent 1ij must have concern about all possible
simultaneous deviations by the other agents in M - {ij-} . However, since

the simultaneous deviation by the agents in a group D is more likely than that
by the agents in a larger group D' ( ) D ), agent ij must have more concern about
the deviation by the smaller group in order to maximize his expected payoff.

The lexicographic domination in Definition 2.3 gives us a formulation of this

intuitive argument. It compares the expected payoff for player i from the two
local strategies bij and Bij in a " lexicographic " manner with respect to the
likelihood of the simultaneous deviations by other players from b = ( b1 sen o, bn ).

We proved in Okada (1984) that in a game in normal form the lexicographic

domination w.r.t. the deviation from a mixed strategy combination g = ( ql,...,qn )
is eguivalent to a " local " domination at g. A mixed strategy q__,L for each
player i is said to " locally " dominate another mixed strategy &i at g if

qi dominates &i in the ordinary sense over some neighborhood of g. By applying

this theorem to the agent normal form, we can obtain the following theorem.

For the proof, see Theorem 4.4 in Okada (1984).

Theorem 2.1 Let b, _, 5 &B (u.,) and b= (b, ,..., b )& B.

1] 1] i ij 1 n
(1) bij ;; Bij if and only 1if there exists some neighborhood U of b in B

b
such that
~o ~ - ~N
H b/b H , U.
{0 B/P ) > BB/ ) Y ve



(2) b.. ). B,, is equivalent to each of two conditions below.
ij ij
b
(i) There exists some neighborhood U of b in B such that
~ ~ - ~o
H(B /b _,.) >H(DB/b, ), Ybreu
i ij L i ij

with at least one strict inequality.

(ii) There exists some neighborhood U of b in B such that

v ~ -
H (b /b, . ) > H(b /b )
i 13 1 1]

N
for all completely mixed behavior strategy combinations b& U.

We can introduce two refinements of a Nash eguilibrium point in an extensive

game with respect to the lexicographic domination.

Definition 2.4 Let b = ( bl fesey bn }) be a behavior strategy combination for
[/, where b, = (b, : 3=1,..., m, ) for alli=1,..., n.

i ij i
(1) b is lexicographically undominated if , for all i&N and all uij E_Ui,

there exists no b, . & B.( u,. } such that
ij i ij
b.. = b_. .
i oy ij

b is lexicographically dominated if it is not lexicographically undominated.

(2) b is lexicographically dominant if , for all ig€N and all uijeUi ,

b.. > b.. . Y b..&€B.(u.).
ij % i3 ij i ij

It is obvious from Definition 2.3 that a lexicographically dominant behavior
strategy combination of an extensive game r7 is lexicographically undominated,
but it is not that a lexicographically undominated behavior strategy combination
is an equilibrium point because the lexicographic domination is defined between
local strategies at each information set of |° . In the next section, we will

prove that a lexicographically undominated behavior strategy combination is an

equilibrium point if the extensive game r7 has perfect recall.



Finally, we reexamine the two examples of extensive games given in the
Introduction with the help of the lexicographic domination. As we have seen in

the Introduction, rz in Figure 1.1 has the four equilibrium points ( Llll . L2 Y,

( Llrl ' L2 Y, o ( LIll , R2 } and ( Llrl , R2 ) in pure strategies. Since R2 is

i d in th dina sense, L.1. , R d L ., R
dominated by L2 i e ordinary ( 11 5 ) and ( lrl 5 )} are

lexicographically dominated. Let us consider lexicographic domination w.r.t.

the deviation from b = ( Llll , L2 ). If no deviations happen, ll and rl give

the same payoffs 3 to player 1. If each of the deviations from Ll to Rl and

from L2 to R2 happens, then ll and rl give the same payoffs 2 and 3,respectively.

But, if the simultaneous deviation from ( Ll . L2 ) to ( Rl . R2 )} happens, then

ll gives a strictly higher payoff 1 to player 1 than rl. Therefore, we have
1, %1 . We can also show that L_ > R, and L_ >~R_. This implies that
1 1 1 1 2 2
b b b
( Llll . L2 } is lexicographically dominant. Similarly, we can show that

b' = (L ,r_ , L2 } is lexicographically dominated since ll S rl.
bl

We next consider lexicographic dominations in f_z in Figure 1.2. rz has

the two equilibrium points ( L., , L_ , L3 ) and ( Ll , L., R_ ) in pure

1 2 2 3

strategies. We can easily show that for i = 1, 2 Li lexicographically dominates
Ri with respect to the deviation from both equilibrium points. Let us examine

the lexicographic domination between L3 and R3 with respect to the deviation from

these equilibrium points. If no deviations happen, L3 and R3 give the same
payvoffs 4 to player 3. If the deviation from Ll to Rl happens, they also give
the same payoffs O. But, if the deviation from L2 to R2 happens, then L3 gives

a strictly higher payoff 2 than R3. Therefore, we have L3 > R3 where
b

b = ( Ll , L_ ,L_) or (L, , L., R3 ). The discussion above implies that

, L. , L_ ) is

(L. , L., R_) is lexicographically dominated and ( L 5

3 1

lexicographically dominant and thus lexicographically undominated.



