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Abstract

A number of papers have recently shown that it may be fully optimal in
some cases for a principal to offer an agent a menu of contracts, all of which
are linear in output. This paper shows that the result {when true} has a very
simple and intuitive geometric basis. The result follows from well-known
analysis of the standard self-selection problem together with this simple
geometric argument. However it is shown that the result only holds for

special classes of functional forms and is not generally true.



l. Intreoduction

The principal—agent literature 1s concerned with the situation where a
principal hires an agent to perform some job, but where the principal cannot
directly observe the agent's effort and the outcome is only probabilistically
determined by the agent's effort. If the agent 1s risk neutral and the
principal knows the agent's preferences, this informational imperfection poses
no problem. The principal offers the agent a contract paying the full value
of output on the margin and charges the agent a fee large enough so the agent
earns his reservation utility. The principal—agent literature has heen
primarily concerned with analyzing the nature of the optimal contract when the
first of the above two assumptions is violated —— i.e. — when the agent is
risk—averse and the principal knows the agent's preferences.1 Although this
literature has yielded the important insight that an optimal contract will
often involve a tradeoff between insuring the agent and providing the agent
with incentives to exert effort, a key shortcoming of the literature has been
that the optimal contracts are in general extremely complicated.2 Thus the
theory does not explain the rather simple contracts one often observes in the
real world.

Recently Laffont and Tirole [1986], McAfee and McMillan [1986] and
Melumad and Reichelstein [1986] have considered the opposite special case to
that considered by the standard literature.> Namely the agent is assumed to
be risk neutral but the principal 1is assumed to only have a probabilistic
notion of the agent's preferences. This special case seems at least as
reasonable as that considered by the standard literature. In many situations,
it is plausible that aspects of the agent's ability are better known to the
agent than the principal. Furthermore, risk neutrality may not be an
unreasonable assumption in many contracting situations where both parties are

firms.



Laffont and Tirole show that in a model with very special functional
forms that the optimal contract has a remarkably simple structure., Namely,
the principal offers the agent a menu of wage functions where each wage
function is linear in output. The agent is allowed to choose which of the
linear wage functions he wishes to work under. This contract can be
interpreted as one where the agent is required to predict an output. The
agent is then paid a fixed fee plus a bonus or penalty which is linear in
under—-runs or OVer rumns.

McAfee and McMillan analyze a generalized version of Laffont and Tirole,
replacing the assumption of special function forms by the familiar assumptions
used in the self-selection literature. They derive a sufficient coundition for
the result which includes Laffont and Tirole's functional forms as a special
case, thus showing that it may be true in more general cases than those
considered by Laffont and Tirole. However the condition is difficult to
interpret and one is left with no clear economic understanding of why the
result is true or what it depends on.

The models of Laffont and Tirole and McAfee and MecMillan can be viewed as
generalizations of the "standard self-selection problem" first considered by
Musa and Rosen [1978] and subsequently analyzed by many others.4 In the
standard self-selection problem the agent’'s ability is private information but
there is no productive uncertainty —— i.e. —— the agent deterministically
chooses the output level. The models of Laffont and Tirole and McAfee and
McMillan generalize this by introducing productive uncertainty -— i.e. —— the
agent's effort determines the mean of output deterministically but actual
output is only stochastically determined by output.

Notice that any generalized self-selection problem can be used to

generate a standard self-selection problem by assuming that actual output



always equals the mean of output.5 Laffont and Tirole sketch the following
idea at the end of their paper. Consider any generalized self-selection
problem and the standard self-selection problem generated by it. If the
optimal wage contract for the standard problem is convex then a simple
geometric argument implies that a menu of linear contracts is optimal in the
generalized problem. Melumad and Riechelstein [1986] formalize this
argument.6

The major point of this paper is to show that McAfee and McMillan's
sufficient condition implies that the above convexity property holds.
Therefore McAfee and McMillan's result is shown to follow largely fronm
existing well-understood analysis of the standard self-selection problem
together with a simple geometric argument. In particular almost no new
technical analysis 1s required. Given the complexity of the analysis in
McAfee and McMillan this is a large advantage. For example, McAfee and
McMillan simply assume that the first—order approach is valid in their
analysis. This paper shows that the validity of the first-order approach in
this problem is equivalent to the wvalidity of the first—order approach in the
standard self-selection problem which is well understcod. The same point can
be made for a range of other delicate technical issues which seem to be
inherent in this type of problem.

