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STRONG, PERFECT EQUILIBRIUM PAYOFFS OF INERTIA SUPERGAMES
by

Subir K., Chakrabarti

Abstract

The set of payoffs of the strong perfect equilibrium points of the
inertia supergames is examined. An inertia supergame is one in which changing
strategies over time is not costless. A complete characterization of the set
of payoffs of the equilibrium points mentioned above is given. It is shown
that these payoffs are the same as the payoffs of the one-shot game which are
called sustainable payoffs. Further, if one allows for the right correlating
device, one finds that for games which have sustainable payoffs, the

correlated a—-core is the closure of these payoffs.



STRONG, PERFECT EQUILIBRIUM PAYOFFS OF INERTIA SUPERGAMES
by

Subir K. Chabrabarti

1. Introduction

In the literature on supergames, all the analysis has usually been
carried out under assumptions which ignore any cost that may be incurred when
strategies are changed over time. Under the assumption of zero cost of
change, the two major lines of inquiry have either followed the "folk theorem"”
or the "Aumann proposition.” These two major results provide
characterizations of the payoffs of equilibria of the supergames in terms of
the payoffs of the one shot games. The folk theorem establishes the
connection between the individually rational payoffs of the one shot game, and
the Nash equilibria of the supergame. The Aumann proposition establishes the
connection between a stronger form of equilibrium concept, viz., the strong
equilibrium of the supergame and the B-core of the one shot game.

The two groups of results are intriguing because each gives us a sense in
which payoffs of one shot games could be implemented if there is sufficient
repetition of these games. However, both strands in the literature deal with
supergames arising out of repeating one shot games over time with no cost
involved in changing strategies. In many situations changing strategies from
one period to the next may not be costless as in the case of quantity
adjustments by firms, which require changes in capacity and operating
schedules, or price adjustments which require advertising the price changes.
When such costs are incurred due to changing strategies over time, reporting a
oneshot game gives rise to a supergame which has a slightly different payoff

structure than the usual supergames. The penalty for changing strategies over



time that is introduced with the assumption of change costs leads one to
conjecture that a larger set of payoffs than the individually rational payoffs
can be Nash equilibrium payoffs of these "inertia” supergames.

However, a more interesting conjecture is whether one can develop a
connection between the a—core of the one shot game and strong equilibrium
payoffs of the inertia supergame. This conjecture is of interest because the
a—core is the weakest core concept that can be defined on the one shot games
and has nice existence properties (see Scarf (1971)). The B—core is a far
stronger concept than the a—-core and no general existence result is known, and
hence, a strengthenting of the Aumann proposition would be welcome.

Further, it would be of interest to charactérize the set of strong
equilibrium payoffs of the inertia supergames in terms of the payoffs of the
one shot gamé and compare this to the existing core-like solution concepts
like the a—core and the B-core.

In fact, we actually characterize the set of payoffs of the strong,
perfect equilibrium points of the inertia supergames and show that these are
exactly the same as the set of payoffs of the one shot game which is called
"sustainable.” These sustainable payoffs are always contained in the a-core

but contains the B-core, the desired payoffs and the reactive payoffs. The

desired payoffs are defined in Rubinstein (1980), in which it is shown that
the desired payoffs coincides with the strong, perfect equilibrium payoffs of
the supergames in which changing strategies are costless. The reactive
payoffs are defined in Chakrabarti (1986) in which it is shown that every
reactive payoff is the payoff of a strong, perfect equilibrium of the inertia
supergame.

The correlated a-core is a concept that one may conceivably think should

be close to the sustainable payoffs. However, what one finds is that the



sustainable payoff is a slightly stronger core concept than the correlated

a=core.

2, Model

Let G = {xj,Uj} Ny be a game in the normal form where

je
N is the set of players, and is finite.

xJ is the strategy set of player j € N.

x5 := 5§S xJ is the cartesian product of xJ for j € S.