3. A Decomposition Property of Lexicographic Domination

In this section, we will show a decomposition property of the lexicographic
domination that a lexicographically undominated behavior strategy combination
in an extensive game induces a lexicographically undominated behavior strategy
combination on every subgame of itself. The similar property also holds for a
lexicographically dominant behavior strategy combination in an extensive game.
By using this decomposition property, we will prove the main theorem that a
lexicographically undominated behavior strategy combination is a subgame perfect
equilibrium point in an extensive game ( with perfect recall ). In what follows,
we will use some concepts on a decomposition structure of an extensive game , e.g.,
subgame, truncation, and brick etc., introduced by Selten (1973) without any
definitions. See Selten (1973) for the formal and detailed definitions of these

concepts.

Let r7 = (K, P, U, p, h) be an extensive game, and let | ''= ( K',
p' , U' , p' , h' ) be a subgame of r7 . A behavior strategy bi for player i
in [i? induces a behavior strategy for player i on /' , which is denoted by biI .
For a behavior strategy combination b = ( bl yee oy bn ) for r7 , let bl .
{ bl|r7, ey bn[ r7, ) be the behavior strategy combination induced on r7'.
Given a behavior strategy combination b' = ( bl' ree ey bn‘ ) for r7 ' , the expected

ayoff for player i in ' can be defined in the same way as in ., which is
pay p r7

denoted by Hi ).

(Db
7

Let u, . €U, be an information set of player i in an extensive game [_7 and
ij i

let b, ., b.. be two local strategies for player i at u,, in r7 . Let r7' be
1] 1] 1]

a subgame of r7 which contains uij' Since bij and Bij can be thought of as

local strategies for player i in the subgame r7', we can define lexicographic

dominations between b, . and Bi' with respect to r7' in the same way as of
13 J



Definition 2.3. Given a behavior strategy combination b' = ( bl' yeee, b V)
n
in [—7', the notation b. . >>- . 5,, means that b, ., lexicographically dominates
1 b r7 1) ij

b. ., with respect to the deviation from b' in r7'. b 2: means the
13

. , b,
Yl EAE

weaker relation. When b' = bl , for some behavior strategy combination b =

b. ,..., b in , b, S b.. and b, . >~ b. are
S AR O S (A

b|r7, b |r7l

simply written as b, . 5_, and b, . 5,, , respectively if no confusion

mply ij >'|_7| ij ij kpl ij P Y

b b
arises.
0 N
Let Ay = { ' be a class of subgames ' of such that no subgame
e {_7J' g 7 [ g

in 9& is a subgame of another subgame in 5x8 . Given a behavior strategy
combination b = ( bl y oy bn y for [_7 , we define the (5£g , b )-truncation of

}—7 by the extensive game obtained from r7 by replacing each subgame r7' in jf)

g oo g

ith th ted payoff cto H ( b ) = H b
wi e expected pay ve r l . |r7, ( 1 |r7'( '[7| )
Hn|[7'( bl[7' ) ). A b-truncation of f7 1s an extensive game which is a (98 , b }-

truncation of r7 for some 98 .

A subgame r7' of r7 is called proper if r7 ¥ r7' and /' contains at
least one information set. r7 is called indecomposable if it has no proper
subgame. The indecomposable subgames of r7 and of the b-truncation of r7 are
called b-bricks of r_7 . We can also define the lexicographic domination between

local strategies in b-truncations and b-bricks of I—7 in the same way as of
Definition 2.3. We use the same notations for lexicographic dominations between

local strategies in b-truncations and b-bricks of [_7 as in the case of subgames

of r7 .

Proposition 3.1 Let b = ( b1 PR bn } be a behavior strategy combination for

[7. Let u,, & U, be an information set of player i in a subgame r7' of [7
ij i

dletb.. ,b..EB.(u..). Then, b, . b.. in if and only if
an © ij ij € 1( ij ) ij %: ij r7 b



- 16 -

b . > b.. in r7' . The same proposition holds if we replace » with > .
~

Proof : Let x &€ K be the origin of r7' . For any completely mixed behavior

e

o ~
strategy combination b = ( bl ooy bn ) for r7 , we have

H.( B/b. . ) > (z{D)h.( z) + p(x|D)H (D1 /b ) (3.1
. L) = . p( z (z - ,/b. . .
i ij re oz i 1|[7 IP ij

where Z and 2' are the set of endpoints of r7 and r7' , respectively. Since

all components except Hi ( /bij ) in the right-hand side of ( 3.1 ) are

Ir7'

) > 0, we can prove the first part of the

7"

independent of bij' and p{ x|

od ol

proposition from Theorem 2.1.(2). Similarly, the last part of the proposition

can be proved from Theorem 2.1.(1). Q.E.D.

Proposition 3.2 Let b = ( bl ye sy bn ) be a behavior strategy combination

for r7 . Let u, . E_Ui be an information set of player i in a b-truncation T
ij

of [/, and let b,, , b., €B.( u,. ). Then, b.. >_b,.  in T if b,, > b,
1] 1] 1 1] 13 -~

T oy
in r7 .

Proof - Assume that bi' 2: B‘j . Then, from Theorem 2.1, there exists some
3 i
b

neighborhood U of b in B such that

H(Db/b..) > H(B/MD..) .,V beu. ( 3.2)
i ij = i ij

Suppose that T is the (98 , b )-truncation of r7' for some class 93 of subgames
~ ~
of r7 , and define U' = { b&U \ b coincides with b on every subgame in'pg}.