This paper also makes three other points. First it clarifies the
generality of the result that menus of linear contracts are optimal. McAfee
and McMillan, for example, conclude that "in a broad set of circumstances, the
predicted contract is linear in observed output."7 By revealing the geometric
basis for the result and analyzing a serles of examples, this paper shows the
result: cannot be expected to be generally true. Basically no good economic

reason exists to expect a convex wage contract in a standard self-selection



model. 1In fact, the special functional forms considered by Laffont and Tirole
appear to be the only simple class where the result is always true. Therefore
the optimality of menus of linear contracts is best viewed as a very special
property holding only in a limited class of examples.

Second, a limitation in Melumad and Riechelstein's [1986] proof that the
convexity property implies the optimality of a menu of linear contracts is
addressed. Because they considered a very general model with almost no
assumptions, they were forced to restrict themselves to cases where all types
of the agent are hired. In the more structured environment of this paper it
can be shown that the argument still holds even when the (realistic)
possibility that lower ability types may not be hired is allowed.

Third, Laffont and Tirole consider a slightly more general type of
relationship than McAfee and McMillan or Melumad and Riechelstein in that they
allow for the possibility that the principal must make some subsidiary
decision which he would like to coordinate with the agent's effort choice.8
It is shown that the same logic and formal analysis also applies to this more
general relationship with a suitahle transformation of variables.

Section 2 describes and analyzes the standard self-selection problem.
Section 3 describes the generalized self-selection problem and shows how the
results of Section 2 can be applied to analyzing it. Concluding remarks

follow in Section 4.

2. The Standard Self-Selection Model

The model of this paper is a generalization of the standard self-
selection medel. Furthermore, the major point of this paper is to show how
the results of the standard model can still be used to analyze the generalized

model where there is productive uncertainty. Therefore the clearest way of



proceeding is to first describe the standard model and the nature of its
solution. Since this model is fairly well-known it will not be described in
detail. Many of the analyses of this problem interpret it as a trading

problem where "output” is "the probability of trade"?

or as a problem where a
monopoly produces various product qualities and "output” is ''product
quality."lO However, the underlying mathematical structure is essentially the
same in all cases. See the references in footnote 4 for more complete
discussions of this problem. Sappington [1983] provides a good discussion of
the Iinterpretation of this mathematical structure as a principal—agent

model.11

A. The Model

The agent is of some type z € [0,1]. Although the agent knows his type
the principal does not. The principal simply knows that the agent's type has
been drawn according to the distribution G(z) with density g(z). The
distribution is assumed to be smooth and to obey the familiar monotone non-
increasing inverse hazard rate condition. The inverse hazard rate is defined
to be

1-G(z)

(2.1) H(z) =" g(z) .

Formally it is assumed that:

(A.1) G is twice continuously differentiable on [0,1] and g is

strictly positive on [0,1].

{(A.2) H is non—increasing on [0,1].



The agent chooses how many units of output to produce. Let c{y,z) denote

the cost to an agent of type z of producing y units of output. An agent

receving w dollars and choosing to produce y will therefore have utility of12

(2.2) w — cly, z).
The following assumptions are made about c.

(A.3) ¢ is three times continuously differentiable

over [0,») x [0,1].
{(A.H) c(0,z) = 0 for every z.
(A.5) c >0, ¢ 2 0 for vy >0
Yy

(A.6) cz <0 fory >0

(A.7) c {0 for vy >0
vz

(A.8) c £ 0 fory >0
(A.9) c 2 0 for y > 0.

Assumption {(A.3) simply requires that ¢ be smooth and assumption (A.4)
merely is a normalization. According to (A.53) the cost of producing output is
strictly increasing and convex. Assumptions (A.6) and (A.7) describe the

essential fashiomns in which types differ. According to (A.6) higher types



have lower costs of production. According to (A.7) they also have lower
marginal costs of production. Finally (A.8) and (A.9) are technical
assumptions required for the formal analysis.

The principal values output according to the utility function uly}. If
the principal receives y units of output and pays the agent w dollars the

principal’'s utility is given by

(2.3)  uly) — w.

Assume that u is smooth, strictly increasing and concave. Also, normalize u

so that u(0) = Q.

(A.10) u is twice continuously differentiable over [0,»);

(A 11) u(0) =0

(A.12) u' > 0, u" < O.