A is the set of all nonempty subsets of N, or the set of all éoalitions.
UJ: X » R is the payoff function of player j € N, where X := j%& xJ.

We will always retain the following two assumptions about the game G.

Assumption l: The strategy set xJ is a nonempty, compact subset of a complete

metric space for all j € N.

Assumption 2: The payoff functions Uj are continuous in the product topology

on X.

Assumption 3: The player set N is finite.

We now specify that G is played an infinite number of times starting at
period 1. The strategies chosen in period t by the players specify the
outcome in that period. If x € X is the outcome in period t than Uj(x) is
player j's payoff in period t. But if player j's strategy choice in period t
is X% and in period t + 1 is given by xg+l # x%, then the player incurs a
change cost given by Cj(x%, xg+l) and the payoff to player j in period t + 1

is given by

W) - C5Gxiy)



The cost function Cj: xJ ® xJ > R takes only nonnegative values in its
range and is bounded above. We will make the following assumption about these

cost functions:

Assumption 4: For S € A define

sup{ (09 (x°,y"%) - vl (175 € X%

¢j(S,y)

We assume that

(2.1) ¢j(S,Y)

N

Cj(yJ ,x7)

for all je s, xJ e xJ, ye X and S € A.
We now define the inertia supergame G”. A strategy for a player j in G
is a sequence of functions {hj(t)}?=l, where hj(l) € xJ is the strategy chosen

in period 1 by player j, and
MO C S 1Y

Xt—l Xt"l

where is the cartesian product of X taken

is the function defined on
t - 1 times. Therefore a supergame strategy of a player is a complete plan
of choices of strategies in each period, where the choices may be conditioned
on past history.

We will denote the set of supergame strategies of player j by Hj. Then

the set H of all n-tuple of strategies of the supergame is

H:=H 9H ® ... ® Hy.



Note than an element of H is an n-tuple of sequences of functions

({hl(t)}t=l,...,{hn(t)}t=l). An outcome path of the supergame G~ is a

sequence X = (xt):=1 where x, € X for all t > 1 and is the outcome in period
t. With each outcome path is associated a sequence of vectors of payoffs; the
payoff to player j in period t being defined to be Uj(xt_l,xt) for t > 2.

The payoff Uj(xt_l,xt) is given by

Uj(xt) if xg_l = xg
Uj(xt_l,xt)

UJ(xt) - Cj(x%_l,x%), if t > 2 and x%_l # %9,

for the outcome path x € X~.
The payoff to player j € N in the inertia supergame G~ when the outcome

path x € X* is realized is then given by

. % .
(2.2) W(x) := lim inf £ T W(x. ,,x.).
0= v t-1’"t
Voo t=1

Then G~ := {Xj,Hj,Cj,U;}jeN is an inertia supergame when Assumption 4 holds.

Remark: We should note at this point that given a strategy h € H, there is a
single outcome path x € X© that will be realized if all the players play
according to plan h. Different outcome paths will result if one or more of

the players deviates from h at some point.

Notation: For a strategy h € H, we will write the outcome in period t as
h(t) € X, which, of course, depends on the past history. We will denote

hj(t) e xJ as player j's strategy choice.



3. Some Definitions

Before we prove the two main results, we need some definitions.

Definition 3.1: v* € C [U(x)] is a sustainable payoff (or an s payoff) if

for all S € A and x% ¢ x5 there exists an xg\s e xM\S sych that for any finite

index set L, and any p € A(L), there exists a j € S such that

S N\S *
X \ ) < Vj.

3
L P U (xp,x,

L€L

Note: Here A(L) = {p: L » (0,1]/ Z p
€L o
Hence, v* is a sustainable payoff if it is feasible when the grand

= 1}, where L is some finite set.

coalition correlates strategies, and for any choice by a deviating coalition
there is an appropriate response by the complement such that in whatever
manner the deviating coalition may correlate deviations, someone in the
coalition does not gain. We will later show that this is a slightly stronger

notion than the correlated a-core.