Then, we have

s N NN la's ~

H.( b/b, . = H, b b.. . b g, b, . B, T 3.3

{CB/ ) liT( 1p/B5g ) Y& Y 1 E B U0 )
where H_‘ is the expected payoff function for player i in T. From ( 3.2 )
and ( 3.3 ), we have

s 44 = Ny
H b b.. H. b b.. , bE U, .
ilT( IT/lj)-—->- 1‘T( lT/lj) \V/ = ¢ 3.4



AV s
Define UT' = { b ‘T l bg ut } . Then, UT' is a neighborhood of b | p in the

truncation T, and we have b, . > b,. from ( 3.4 ) and Theorem 2.1. Q.E.D.
ij ~ T 1ij
’ b
Remark 3.1 The following propositions are not necessarily true relating to

Proposition 3.2.

1 b b, . .
(1) If b,. i— bi, , then bij >.Tb_,

1] J b 1]
Consider a two-person game rg in Figure 3.1. Let b = ( Ll . L2 ). Then,
Ll i: Rl. Let T be a b-truncation of ré which we can obtain by replacing
the subgame starting at player 2's move with the payoff vector ( 1, 3 ). Then,

we have Ll ~o R_.

T 1
b
Figure 3.1
2) If b,. b,. , then b, b, .
(2) ij ~ T 1ij © ij >’ ij
b b
Consid a two- in Figure 3.2. Let b = L., L.r . Then,
sider wo-person game rz gure e ( 1 5% ) en
Ll )t Rl and Rl if Ll. On the other hand, ré is a b-truncation of ri
and Ll )— r7 Rl. This argument also shows that the converse of Proposition
b 3
3.2 does not hold.
Figure 3.2
Proposition 3.3 Let b = ( bl sy bn ) be a behavior strategy combination
for r7 . Let u_j € U, be an information set of player i in a b-brick C of r7 ,
i i
4 let , b.. €B.(u,. ). Then, b, b.,. in C if b, _ b, i .
an © bij 136 1( 13) ij %C ij n * ij % ij an

Proof : From the definition of a b-brick of r7 , there exists a b-truncation



T of r7 such that C is an indecomposable subgame of T. Assume that b. . ;; 5__
1] 1]
b
in [7 . Then, from Proposition 3.2, we have bij 2; T bij.' Also, from
b
P ition 3.1, we have b, . B,,. .E.D.
roposition e i3 ;:'C ij Q

It has been commonly discussed since Selten (1973)'s pioneering work of a

subgame perfect equilibrium point that a reasonable noncooperative solution

concept for an extensive game must have a " subgame property in a sense that

it induces the same kind of solution on every subgame of the extensive game,
regardless of whether it is reached by the play or not. We will prove that

lexicographically undominated and dominant behavior strategy combinations have

such a subgame property ".

Definition 3.1 Let b = ( bl pemes bn ) be a behavior strategy combination

for an extensive game [/

(1) b is subgame lexicographically undominated if, for any subgame r7' of r7 .

b' , 1s lexicographically undominated in r7'.

(2) Db is subgame lexicographically dominant if , for any subgame r7' of r7 ’

is lexicographically dominant in r7' .

b
I

Theorem 3.1 Let b = ( bl . bn ) be a behavior strategy combination for r7.
(1) b is subgame lexicographically undominated in r7 if and only if b is
lexicographically undominated in r7 .

(2) b is subgame lexicographically dominant in r7 if and only if b is

lexicographically dominant in r7 .

Proof : (1) Assume that b is lexicographically undominated in r7 but that

b is not subgame lexicographically undominated in r7 . Then, there exists
r subga ' of and s information set u, . U, of player i

some proper game |7 o P ome m s i3 & i play

in r7' such that



Bij E’[7, bij for some Bij E;Bi( uij ),
where bij is the local strategy at uij assigned by bi. From Proposition 3.1,
we also have Bij i: bij . This contradicts that b is lexicographically
undominated in l_7 . The only-if part is trivial.
(2) Similarly to (1), follows from Proposition 3.1. 0.E.D.

Furthermore, we can prove the following proposition with respect to a

lexicographically dominant behavior strategy combination.

Proposition 3.4 Let b = { bl s--+», b ) be a behavior strategy combination
n

for r7 . If b is lexicographically dominant in r7 , then the following hold.

{l) For any b-truncation T of [_7 , b | o is lexicographically dominant in T.

(2) For any b-brick C of r7 , b is lexicographically dominant in C.

| ¢

Proof : We can easily prove the proposition from Propositions 3.2 and 3.3.

Q.E.D.

Remark 3.2 Proposition 3.4 is not necessarily true with respect to a
lexicographically undominated behavior strategy combination. in r72 in

Figure 3.2, a behavior strategy combination b = ( Rl , L2r2 ) is lexicographically
undominated in rZ' But, b induces a lexicographically dominated behavior

strategy combination ( Rl , L2 ) on the b-truncation r7é given in Figure 3.1

since L, > R
1 b ré 1

We are now in a position to investigate a relationship between a subgame
perfect equilibrium point and a lexicographically undominated behavior strategy
combination. Up to now, all propositions and theorems hold without the assumption
that r7 has perfect recall. However, the following Proposition 3.5 and

Theorem 3.2 crucially depend on the assumption of perfect recall for r7 .



Definition 3.2 A behavior strategy combination b = ( b1 s ey bn ) for an

extensive game r7 is a subgame perfect equilibrium point of r7 it induces

an equilibrium point b’ , on every subgame r7' of r7 .

Proposition 3.5 A lexicographically undominated behavior strategy combination
b = ( bl yeaey bn ) of r7 is an equilibrium point of r7 .