Finally, two technical assumptions need to guarantee the existence and

differentiability of a solution must be made. These are given by (A.13) and

(A.l4). Agssumption (A.13) simply states that for high enough values of

output, marginal costs eventually exceed marginal benefits.



(A.13) 1lim u'{y) — ¢ {y,z} < 0 for every z & [0,1].
yre Y

(A.14) Either ¢ is strictly convex in y or u is strictly concave in y.

Stronger assumptions than are absolutely necessary have been made in
order that all the assumptions be fairly simple statements directly about
primitives of the model. In particular, the role of (A.1}, (A.2), (A.8),
(4.9), (A.13) and (A.14) is solely to guarantee the existence of a solution
v(z) to (2.7) which is strictly increasing and differentiable. (Expression
(2.7) will be defined later on in this section.) Therefore the above six
assumptions can be replaced by the much weaker assumption that a strictly

increasing differentiable solution exists to (2.7).

B. The Optimal Contract

A contract between the principal and agent will be defined to be a wage
function which specifies the wage the agent will be paid contingent upon the

output.

Definition: A contract in the standard self selection model is a
function 9 mapping the non—negative reals into the non-—negative
reals. If the agent produces y units of output, the principal

pays the agent a wage of ¢(y) dollars.

When offered the contract ¢(y), an agent can choose to accept the contract and
produce any output y {in which case he receives ¢(y)) or he can not accept the
contract (in which case zero is produced and the agent receives zero). Each

type of agent chooses an optimal course of action. Thus any contract results



in a pair of outcome functions {w(z),y{(z) which describe the output and
income of each type of agent. (If an agent of type z declines to accept the
contract then w(z) = y(z) = 0.}

Not every pair of functions are the outcome functions for some
contract. The revelation principle13 provides an elegant characterization of
the outcome functions which can be achieved by some contract. Consider the
following situation. Choose outcome functions {w(z), y(z)!. Suppose the agent
is asked to announce his type, ;. The agent can announce any ; € [0,1] and
need not tell the truth. If he announces ; he receives w(;) and must produce
y(;). The agent can also decline to make an announcement in which case he
receives zero and produces zero. Then, according to the revelation
principle, {w(z), v(z} 1is an outcome function for some contract if and only
if every type of agent finds it optimal to truthfully report his type in the
above game.

Formally, then, {w(z), y{(z)} are outcome functions for some contract if

and only if they satisfy the following two properties.
Definition: tw(z), v(z)} are said to satisfy incentive compatibility (IC) if
(2.4)  w(z) - cly(z),z) » w(z) - c(y(z),z) for every z, z £ [0,1].

Definition: {w(z), v(z) satisfy voluntary participation (VP) if

(2.5) w(z) - c(y(z), z) » 0 for every z € [0,1].
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Given outcome functions which satisfy IC and VP, it is straightforward to

calculate a contract which implements them. Suppose {w(z}, v(z)} satisfy IC
and VP. Then define ¢(y) as follows. Choose any y 2 0., If there exists

a z such that y

il

" - T 14
y(z), then let ¢{y) = w{z). If there does not exist

a z such that y

y(;) then let ¢(;) = 0,

An optimal contract is one which maximizes the principal's expected
utility given the principal's prior over types of agents and given that each
type of agent chooses an optimal course of action. By employing the
revelation principal, it is easiest to directly calculate the optimal outcome
functions and then derive an optimal contract from them. The optimal outcome

functions solve the following program.
Program M

(2.6) Maximize [ [u(y(z)) - w(z)] g(z)dz
wiz) y(z)
Subject to: IC

VP

Thus ¢ is an optimal contract if and only if the outcome functions it induces
satisfy Program M.

An important property of any contract {including an optimal one) which
will be useful for future analysis 1is that higher types of agents choose
(weakly) higher levels of output —— i.e., —— the outcome function y{(z) is
weakly increasing. The intuition for this is straightforward. According to
(A.7) higher types have a lower marginal cost of production. Thus any

increment in output which is profitable for a low type is also at least as
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profitable for a higher type. This is stated below as Proposition l. The

proof is standard so is omitted.

Proposition l:

Suppose tw(z), y{z)} satisfy IC and VP. Then y(z) is non-decreasing.