Definition 3.2: A supergame strategy n-tuple h* € H is a strong equilibrium

of the inertia supergame G* if for all S € A and hS € HS, there exists a j € S

such that
i, S A NS, _ _j, *
Ul(h”, (b)) < ulm)

where HS := ® H. and Ui(hs,(h*)N\S) is well-defined since the strategy n-
je€s J

tuple (hS,(h*)N\S) will give rise to an outcome path in X*. Similarly, Ui(h*)

is well defined since the strategy n-tuple e n gives rise to a unique

outcome path in X%,

Therefore, a strong equilibrium is a Nash equilibrium that defines the



condition that even deviations by coalitions are deterred. In other words, a

strong equilibrium is a coalition proof Nash equilibrium.

Definition 3.3: A supergame strategy n—tuple h* € H is a strong, perfect

equilibrium of the inertia sueprgame G~ if for any history (X;,X,,...,Xp) up

to period T, the strategy n~tuple h* ) that n induces on the

(XI’XZ""’XT
(] N e 1 . o
subgame G I(xl’x2’°'°’xT) is a strong equilibrium of G I(xl""’xT).
Therefore, by a strong perfect equilibrium of the inertia supergame G* we

will mean a strong equilibrium which is subgame perfect.

We have a last definition:

Definition 3.4: A strategy n-tuple h € H is summable if the limit of the

average of payoffs exists for all j € N.

4., Strong, Perfect Equilibrium Payoffs of G°

It is shown here that the set of strong, perfect equilibrium payoffs
coincides with the set of sustainable payoffs. The following lemma, a proof
of which is to be found in Chakrabarti (1986) will be used. (See the Appendix

for a proof.)

Lemma 4.1: Let v be a vector in the convex hull of the payoff vector of the
game G. Then there is a summable n~tuple of strategies of the game G” such

that

v

.1 ¢ i _ .
1lim = L, U (xt_l,xt) = vj for all j € N
Vo t=2

where x ¢ X® is the outcome path associated with h and X, is the outcome in
period t.

We first show that every sustainable or s payoff is the payoff of a



strong, perfect equilibrium of G™.

Theorem 4.2: Let V' be an s payoff. Then there is a supergame strategy
n-tuple h* € H which is a strong, perfect equilibrium of G® such that the

* s : * . .
outcome path x associated with h" satisfies

1 v 3, % * %

lim = ) U'(x ,X,) = v, for all j € N,

v t-1""t j
V> t=2

Proof: From Lemma 4.1 we know that there is an assignment map ¢: N »+ X and a

class H(w,v*) of inertia supergame strategies such that for all h € H(w,v*),

we have

*
,xt) = vj for all j € N

1 v .3
lim 3 Z U (xt_1

vre T t=2
where X e Xx” is the outcome path associated with h € H.
It will be shown that there is an h* € H(w,v*) such that h* is a strong,
perfect equilibrium of G™.
Consider any history [xj,...,xT] up to the time period T, and define the
deviating coalition ST+1[x1,...,xT] when h* € H is agreed upon, as follows:

Let S(¢) = ¢,

. | *
{j € ST/ ) U (xt_l,xt) > vj + 1//T}

{t&T/xi_l=xi}

/

*
ST+1[x1,...,xT] 1= < U {j ¢ ST/hj(T + 1) # hj(T + 1) given the history

Xl,..o,XT}'

\

¢, otherwise.



Hence, given the plan to play n* e H, the deviating coalition at any time t is
the collection of past deviators who are making profits from their deviations
and those who have not conformed to the proposed play in time t.