Proof : Suppose that a behavior strategy combination b = ( b1 s e ey bn ) is
lexicographically undominated but not an equilibrium point of [7 . Then, for

some player i, there exists a behavior strategy bi' for player i such that
H b/b. ! H b ). .
i( / i ) > i( ) ( 3.5)

Let U* be the set of information sets u of player i to which b, and b.' assign
i i
different local strategies. Then, U* # ?é . From ( 3.5 ), there exists some

local pure strategy 7Ziu for player i at each u & U* such that

H b H b .
i( / 7ZU* ) > i( ) ( 3.6 )
where 7IU* = ( 7:1u :u & Ur o), Without loss of generality, we can assume
H b H b -l *, .
e/ T LR ),VU?U ( 3.7 )
It follows from ( 3.7 ) that every u & U* is reached by b/ 7[13* , i.e.,

there exists some node X in u such that

p( x | b/ 7LU* ) > 0. ( 3.8 )

Now consider information sets u in U* such that u does not follow from

. . . . 1 s
any other information sets v in U* via 7[iv' Let u ,..., u be all such

information sets in U%*. We will show that s = 1. Let Uj (3=1,..., 8)

be the set of information sets in U* which follow from uJ via 7f . ] or are
iu

. . s .
equal to uJ. From the choice of uJ (j=1,..., s ), we have U* = | ; UJ.
j=1



Furthermore, from ( 3.8 ) and the assumption that [—7 has perfect recall, the

following condition holds for all j, k =1 ,..., s with j # k : No u in UJ

. k. . .
follows from another v in U via any alternative at v, and vice versa.

Let Z be the set of all endpoints of r7 , and let ZJ ( j= 1,...,s ) be the set
. . K

of all endpoints which follow from uJ. From the condition above, ZJ znd Z are

disjoint for any two j, k = 1,...,s with j#k. Then, we have

S
o ~7
HiOB/ L, ) =4 24 plz|b/ 7Ly, n(z) + 24 plz|b/,,)n (2).

=1 z& 7. ze Z-\JZ.
3 € 5 U 5
Here, for every zE}Zj, j=1,...,8,
— _ . L . . 3
P( z|DB/TCy, ) =Pl z|b/7T ) . Tyd= JL,, = u€U” )
and for every z z, ,
vy 2§ U ;
J
p( z{b/ 7, ) = p( z|b ).
Hence, we have
s
7
H.(b/70 ) = 24 p( z|b/ 7L 3 )b (2) + > p(z{b)h (z). ( 3.9)
1 U X — U i i
j=1 chj ZEZ—UZj

From ( 3.6 ) and ( 3.9 ), there exists some k = 1,...,s such that

DY 21 b/7 kb (2 ) > DY z1b)h (2 ).

(=94 <7
Z\k Z\..k

This inequality implies that
H,( b/ 70, k) > H( b).
i U i
Together with ( 3.7 ), this shows that s = 1.

Let u* be an information set of player i in U* such that no other information

sets in U* follow- from u* via 7[iu*' The argument above guarantees that such

u* is unique and also that u* follows from any other v in U* via Z[iv' Let D*



- 22 -

be the set of agents in f7 which corresponds to U* - {_u*} . Suppose that

t ik 1 <k is associated with u*. Put = d =
agent ik ( < g,mi ) i u u 7Zik 7[iu* an bik
b. x- We will prove that 7tik i: b -

From ( 3.6 ) and ( 3.7 ), we have

b H b b . .
B b/ 70,/ 70, ) > H b/ TL /b ) ( 3.10 )
Let b' = ( bl' yee ey bn’ ) be any behavior strategy combination for 1—7 , and let
D be any subset of M - §-ik } . When uik is not reached by b/bD', we have
b/b_* = H b/b_'/b . .
Hi( / D / TZik ) i( / D / ik ) ( 3.11 )
. PAS

Assume that uik is reached by b/bD'. Let D = D\ D*. We have

b/ba? = ZZ b/ba' )H b/ & .

Hi( /B//—Cik) P(ﬁDD*I /D )i( /\_PD*/W:ik)(312)
Pox € 11 Afu,
it < D*
where p( g)D* | b/bﬁ' ) is the probability which b/bB' assigns to a combination
§7 = ( Q, : 1it&D* ) of local pure strategies at u. for all it &€ D*.
D* Y it it

Since uik is reached by b/ g)D* only if SDD* = 7r D* we have from ( 3.12 )
Hi( b/bﬁl/ 7Eik ) - Hi( b/bs./bik )
=p( Jlps | b/by" ) {Hi( b/ T pu/ TLyp ) = B OB/ 0 L /b >}. ( 3. 13)

On the other hand, we have

p TED* | b/bB! ) = pl TED* | b/bD' )y > 0. ( 3.14 )

The last inequality follows from the assumption that U is reached by b/bD'.

From ( 3.10 ), ( 3.13 ) and ( 3.14 ),

H, ( b/bB'/ ’/Tik ) > H ( b/bp'/b. ). { 3.15 )

- A
Let D be any subset of D. If uik is reached by b/bB', then we have



=1 H b/b-" .

H ( b/bs"/ 7T 5y ) > ;¢ b/bgt/b ) ( 3.16 )
by the same argument above. From ( 3.11 ), ( 3.15 ) and ( 3.16 ), we can prove
that 7tik >— bik' This contradicts that b is lexicographically undominated.

b
Q.E.D.

If r7 does not have perfect recall, Proposition 3.5 is not necessarily true.