Under Assumptions (A.1l) — (A.14) it is possible to calculate the optimal
cutcome functions. The technique involves showing that the global incentive
constraints can be replaced by local incentive constraints. The resulting
program can be solved using control theory. Only the result will be reported

here.15

Proposition 2:

Unique optimal outcome functions exist and have the following form.
There exists a 2 € [0,1] such that w(z) = y(z) = 0 for z < Zge For z 2 ZO,

the outcome functions are differentiable and are determined by

(2.7)  u'(y(z)) = cY(y(z), z) — H(Z)Cyz(y(z)’ z)

~ ~

(2.8) w(z) = clylz), z) - JZ cz(y(;), z)dz
0
The optimal value of z; can also be characterized but this is not
necessary for the analysis of this paper so it is omitted. 1In the optimal
outcome functions, zp may be zero or greater than zero, depending upon the
parameters of the situation. The nature of the solution described in
Proposition 2 is as follows. Agents of types less than zg decline to

participate. Agents of types greater than or equal to zg participate. Their
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choice of y is determined by (2.7). Then the wage they are paid is determined
by (2.8).

Given the optimal outcome functions described ia Proposition 2 it is
straightforward to calculate an optimal contract which implements them.
First, note that 1if z 2 zq then y(z) is strictly increasing. To see this,

totally differentiate (2.7) to yield

—(I—H'(z))cyz(y(Z), y) + H(z)cyzz(y(Z),z)
—u'"(y(z}) + cyy(y(z), z) = H(z) cyyz(y(z),z) '

(2.9)  y'(2) =

By assumptions (A.1) - {A.14) this expression is positive. Therefore y is
invertible for z 2 zO. Let ¥ (y) denote the inverse.
Definition:

Suppose that {y(z}, w{z)} are the optimal outcome functions as defined by
(2.7) and (2.8) for some z, € [0,1]. Then let Y{y) denote the inverse of y(z)

defined over {y(zo), v(1)]. Note, for future reference, that the derivative

of v is given by

- u"(y) + ¢ {y, y(y)) - H(z} ¢ (y,Y{y})
Y ' (y) = Yy YYZ .
’ -(1-H'(r (y))) cyz(y,Y(y)) + Hiy (v ) cyzz(y,Y(y))

(2.10)

For values of y in [y(zg), y(1)], 9(y) must be defined by

(2.11) 9(y) = wi(y{y).

There is some choice in defining 9(y) for other values of y, however;

9(y) must simply be chosen low enough so that no type of agent would want to

choose a y not in the iaterval [y(zg), y(1)!. (Except possible to choose
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vy = 0 if ¢(y) = 0. This is equivalent to not participating). Obviously
defining ¢(y) to be zero for all values of y outside of [y(zo), y(1}] would
suffice. However ¢(y) can be chosen in other ways. Another optimal contract
where 9 is always positive will be defined in the proof of Proposition 4 in
the next section.

Proposition 3 summarizes the above discussion.

Proposition 3:

Suppose that {y{z), w(z)} are the optimal outcome functions as defined by
(2.7) and {(2.8) for some z, € [0,1]. Then if ¢ is an optimal contract it must
satisfy (2.11) for y & [y(zo), v{(1)]). One possible optimal contract is

constructed by letting % equal zero for every y outside of [y(zo), y(1)].

C. Menus of Linear Wage Functions

When there is no productive uncertainty there is no necessity for the
principal to offer the agent a menu of wage functions. However the principal
could do so if he wished. Consideration of this possibility will yield the
key insight of this paper which carries over to the case of productive
uncertainty.

For the purposes of developing intuition feor this result assume for the
moment that zy = 0 -= i.e. == all types of agent choose to participate under
the optimal contract. Then the optimal contract can be geometrically
described as in Figure 1. Agents prefer points in (y,w) space which are up
(i.e. — more income) and to the left (i.e. —— less output.) Furthermore, by

assumption the indifference curves of every type of agent are convex.
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Figure |
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Therefore the indifference curves of an agent of type ; reach a tangency

with 9(v) at y(;). This is illustrated in Figure l. The indifference

curve } is the highest indifference curve that an agent of type ; can reach.
First suppose that ¢(y) is convex over the interval [y(0), y(1)] as drawn

in Figure l. Then it is c¢lear that the principal could offer the agent a menu

of linear functions where the menu consists of all the tangent lines

~

to ¢{y) over the interval [v(0), v(1)]. An agent of type z would choose the
line ; which is tangent to ¢ at y(;), and would then choose to produce y(;).