The strategy n* e H(w,v*) is now defined as follows:

R (1) = $(1)
( N\ST ST
[xl (XE )]i if ST[xl,...,xT_l] # g and
4 _ T . .
i¢ Splxy,eee,xp-1] and Sy played X, in period T.
h;(T + 1) Arbitrary, if ST[xl,...,xT_l] # ¢ and

]
.,

ie ST[Xl’“"xT—l]'

lpi(T + 1 - k) if ST[Xl,..-,XT_l] = ¢ and

\ koi= |{t < T/Selx),eue,xe-1] # 9}

given the history Xj,...,Xp and the outcome in period T.

N\

The plan is to play the response X, S if the deviators S played x% in the
preceding period. The responses XE\S exist because v* is a sustainable
payoff. If there are no deviators then the plan is to continue playing
according to the assignment y: N » X.

It will be shown that n* e H(w,v*) is a strong, perfect equilibrium of
the inertia supergame.

Consider S € A and nS # (h*)s. Then either (i) there exists a Tp such
that for all T > Ty, St = ¢, or (ii) for every T;, there exists a T' » tg such

that Spv # ¢, Spr < S.

Case (i): This is obvious since



. * 3 *

w2 (5,(0HMN) < 1in wm') = v, for all j € N.

Case (ii): Since for every Tp, there exists a T' > T such that Sq1 < S, and
S is finite, there is a B ¢ S such that for every Ty, there exists a T' » Ty

for which Sqi = B. Hence, without any loss of generality we can assume S = B,

Then
T'+t0
(4.1) a1 ase,wH M w), w3 - »,eHME - 1)
0 t=1
<m— ] Vs, mH e,
0 ' j j
{e>(T'+e ) /x_ =x7 ]

@S - 1,5 - 1))

R [earse o - 5 Tty
0 t-1 't
for all j € S.
Now,
(4.2) e ) B rmSey,mH N,
0 {t&(T'+t0)/xi_1=xi}

S - 1,5 - 1))]

= ) . IO ORCB RO

{t<(T'+t0)/xi_1=xi}
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a3 - 1,mHM8¢ - 1))

* P ]
< + '+
v 1/VT £
for some j € S when it is sufficiently large. Inequality (4.2) holds because
v is an s—payoff and Spv = S.
Using inequality (4.2) in inequality (4.1) and recalling Assumption 4, we

have

4
T to

(4.3) e 1 @S, m"
0 t=1

N\S * N\S

(), 3¢ - 1, OS¢ - 1))

< v o+ 1/V/T" + t
vj 0
for some j € S if tg is sufficiently large.
Since S is finite and inequality (4.3) holds for infinitely many T',
there exists a jj € S such that (4.3) holds for jy for infinitely many

T' € N. But this means that

v o]
(4.4) 1m 2 Y U 0mSe), )My < vh
TV = Jo

Voo

for some jo € S.

Hence, since S and hS e uS is arbitrary, we have shown that h* e H(¢,V*)
is a strong equilibrium.

Given any history (%Xj,...,xp), the subgame Gm,(xl,...,xT) has the same
payoff structure as G® since the payoffs from any finite history do not affect
the limit of the averages. Hence, for the situation arising in case (i),

h* e H(w,v*) clearly induces a strategy n—tuple on G”|( ) which gives
Xl,o.o,XT
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a payoff of v? to each j € N.
For the situation in case (ii), take T' > T and the same argument as in
case (ii) will show that h* induces a strategy n—-tuple on Gwl ) which
(X1 5000,Xp
satisfies inequaltiy (4.4) for every S and for some j € S. This concludes the

proof. 0

Theorem 4,2 has shown that every s-payoff is the payoff of some strategy
n-tuple of the inertia supergame. The next result shows that the converse is
also true——that is, the payoff vector generated by a strong, perfect

equilibrium of the inertia supergame is an s—-payoff of the one shot game.