To see this, let us consider a two-person game I—g in Figure 3.3. Let b =
R.xr , R r . Then, we have R L , r 1, 1 r , R L.,
¢ Ry 2o ) 17 1*1 1%1 2 > 1
b b b b
r2 >> 12 . Therefore, b is lexicographically undominated. But, it is not
b

an equilibrium point of r75 since player 1 can increase his payoff from 1 to 5

b i L.1_ .
y using L 1,

Figure 3.3

Finally, we can prove the following main theorem from Theorem 3.1 and

Proposition 3.5.

Theorem 3.2 A lexicographically undominated behavior strategy combination

of an extensive game 1is a subgame perfect equilibrium point.



4. Elimination of Disequilibrium Behavior by Lexicographic Domination

As we have mentioned in the Introduction, the primary purpose of a perfect
equilibrium point in an extensive game is to eliminate disequilibrium behavior
which a Nash equilibrium point may prescribe on unreached information sets.

By using the two examples of extensive games in Figures 1.1 and 1.2, we have
pointed out such disequilibrium behavior for players. In this section, developing
the argument in the two examples, we will provide two classes of disequilibrium
behavior for players which the lexicographic domination can eliminate. We will
also discuss a relationship between a sequential equilibrium point and a

lexicographically undominated eqguilibrium point.

We begin with the definition of a perfect equilibrium point. For simplicity,
we employ the following definition instead of the original one in terms of

perturbed game. See Selten ( 1975, Theorems 4 and 7 ).

Definition 4.1 A behavior strategy combination b = ( b bn ) for an

l rscr

extensive game r7 is a perfect equilibrium point of r7 if there exists some

nk k ~n k oc
sequence { b = ( %& ye ey bn )}'k—l of completely mixed behavior strategy

combinations for f—7 which satisfies the following conditions
~k
(1) b —> b (k—>00) -

(2) For every information set u E_Ui of every player i = 1 ,..., n bi induces

a local strategy biu at u satisfying

~Ak ~ —
Hi( b /biu ) _max H (Db /bi ) for all k.
b, € B,(u) "
iu i

The following theorem states a relationship between a perfect equilibrium

point and a lexicographically undominated behavior strategy combination.



Theorem 4.1 A perfect equilibrium point of an extensive game is lexicographically

undominated.
Proof : From Theorem 2.1 and Definitions 2.4 and 4.1. See also Theorem 4.6
in Okada (1984). Q.E.D.

Theorem 4.1 shows that a perfect equilibrium point never contains a local
strategy for a player at an information set which is lexicographically dominated
by his another local strategy w.r.t. the deviation from the equilibrium point.

The converse of Theorem 4.1 is not necessarily true. See QOkada (1984).

As we can see in Definition 4.1, a perfect equilibrium point is defined in
terms of the best response to some sequence of completely mixed behavior strategy
combinations converging to the equilibrium point. For this reason, the definition
itself does not necessarily make it clear what kind of disequilibrium behavior
a perfect equilibrium point can eliminate. Therefore, it is helpful to our
further understanding of a perfect equilibrium point if we can characterize
disequilibrium behavior which a perfect equilibrium point can eliminate without

help of the trembling-hand approach.

Kreps and Wilson (1982) introduced the concept of a sequential equilibrium
point with this purpose. We define a sequential eqguilibrium point of an extensive

game r7 , following Kreps and Wilson (1982).

Let X be the set of all nodes except endpoints in r7 . A system of beliefs
is defined as a function /b{ : X —> [0, 1] such that
E : ‘ﬂA (x ) =1 for all information sets u in r7 .
XE U
An assessment is a pair ( /4 , b ) consisting of a system of beliefs and a behavior
strategy combination b = ( bl ye-+, b ) for [_7 . Let b = ( by ,---s b ) be



a completely mixed behavior strategy combination for [—7 . Then, from the Bayes'

Ead
rule, the following system of beliefs is associated with b,

~
p( x| b))
(x ) = =~ X u,
M 51 p(y|B) V x€
yeu
for all information sets u in r7 . Here, /Alg( X ) is the conditional

('
probability that x is reached when b is played and u is reached.

Given an assessment ( /j , b ), we can define the conditional expected

payoff function of player i at an information set u € U. in the following way.
i

Let z & K be an endpoint of f_7 following from a node x in u. Then, we define
plz|b, x) = H p( e, b)
eec E

where E is the set of edges on the path from x to z and p( e , b ) is the
probability that b assigns to e. p( z|] b , x ) means the conditional probability
that z is reached when b is played and x is reached. The conditional expected

payoff of player i at an information set u.e;Ui under the belief /A, is defined by

HoACD) = 25 JCx) 21 elzlb,x)h(z)

X & u z&2Z
X

where Z is the set of endpoints which follow from x.
X

Definition 4.2 An assessment ( A/ , b ) of an extensive game r7 is a
e

~ k k
sequential egquilibrium point of [—7 if there exists some sequence {:( AL ,/B )} Efz

of assessments which satisfies the following conditions :

nk
(1) For every k, b is a completely mixed behavior strategy combination of r7

ko . . ... ™k
and /A is the system of beliefs associated with b .

~ k vk
(2)y « /U- , b ) - (/A , b)) ( k— 00 ).

i

(3) For any information set u of player i ( i l ,..., n),

H M b/ ) > H M(b/b ) , V b & B, -



For convenience, we will also call a behavior strategy combination b = ( bl,...,bn )
a sequential equilibrium point if ( AL , b ) is a sequential equilibrium point

for some /1 .