However, suppose that ¢(y) is concave over [y(0), y{(1)]. Then it is
equally clear that the principal cannot offer a menu of linear functions in
this case. In fact, if $(y) is not convex everywhere over [y{(0), y(1)], then
a menu of linear functions cannot be offered.

Therefore for the case of zg = 0 it is geometrically clear that the
ability to implement the optimal outcome functions through offering a menu of
linear functions is equivalent to the convexity of w(y(y)) over
[v(zg), y(1)]. Proposition 4 formally shows that this intuition extends to
the case where zy > 0 as well.16 Since the proof requires development of
extra notation, it is relegated to an Appendix.

Proposition 4:

Suppose that {y{(z), w(z)} are the optimal outcome functions as defined by
{2.7) and (2.8) for some Zg € [0,1]. Then they can be implemented by offering

a menu of linear wage functions if and only if w{y(y)}) is convex over

[y(zo), v(1)]. If w{y(y)) is convex, the menu of linear functions which
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implements the optimal outcome functions consists of all the tangent lines

to w{y {y)) over the interval [y(zo), y(1)].

proof:
See Appendix.

QED.
Based on Proposition 4 an interesting question is therefore whether
w(y(y)) is convex or not and what this depends on. This is answered by

Proposition 5.

Propogition 5:

2
d _ )
(2.12) dy2 w(y (y)) = cyy(y,Y (v)) + cYZ(y,Y (y )y ' (y)

where v "(y) is defined by (2.10).

proof:

Since an agent of type v(y) is at a local maximum of utility at

y, w{y(y)) satisfies

4

(2.13) ay

w(y (y)) - cy(y,Y(y)) = 0,

Differentiate (2.13) with respect to y to yield (2.12).

QED.
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It is not possible to sign {(2.12) simply by signing its various
components. By {A.5) the first term is positive. It was argued above
that y'(y) is positive (i.e. —— higher types produces higher output). This
and (A.7) imply that the second term is negative. 1In general it seems
that w(y (y¥)) will be neither concave nor convex over its entire domain. In
particular, since it is in general not convex, it is not in general possible
to implement it by a menu of linear wage functions.

Three special examples will now be considered to illustrate this. The
first is a special case where w(y{(y) is convex. The second two are special
cases where, depending on the parameters, w{y(y)) 1is either globally concave
or neither globally convex nor globally concave.

The first special case is where c{y,z) 1is of the form

(2.14) c(y,z) = a(y-z)

for some real-valued function o such that

(2.15) a«' > 0; a" > 0; a"' > 0.

and

(2.16) 1im a'{(x) > 1.

Pt

Also assume that

(2.17) uly) = y.
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It is straightforward to verify that (A.3) — (A.14) are satisfied. Corollary

(5.1) describes the result.

Corollary 5.1:

For the case defined by (2.14) - (2.17), w(y(y)) is convex.

proof:

Substitute (2.14) into (2.12) to yield

2
(2.18) —4- w(y (v)) = a"(y=r () (1= "] .
dy

Therefore w{(y(y)) is convex if and only 1f ¥ '(y) € l. Substitute (2.14) into

{(2.10) to yield

- u"(y) +a"(y=y(y)) + H(z) a"'"(y=v(y))
+ (1-H'"(y (y))) a"(y=y (y)) + H(z) "' (y—y(y))

(2.19) v'(y) =

By (A.2), H' is non—-positive. Therefore if u" = 0 (as it does by (2.17)),

then v' < 1.

QED.

The second case is where costs are given by

(2.20) e(y,z) = (l-z) 3(y)

where 7 is a function satisfying

(2.21) @' >0, 3™ >0, 3" 2 0
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and

(2.22) 1lim 3'(y) = =.
y-—}w.'o

Let u{y) be any strictly increasing weakly concave function. Once again it is
straightforward to verify that (A.3) - (A.14) are satisfied. Corollary (5.2)

describes the results.

Corollary 5.2:

Suppose that ¢ is defined by (2.20) - (2.22).

(i) A sufficient condition for w(y(y)) to be concave is that
-H'(z) 1

2.2 - g

( 3) Hiz)} 1=z
for every z & [0,1].

(ii) Suppose that u"(y) = 0. Then the above condition is necessary

and sufficient — 1.e. —-

2
2 il > 1
(2.24) i;g w(y(y)) 3 0 if and only if T(—%Jvﬂ)’—)ﬁ TG

proof:

Substitute (2.20) and (2.10) into (2.12) and reorganize to yield

2 ' } "
(2.25) 5wy (yy = Mapload G ) ey 4 0

dy
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where z = yv{(y). By (A.2), H'(z) £ 0. The corollary now follows immediately
from (2.25).