Theorem 4.3: 1If h* € H is a summable, strong, perfect equilibrium of the

. . . %
inertia supergame G*, then there is an s-payoff v such that

lim 1
v

g, % *
U~ (h (t)) = v,
V> t ]

1<

1

for all j € N,

*
Proof: Suppose v 1is not an s-payoff. Then there exists an S € A and a

finite index set L and {_i € Xs/z € i} and B € A(L) such that for all

{XE\S € XN\S/Q € f}, and for all j € S
. -3, M\S *
(4.5) 2- plU (xz,xz )y > vj.
2¢€L
Define
= N\S, _ ,;, N\S, _, N\S _ _N\S,
L{x ") = {(Xl )zeL/xz e X T}

Then
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j, S N\S
p. U (XQ’XQ

. )

min )

L(X N\S) 2el

is a continuous function on L(XS) % A(L). Because of (4.5), for each j € §

there is an open neighborhood U of [{i% € X5/4 ¢ L}, p 1 in L(x%) ® A(L) such

that
(4.6a) nin ) P UJ(xS N\S) > v
L(X N\S) el
for all [(x5) -,p] € U..
2 pe’? ]
Hence, there is an open neighborhood U = n U, of [(;i) _,p_] such that
jes g€l
(4.6b) min  J p UJ(XS,XN\S) > v
S ot
LX) el
for all [(XE) -,p] in U and for all j € S.
el
Hence, for each j € S there is an €5 > 0 such that
(4.7) Sup min ) P UJ(xS,xN\S)
I R T
L(x)®A(L) L(X" ') gel
: *
> Sup min ) P UJ(xS,x N\S) >V, - ..
U NS oo I
LX) el
Hence, if ¢ = min{ej/j € S}, then
(4.8) min Sup ) P, UJ(xS N\S) >V, - ¢
IS Tx5yma(l) rel
for ¢ > 0.
Step 2: From (4.8) it follows that there exist (;S) _ and ; € A(i) such that

€L
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(4.9) min ) plUJ( i E\S) > v - €ef2
L\S .
L(X *®) el

for all j € S.

Hence we can define an assignment map wS such that ws: N » X5 and

\Y) . S
R CROR X%
T(x™5) gel

t=1

(4.10)

< I~

for all j € S and for all v > Ty, where T, is sufficiently large and for any

The assignment map yS is defined by choosing i% € x5 in a proportion pz

out of the v repetition of the game G for every & € E, taking care that
changes of strategies occur a small enough number of times so that the cost
from changing strategies goes to zero. A precise proof follows the same
reasoning as used in the proof of Lemma 4.1.

For S € A, define hS € #S as follows:

hj(t) 1= wj(t), for all t € N and for all j € S.

Then, form (4.10)

WwSe),n™ k) > min p;Uj(;i,xg\S

L(X N\S) 2€L

(4.11) ) — e/4

<l
b~

t

for all j € S and nN\S ¢ HN\S, if v » Ty. Therefore,

N\S

(4.12) ImS(e),n

< =

() > v; ~ e/h

W e~—ic

for v » Ty, This follows from (4.10).

In particular,
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(4.13)

i~
e~

P mSwe),mH ™) > v; )

t=1

for v > Ty for all j € S. Hence

v . * %
(4.14) tin 2§ WIme),@H ™)) > v, - /8

Yoo t=1
for all j € S. 'This shows that h* € H is not a strong equilibrium of G%. 1]

Se The s—payoffs of the Correlated a—-core

Since the sustainable payoffs have the property that they coincide with
the strong, perfect equilibrium payoffs of the inertia supergame G®, it is of
interest to examine how different the set of sustainable is from any other
core-like solution concept. The most natural concept to try would be the
correlated a-core, since the s-payoffs seem to have a similar structure. We
will show that the two concpets are very closely related when one makes
certain assumptions about the correlating device used.

The structure that we will want on the strategy sets of the individual
players is that they be compact subsets of complete, separable metric spaces
with the Borel o-algebra. Hence, we will make the following assumptions about

the structure of the game G.