We now characterize the lexicographic domination between local strategies
at an information set u in terms of the conditional expected payoff at u in order
to compare a sequential equilibrium point with a lexicographically undominated

equilibrium point.

Proposition 4.1 Let b = ( bl pee ey bn ) be a behavior strategy combination
for an extensive game r7 , and let biu' Biu be two local strategies for player i
at an information set u. Then,
b b,
iu %; iu

if and only if there exists some neighborhood U of b such that for any completely

mixed behavior strategy combination b = ( bl ,ees, b ) 1In U,
n

H #(rﬁ/bi ) > H. M (B/b, )

iu u iu iu

~ fa %4
where ’}L is the system of beliefs associated with b.

~ rv
b

Proof : For any completely mixed behavior strategy combination %’: ( l,...,b )
n
for r7 , we have
rav4 avi ~ ™ ~v
H.{ b/b, ) = z : p( z] b )h,(z) + ( Z ; pl x| b ))H, Al( b/b. ) ( 4.1 )
i iu i iu iu
zE Z2-7 XE u

u

where Zu is the set of all endpoints of r7 following from u. In the right-hand
[av]
side of ( 4.1 ), all components except H, A‘(‘g/b, ) are independent of b .
iu iu iu
) ~
Since EE p( x| b ):> 0 , we have
X€E u
~ ~n —
H.( b/b, ) > H.( b/b, )
i iu i iu

if and only if

Y n v oA -

H, M (b/b, ) > H. M (‘b/b, ).
iu iu iu iu

Hence, we can prove the proposition from Theorem 2.1. Q.E.D.



Definition 4.2 and Proposition 4.1 show a difference between a sequential
equilibrium point and a lexicographically undominated equilibrium point. As we
can see in Definition 4.2, in a sequential equilibrium point, every player
considers some slight deviations from the equilibrium point only before his
information set. According to the Bayes' rule, this consideration forms his
belief at the information set concerning how the game has evolved. With respect
to the future play, he expects that the equilibrium point itself will be played,
and that no deviations will happen. Then, a sequential equilibrium point
eliminates disequilibrium behavior at the information set which can not be part
of an optimal strategy under some belief constructed in the way mentioned above,
given that the equilibrium point will be played after the information set. On
the other hand, in a lexicographically undominated equilibrium point, every
player considers at his information set any slight deviation from equilibrium
point not only before the information set but also after the information set.

A lexicographically undominated equilibrium point eliminates a local strategy

at the information set which is worse to him than another local strategy for

any slight deviation before and after the information set. In spite of such

a difference, a sequential equilibrium point and a lexicographically undominated
equilibrium point can eliminate a common type of disequilibrium behavior at

an information set, which will be given in Theorem 4.3.

We are now in a position to investigate to what extent the lexicographic
domination can be useful for accomplishing the purpose of a perfect equilibrium
point. We provide two classes of disequilibrium behavior for players which a
Nash equilibrium point may prescribe on information sets in an extensive game,
and show that the lexicographic domination can eliminate these classes of
disequilibrium behavior. The typical examples of such behavior are given in the

games [_i and [72 in the Introduction.



Let r7 = (K, P, U, p, h) be an extensive game, and let X be a node
of r7 . We define an extensive game rj; starting from x by
[7 =(x_,P ,U ,p_ .h )
x b4 X X X X

where K is the subtree of K starting from x, and
X

Py ~ [ Pox = Fix 77 Pog o Py = BiNE Vi
Uy = [ Yox * Yix »o7 Ung oo Uy ={uixluix AR 3ui‘g:Ui} (Vi)
and px and hX are the restrictions of p and h to Kx' respectively. Note that
r; is not necessarily a subgame of r7 .
A behavior strategy combination b = ( bl reees bn ) for [—7 naturally induces
a behavior strategy combination on r7;, which is denoted by b|r7 . The expected
x

payoff of player i for bl[_7 in [—1 is defined by
x

Hilﬂ;(blf—;{)= Z P( z|b, x) h.(z).

2 2
€ b4
In the following, we will write H_X( b ) to mean Hil ( bl ) if no confusion
i
X X
arises.
Definition 4.3 Let b = { bl pee e bn ) be a behavior strategy combination for

r7, and let bi , b. be two local strategies for player i at an information
u iu

set u. Then, biu is said to lexicographically dominate Biu at x w.r.t. the
deviation from b ( written b, >~ b, ) if b, lexicographically dominates b,
iu b x iu iu iu

in (_7 w.r.t. the deviation from b . Similarly, we define b, >- 5,

x i r7 iu &~ x Tiu

b4 b
Theorem 4.2 Let b = ( bl e bn ) be a behavior strategy combination for [_7
and let b, , b, be two local strategies for player i at an information set u.
iu iu

b if
Then, biu E: iu



b b, .
iu ;t X iu vf x€u (4.2
b
and
b b T xeu. .
iu >_x ju U (4.3
b
Proof : For any information set ujk (j=1,...,n, k = l,...,mj ) in r7 .
let bjk be the local strategy for player j at ujk assigned by b. Let agent ij
be associated with u. Then, we define the following subsets of M,
M = { jke M - Eij} l there exists some node y in u, such that
X jk
y follows from x. } ’ X & u,