QED.

Expression (2.23) is not generally always true or always false for a
given distribution. Rather, it will be true for some values of z and not true
for others. However one special case where (2.23) is always true is that

where G(z) is the uniform distribution. Corollary 5.3 states this result.

Corollary 5.3:

Suppose that ¢ is defined by (2.20) - (2.22) and that

(2.26) G(z) =1 - z,.

Then (2.23) is true for every z £ [0,1], Therefore w(y{(y)) 1s concave.

proof:

Straightforward calculation shows that (2.23) holds with equality.

QED.

The third case is a slight variant on (2.20) - (2.22). Assume that costs

are given by

(2.27) cly,z) = (l-2)y

and uly) is a strictly increasing, strictly concave function with
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(2.28) lim u'(y) =<=.

yre
Once again it is straightforward to verify that (A.3) - {A.l4) are
satisfied. 1In this case the agent has linear indifference curves in income-—
output space and {in a graph such as Figure |l where output is on the
horizontal axis and income is on the vertical axis) higher types of agents
have flatter indifference curves. This is the case that has been most
carefully analyzed in the literature. It 1is stralghtforward to see that any
contract under which different types choose different outputs must be
concave. This is because higher types must choose higher outputs (by
Proposition 1) and higher types have flatter indifference curves. Since each
agent's indifference curves are tangent to the contract at the agent's optimal
choice, the contract must become flatter as output grows. Corollary (5.4)

formally verifies this reasoning.

Corollary 5.4:

Suppose that c¢ and u satisfy (2.27) and (2.28). Then w(y{(y)) is concave.

Eroof:
2

Expression (2.25) still determines —25 w(y(y)), only now 3"(y) = 0. This
dy
yields the result.

QED.

In conclusion, one special case where w(y(y)) is convex can be
identified. This is where (2.14) - {2.17) are satisfied. I have not been
able to identify any other simple class of cases where w(y{y) is convex.

Furthermore for two equally plausible classes of cases w(y(y)} is globally
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concave. More pgenerally it seems that w{y(y)) will often be neither globally
convex nor globally concave. Therefore it seems that other than for the
special class of cases described by (2.14) — (2,17), the outcome functions

will not generally be implementable by a linear menu of wage functions.

3. The Generalized Self-Section Model

A. The Model

The standard self-selection model has no productive uncertainty in the
sense that the agent determininistically chooses output. The generalized
self-selection model allows for a particular form of productive uncertainty.
Namely, the cost structure is assumed to be the same as in the previous
section only now y is interpreted as the mean of the distribution of output.

Specifically, let x denote output. The agent deterministically chooses a
level of production denoted by ;. However ; determines output
probabilistically. Let %(x/;) and ;(X/;) denote the distribution and deunsity
of output given ;. Let u(;) denote the mean of output given ; and assume
that & is strictly increasing in ;. Finally let ;(;,z) denote the cost for a

type z agent of choosing vy.

The above formulation is easily translated into one where the agent can
be viewed as directly choosing y, the mean of output, instead of ;. This turns
out to be notationally more convenient. Let & denote the inverse of u. Then

let F(x/y) and f(x/y) denote the distribution and density of x given y. They

are defined by

(3.1)  F(x/y) = F(x/E{y))

F(x/y) = FOx/E ().
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Finally let c¢(y,z) denote the cost to an agent of type z of choosing a mean

output of y. This is defined by
(3.2) cly,z) = c(&(y),z)

Let v(x) denote the principal's utility over output. Given v(x), the
principal's expected utility given the mean of the distribution is y can be

defined. Let u(y) denote this.
(3.3) aly) =) vw(x) £(x/y)dy

Assume that c(y,z), u(y), and G(z) satisfy (A.1) — (A.14) as described in the
previous section.

Thus the structure of the generalized model is very similar to that of
the standard model. If the mean of the distribution, vy, were observable there
would be no essential difference.17 The principal could offer a wage
contract ¢(y) depending on the mean of the distribution just as in the
standard case. However, the principal cannot observe the mean. He can only

observe x, the output which results. Therefore a contract is now defined as

follows.

Definition: A contract in the generalized self-selection model is a set of
real valued functions defined over output tvi(x)}i e 1 where I
is an index set.