Assumption 5: The strategy sets xJ are compact metric spaces and B i is the
X

Borel o-field of Xj, and M(Xj) is the space of measures defined on xJ with

that o-field and is endowed with the weak topology.

The correlated a-core is now defined as follows:

s s * . . . .
Definition 5.1: v is in the correlated a-core of the game G if there is a

*
measure u° € M(X) such that
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3 * *
IX U (x)d(u ) > vj

for all j € S, and if for all S € A, and us € M(XS) there exists a
uN\S € M(XN\S) such that

*
\S) < v,

[ Pma® » "
for some j € S.
Here M(XS), M(XN\S) is the space of probability measures which is the
product of the measure spaces M(Xj) for j € S and j € N\S, respectively.
Hence, an allocation in the correlated a-core is such that if a coalition
deviates by playing some correlated strategy, then there is a correlated
strategy that the complement can play such that at least ome player of the

deviating coalition is not made better off by the deviation.

Theorem 5.2: If the game G satisfies assumptions 1-5, then the correlated
a-core is the closure of the set of s—-payoffs of G, when the latter is not

empty.

Proof. (Step 1): The set of s-payoffs is contained in the correlated a—-core
of G.
Suppose v* does not belong to the correlated a—core of G. Then there

exists an S € A and a ;S e M(XxS) such that
; - *
(5.1) [ P0ai® o™ > v

for all j € S, and for all uN\S € M(XN\S).
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Since M(XS) has the weak topology and x5 is a complete, separable metric
space, the set of measures with finite support is demnse in M(XS). Hence,

there is a sequence of measures with finite supports (ui) which converges

ne [N

to uS, Now, since (5.1) holds there is an njy, sufficiently large such that

for every n > ny there is an open set U, in M(XN\S) such that

N\S

.2 [y eoaad 820 > v

for all j € S and ZN\S ¢ U,. Now, {Un} forms an open cover of M(XN\S)-

neW
Since X™M\5 is a compact metric space, M(XN\S) is a compact metric space.
Hence {U } has a finite sub cover which covers M(XN\S)- Since (us)

? n’ nell n’ne N

converges to us

,» we can choose the open sets {Un}netN to be nested. Hence,

there exists a ui € M(XS) such that
0

(5.3) fx Uj(X)d(ui % 2N\5

) > v
0 ']

for all j € S and all zZN\S ¢ p(xM\S), But this shows that v* is not a

sustainable payoff. This proves the claim.

(Step 2): The correlated a-core is a closed subset of CO-U(X) in the
Euclidean space IR®.

Let v* be a limit point of the correlated a-core, and suppose v is not
in the correlated a-core. Then there exists an S € A, ;S € M(XS) such that
for all uN\S € M(XN\S),

N\S

(5.4) [y W 0aG® 2w > v;f

for all j € S.
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Now, the functions fj: M(x™\5) » R defined by

(5.5) fij5>=jxv%deS®u
are continuous on M(XN\S), for all j € S.
Since v' is a limit point of the correlated o—core, for any € > 0 there

exists a v' in the correlated a—core such that
* |
(5.6) v - v I < e/f2
But since (5.5) holds, we have
|
(5.7) fj(uN\S) > vy - el

for all j € S and uN\S € M(XN\S). Hence, v' cannot be in the correlated

o—core. We have a contradiction. This proves the claim.

(Step 3): 1f v* is in the correlated a-core, then v' is a limit point of
the set of s payoffs.
Consider any v which is not a limit point of the set of s payoffs. Then

there exists an S € A, an index set L,

S

S
lex},

(G
% L€L

ap€ A(L) and a § > 0 sufficiently small such that

=S _N\S

—rJ
(5.8) ) p,U (Xz’xl

2el,

) > v -8
Y3
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for all j € S and for all {(XE\S) ~/x§j\S e xS},

- €L -

Now, p_ € A(L) and {(;i) _/x% € XS} induces a measure us € M(XS) which
2€L

has finite support.