From ( 4.2 ) and ( 4.3 ) and Theorem 2.1, for any x&u and any jk & MX , there

X
exists some neighborhood O. of bjk such that

jk
o ~N - \ A 3 X
H, (B/b, ) > H _(®/b, ) , ¥YB &€ |1 o "X T7 B(u). (4.4)
ix iu — ix iu ik M jk _EIHM 3 jk
] X ] ﬁi X
Note that both sides of ( 4.4 ) are irrelevant to local strategies on information
sets u,, for all jkﬁéMX. Furthermore, there exists some x¥%* E;u such that
o ~N -
H b/b H b/b .
ix*( / iu ) :> ix*( / iu ) 4.5
- ] . . ,-\,-
for any completely mixed behavior strategy combination b in
X*
Il Ojk )( l I Bj(ujk). For any jkE_Mu, we define

JKEM 3k¢MX*

0., = /N 0, -

J x : jkEM J

X
Then, ( 4.4 ) and ( 4.5 ) hold even if we replace O,kX with O'k for any x&u.
J J
. . N v ~o

Therefore, for any completely mixed behavior strategy combination b = (bl ye ey bn)

in | l O'k )( T—T Bj(ujk) , we have

. 3 .
keM k€ M-M
JEu jke u



~o
H,( B/b. )
1 iu
~N ~
= 20 pCz®onz) + ST pCx|T)u, (Bm, )
ZEZ—Zu XEu
s -
> pCz[Bontz) + > ex|b)u_(bb, )
zEZ—Zu Xgu
A%
(pl x]b)>0, Vxegu)
N o~
= H.( b/b. )
1 iu

where Z is the set of all endpoints in [_7 and Zu is the set of all endpoints

following from u. From Theorem 2.1, we have b, >— 5_ . 0.E.D.
iu iu
b
When an information set u of player i is reached in [37 , he does not know
which node has been actually reached in u. If, whichever node has been reached,

a local strategy at u is lexicographically dominated by another local strategy
in the remaining part of the game, then it would be natural to consider that
player i does not employ such a local strategy at u. Theorem 4.2 shows that
a lexicographically undominated equilibrium point can eliminate this type of

disequilibrium behavior of players.

Let us apply Theorem 4.2 to [“1 in Figure 1.1. We consider an equilibrium

point b = ( Llrl , L2 ). Let x be the player 1's move following Rl. We can
easily show that l1 >> < rl. Since x is the unique move in the player 1l's
b
information set, we have l1 >_ rl in {_Z from Theorem 4.2. Therefore,
b

({ L.xr. , L2 ) is lexicographically dominated.

We provide another class of disequilibrium behavior for players which the
lexicographic domination can eliminate. Let b = ( bl s ey, bn ) be a behavior
strategy combination for r7 and let u be an information set of r—7 . For

every node x€ u, we define the set



b . .
DX = { e l e is an edge of the game tree K on the path connecting
x and the origin of K such that p( e , b ) =0 } ,
where p( e , b ) is the probability that b assigns to e. We also define the set

ub={x6ul '_.ItL,yEu, Dxb_'_;)‘_Dyb}.

b . b
D indicates what deviations from b cause x to be reached, and u is the set of
X

minimal nodes in u with respect to the deviations from b.

Theorem 4.3 Let b = ( bl . bn ) be a behavior strategy combination for r7 ,

and let b. , b_u be two local strategies for player i at an information set u.
iu i

Th b i
en b., > b if
b
= b
H, ( b/b, ) > H (b/b, ), Vx&u. (4.6 )
ix iu ix iu
Proof ; Let Mu and MX ({ X€u ) be the sets defined in the proof of Theorem
4.2. Let % be a sufficiently small positive number. Then, from ( 4.6 ),
b
there exists some neighborhood Ojkx of bjk for any x&€u  and any jkE;Mx such
that
A% s o— o X
H b/b H b/b + . b 0 B ).
N R N B ACT-R IR O ()
JKEM jk g M~-M
X X
Let M b - \v/ b MX. For any jkebdb, we define
u XxE&u u
0. = /N o *.
jk . ik
X : jkE;MX

. . X .
Then, the inequality above holds even if we replace Ojk with O'k for any x&u
J

b
and any jk¢& Mx. For any x&€u , we define
b b }
= u D D .
ux { ve& ‘ % g; y

b
Then, from the definition of u , we have

b .
u - u = u . ( 4.7 )
U o



s . .. . b
Since {.ux}'inub is a finite collection of sets uX ( xEu ), we can choose
a subset u ' of each u such that ( 4.7 ) still holds for -{u '1 b and
X b X Y X&u
any two subsets ux', uy' ( x # vy ) are disjoint. For notational simplicity,
b
we put ux' = uX for each xgu . For any completely mixed behavior strategy
) . ~ ~ ~ . T
combination b = ( b, ,.-., b ) in l l 0. )( | I B.(u. ) , we have
1 n JkE M jk KE M i ik
b h b
u u
~
H.( b/b, )
i iu
=7 ~ ~n
= EZZ p( z|BIn(z) + 21 p(x|[BIH, (B/p, )
S o ix iu
z& 2-2 XEu
u
N/
- 20 e a1 o+ 23, {01 m, (B ¢ 28 o yld H, (b/b )}.
ZQZ—Zu x&u yEu
Therefore,
~ N, -
H.( b/b, ) - H,{( b/b, )
i iu i iu

yeu
X
~ 7 o - 3
> 7 (e 0 S e Ly By Ve Y]
X u yEu iy iu iy iu
X

. b b
Since DX g; Dy for any y&tg{, there exists some sufficiently small

neighborhood Ojk of bjk for any jk& M - M b such that

u
~v Ay —
H - . 0
J( b/ ) H(B/by, ) >
. > » ~ -
for any completely mixed behavior strategy combination b in ‘I O,k.
_ jkeM
Therefore, from Theorem 2.1, we have b, > b. . Q0.E.D.
iu b iu

Suppose that an information set u of player i in an extensive game {_7 is
reached because of any slight deviations before u from a behavior strategy

. . . b . .
combination b. Then, the nodes in u are among the most likely nodes in u.