Since (5.8) holds for all {(xi\s) _/xlg\S € XN\S} we have that
L€L
3 - %
(5.9) fX UJ(x)d(uS<8 uN\S) > vioT s

for all j € S and for all uN\S ¢ M(xM\S) with finite support. Since the set
of measures with finite support is dense in M(XN\S), we have

(5.10) fX uj(x)d(ﬁsﬁg uN\s

)>*6

v, -

J

for all uN\S € M(X5) and for all j € S. But this shows that there exists an
S € A and a us € M(XS) such that for all uN\S € M(XN\S) we have

N\S

Gan [ d@aGE 9™ > v;

for all j € S. Hence, v* is not in the correlated a-core of G. 1

6. Conclusion

We have shown that the s—-payoffs completely describes the payoffs of the
strong, perfect equilibrium points of the inertia supergame. The issue that
is raised at this point is: How do the sustainable payoffs caompare with the
other core-like concepts? Naturally, it is not difficult to show that it

contains the B-core, the desired payoffs and the reactive oayoffs. However,

the question of greatest interest is its relationship with the correlated o-
core. In section 5 we showed that in a game G which has a nonempty set of s

payoffs, if the correlating device gives rise to a Borel o—algebra on the
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strategy sets of the players, then the correlated a-core is the closure of
this set of s-payoffs. Hence, in this sense, the corelated a-core and the s-
payoffs are quite closely related.

Throughout our analysis, we have only assumed that the strategy sets of
the players be compact metric spaces. We have made no assumptions about the
dimensionality of the strategy sets. However, an assumption that we have used
in our proofs is that of the finiteness of the set of players. This

assumption seems to be crucial to Theorems 4.2 and 5.2.
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Appendix

Proof of Lemma 4.1: Since v is in the convex hull of the game G, there exists

a finite index set F and {xk/xk € X, k € F} such that v is a convex

combinatiion of {U(xk)/k € F}. Let v = Bk U(xk), where

Ler

Bk > 0 for all k € F and zkEF Bk = 1.

Case (i): The Bk's are all rational numbers. Since the coefficients By are
all rational numbers there exists an integer T and an integer Ny for each

k € F such that Ny /T = By for all k € F.

We define the map Yt {1,...,T} + X as follows:

wT(t) =x for §J N <t< ) N

k ik * o<kl ¥

where the elements in F are ordered in the order of integers determined

according to some assignment. Then clearly,

T
1
= ) u(v)) = Y B U(x) =v.
T % T ep k X

Inductively, we define the map

w4T: {1,...,T} > X

as follows
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( pp(t) for t < T.

x, for T + 3 ) N <Ce<TH 3y N

<k 2<k+1l 2
V4T(t) :=

for k > 2

\ X, for T < t < 3N1.

And ¢n2T: {1,...,n2T} + X as

v 5 (t) for t < T
(n-1)°T
x, for (n - DT + (2% - (n - D7) Lok Ny
_ 2 2 2
¢n2T(t) = <t (n-1DT+ [n” - (n-1)7] Zl<k+1 Nl
for k » 2

X, for (n - 1)2T <t < [n2 - (n - I)Z]Nl’
\

We now define y: [N + X by extending the maps ¢ 20 as follows:
n

W(E) =¥ , (v), if (n - DT < t < o?T.
n“T

We now define the following strategy in the inertia supergame G~.

¢j(t) if the histroy up to t — 1 is given by
{h(s)/h(s) = w(s)}P0].
hj(t) =

Arbitrary, otherwise.