Therefore, player i has more concern about his expected payoffs in the remaining



b
parts of the game after the nodes in u than his expected payoffs after other
nodes in u. If a local strategy at u gives him a strictly lower expected payoff
. . b . .
than another local strategy whichever node in u is reached, he will not employ
such a local strategy at u. Theorem 4.3 shows that the lexicographic domination

can eliminate this type of disequilibrium behavior for players.

We will prove in the next proposition that a sequential equilibrium point

also eliminates disequilibrium behavior described in Theorem 4.3.

Proposition 4.2 Let b = ( bl s ey bn ) be a behavior strategy combination for
r7 and let biu be the local strategy of player i at an information set u assigned

by b. If there exists a local strategy Biu of player i at u such that

- Ly b
H, (b/b. ) > H (b ), §xeu,

then b is not a sequential equilibrium point of r7 .

Proof - Assume that b is a sequential equilibrium point of f_7 . Then, there

exist a system of beliefs ,

P

~ k ~k o0
I{ and some sequence { (L , b )} k=1 of assessments

satisfying (1), (2) and (3) in Definition 4.2. We will show that

/{,(_(y)=0 forallyiub.

From (1) of Definition 4.2, we have

~Kk
p( y|b )
~k N
/(,L(y)— K . { 4.8 )
>% pl x|b )
XE u
. b . . b b b
Since yﬁﬁ u , there exists some x* in u such that Dx* g;_ D . For any node
y
X in u, define the set
b .
EX = { e I e is an edge of the game tree K on the path

connecting x and the origin of K such that

p( e, b) >0 }
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Then we have

p(X*IPBk)= II p(e.%'k)-l‘ p(e.nﬁk)
b b

eEEX* eer*

Kk Kk Ak
pl y|b ) = Ii p(e,b)-ll p( e, b ).
eEEb eeDb

Y %
Together with ( 4.8 ), this implies that
nk
p( y|]b )
~k ~k
MY = g . ak=Zp(2|b)
p( x*| b ) + a, zE&u

Ak
bp(e.%)
eeEy l I ok
< . bp(e,b)-

e€ED b—D

~k x*
[T ece. B !

. e b b .
From (2) of Definition 4.2 and the definitions of Ey , Ex* , the quotient-part

in the right-hand side is bounded from above with respect to k. Since

~k Ak
[T pee.B)—30 ana WLy )=—=sp(y) (k—00), we

b b
D -D
eg v -
must have /&L (y) = 0. Therefore, we have
H, M( b/o. )
iu iu
= H
Zb ) e B (B/bL )
XE&u
« H b
<xezub/LUX) il PPy )
- u, M(bv/b, .
iu iu
This contradicts (3) of Definition 4.2. Q.E.D.

To conclude this section, we provide an example of an extensive game with

an equilibrium point which is lexicographically undominated but not sequential.



Let us consider a three-person game r_z in Figure 4.1. [_Z has the four

equilibrium points in pure strategies,

( Ml, L2, L3 ), | Ml, L2, R3 ), ( Rl, R2, L3 Y, ( Rl' R2, R3 ).
From Theorem 4.3, we can see that ( Ml' L2, L3 ) is lexicographically dominated.
From Proposition 4.2, we can also see that ( Ml' L2, L3 ) is not seguential and
thus not perfect. ( Ml' L2, R3 ) is lexicographically dominant, and thus perfect
and seqguential. We can easily see that both ( Rl' R2, L3 ) and ( Rl' R2, R3 )
are lexicographically undominated. But, we will show that ( Rl' R2' L3 ) is
sequential but ( Rl’ R2, R3 ) is not. Let us first consider ( Rl' R2, R3 ).

At this equilibrium point, players 2's and 3's information sets are not reached.

In order that R3 is an optimal response for player 3, he must have a belief
(y.,1-v) , 0 <y < 1/2,

at his information set where y is the probability that the left node is reached.

Similarly, player 2 must have a belief

(x, 1 -x) , 2/3 <x&£1,
where x 1is the probability that the left node is reached. The consistency
between their beliefs requires x = y. There exists no belief satisfying
the three conditions above. On the other hand, ( Rl, RZ' P3 ) can be a sequential

equilibrium point if player 2 and player 3 have a consistent belief
(x, 1 -x) , 3/5Lx LK1,

at their information sets. We can also show that ( Rl' R2, L3 ) is perfect

but ( Rl' R2, R3 ) is not.

Figure 4.1




5. Concluding Remarks

We have investigated some properties of a lexicographic domination between
local strategies for players in an extensive game. The ordinary domination
has been used in the literature as a very simple and useful tool to explore
rational behavior for players in a game in normal form. However, as we have
shown, it is not so useful for investigating the problem of perfectness for an
equilibrium point in an extensive game. For this reason, we have introduced
the notion of a lexicographic domination, which incorporates Selten's

trembling-hand " approach into the ordinary domination.

Finally, we summerize relationships among refinements of the Nash equilibrium
point in an extensive game considered in this paper in Figure 5.1. All inclusion

relations are strict.

Figure 5.1
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