Then
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Voo
yoood(n(t - 1), h(t))
t=1

< =

\Y]

)

t=1

< =

B
v
\) L

\Y]

=t

L

t=1

n

(vl (h(e))) -

v

< =

where

n, = I{t/hj(t) #h(t -1, €5 vi,

B> Cj(xi_l, xi) for all j € N, all xi,x

Therefore, for all v nzT, we have

v .
S 1 vmte - D, n(e))
t=1
2. 1r12T
=—— ) n'NW(x,)-— ) C.
EREY S A
N
D) T—kUJ(xk)—%—
kEeF nT
n M
- 3 k
= 1 B0 = o
keF n T
Hence, for v =n2T
1Y KM
;tilU(h(t—l), h(t))>vj_ﬁ=

Hence, we have

3 -~ -
(U7 (h(t) Cj(hj(t 1),hj(t))]

J
t-1

e x7.

(hj(t - 1), hj(t))]

Vj - C/n where C =

XM
T
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=]

} ] 1y . _ _
(A.1) v kzF BU (%) > 2 tzl U (h(t - 1), h(t)) > v

for v = n?T. (A.1) holds for all n and all j € N. Now

n2T+£

—— 1 ey
n"T + t=n2T+1

where 1 € £ < (2n + 1)T

2
n T+2 .
(A.2) <t 'UJ(h(t))

nZT + £ 2

t=n T+1

1 ,
< —3;————-15, where S is a bound for lUJ(h(t))'
n T+ 2

L
(n2T)/8 + 1

This is true for all n and all j € N. This goes to zero as n goes to infinity
for every 1 < £ < (2n + 1)T.

Hence, we have that

Vv .
lim % 5 Wit - 1), w(t)) = vi, for all j € N.

vre ©ot=]

Case (ii): Bk's are not all rational numbers.

For € > 0, we can find integer Nﬁl) and T(l) such that

(1)
Ne

— — B, | < &/M
T(1) k

for all k € F, where M =) U(x, )+ Then

keF
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(1)
N

—_— U(Xk) satisfies Iv

(1)

v(l) = ) (1 _ vi < €.
keF

=]

We define the sequence {v(n)}nE N such that

N

(n) k
v = ) U(x, )
xer TV k

where Nﬁn)/T(n) converges to By for each k € F, and the sequence (n) g

increasing with IT(n+1) - T(n)|< A(n), where the A(n) satisfy:

(A.3) Agn; + 0 as n+ =,
TI‘I

Hence, v® converges to v. We now define the map y¥: (N + X, such that for the

first T(1) period the blocks of time Nﬁl) are assigned to Xy; the second

4T(2) - (D block is again broken into k blocks of length 4N§2) - Nﬁl) each
and assigns x; to each block. The third 9T(3) - 4T(2) periods is broken into
k blocks of length, 9N{3) - 4N{%) and each such block is assigned x.

The map Jy: IN + X is defined inductively as above.

We now define h € H as follows.

For j € N:

¢j(t) if the history up to t — 1 is given by

by (1) {n(s)/h(s) = W)} ]

Arbitrary otherwise.

Then
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v .
% Y ooud(h(e - 1), n(t))
t=1
1 v
=3 tzl [07(h(t)) - Cj(hj(t - 1), hj(t))]
V . n B
> ] wlmen) - >
t=1
where
n, = |{t/hj(t) #h(e = 1), ¢t < v
For v = nzT(n), we have n, =m, so that
an - B
v nZT(n)
and
LY . (n)
(A.4) = 1 men] - vs", for all j € N,
t=1
Now,
2_(n)
n T +2 .
e 7 udnen|, for 1< 2 < (n+ 12D L 2™
n T + 2 t=n2T(n)+1
1 n2T§H)+2 o3
{ —— U- (h(t))
2T 2 (),
<= ( ; 2S, where S is a bound for |Uj(h(t))|
n T ™ o+ g
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- S
nzT(n)/Q + 1

S

<
nzT(n)/[(n + 1)2T(n+1) - nZT(n)] + 1

and this goes to zero as n + = because of (A.3). Hence, by (A.4) and this

fact, it follows that 1/v Zﬁzl[UJ(h(t))] converges to \& for all j € N. This

concludes the proof. i
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