This is interpreted as follows. An agent facing the contract {wi(x)fi e 1 can

elect to operate under one of the wage functions wi(x), or to not
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participate. 1In the former event the agent is paid according to the

schedule ¢  (x)., In the latter event both parties receive zero.18
i

B. The Optimal Contract

Some notation will be useful to describe the approach of this section.
Let e be an ordered triple {c,u,F,G) describing the environment of the
principal and agent. Let :» denote a contract as described in Section 3.A
above and let Y denote the set of all possible contracts. Then
let U{y,e) denote the principal's expected utility under contract % and
environment e given that the agent acts to maximize his own expected
utility.19 Define UN(e) to he the maximum expected utility the principal can

attain under any contract given e.

{3.4) UN(e) = sup U(v,e)

vy
pey

If a contract v attains the supremum it is an optimal contract.

Definition: w is an optimal contact for the envirgnment e if
N

(3.9) U (e) = Ulv,e)

The superscript "N" is chosen to dencte the fact that UN(e) is the
maximum expected utility the principal can attain when v is not obhservable.
It will also be useful to consider the artifical case where vy is assumed to bhe
observable by the principal. Define i to be the maximum expected utility the
principal can attain when y is observable. This is calculated as in Section 2.
It is clear that the principal’'s welfare can be no larger when y is non-

observable.



~25-~

(3.6) U (e) < 17(e)

This is because the principal simply has one less piece of information to use

when constructing an optimal contract. In fact, in general, one would expect there
to be a welfare loss associated with the non-observability of ¥y —— i.e. —— the
inequality in (3.6) would be strict.

This motivates the following definition.

Definition: The environment e will be said to exhibit the property of
irrelevance of mean ohservability (IMO) if there exists a

contract ¥ such that

(3.7)  Ul,e) = U (e) .

If a contract exists satisfying (3.7) it is clearly optimal. Furthermore
there is no welfare loss to the principal associated with the non-
observability of y —— i.e. — the principal could not increase his expected
utility even if y was observable and could be contracted upon.

If the principal is risk—-neutral in output so that v{(x) = x the property
of IMO can be given an even stronger interpretation. In this case, assuming
that y is observable is equivalent to assuming that the distribution of x
given vy is degenserate (i.e. == F(x,vy) simply exhibits a mass point on y) and
there is no productive uncertainty. Thus if a contract exists such that (3.7)
is satisfied, productive uncertainty is irrelevant In that the optimal
contract and the expected utility of both the principal and agent remain

unchanged no matter what the nature or amount of productive uncertainty.
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Clearly IMO is a very strong property and one would not generally expect
it to hold. Surprisingly encugh, a class of environments can he identified
where it does hold. These are the class of environments where, when y is
observable, the optimal contract is convex. Proposition 6 contains the
result. The optimal contract, for this case, is shown to bhe a menu of

functions linear in output.

Proposition 6:

Fix an environment, e. Suppose that, when y is observable,
1y(z), w(z)} are the optimal ocutcome functions defined by (2.7) and (2.8) for
some 2, = [0,1]. Suppose that w(y(y)) is convex over [zo,l] so that the

optimal outcome can be implemented by a menu of functions linear in y. Let

(3.8) M =+x (y)i
Z AN

(z,,1]

ZO,

denote this menu of linear functions where Xz denotes the function chosen by
type z.
Define the contract yw to be the same menu of linear functions as in M

only defined over x.

(3.9 4 = {xz(x)J 1]

z <[z

0!

Then

(i) Each type's choice of wage function and y is the same

under M and ¥.
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(ii) The principal's expected utility is the same under M and
.
(iii) Therefore e satisfies TMO and ¢ is an optimal contract.

proof:

Every type of agent is risk neutral in income. Therefore since the
expected value of x is y, an agent of type z views X.(y) and %, (x) as the same

~ A z
for every z € [20,1]. Therefore each type of agent makes the same choice

under M and ¢ and receives the same expected payment.

QED.

Thus Proposition 6 describes the following test for determining whether a
menu of linear coatracts in x is optimal for a given generalized self-
selection problem. First create a standard self-selection problem by assuming
the mean of output is observable. Then calculate the optimal wage contract as
a function of mean output for this standard self-selection problem. If this

contract is convex then a menu of linear contracts is optimal.

Note that when y is observable ; is also observable and a contract could
equally well be described as a function from ; to wages. It is interesting to
apply the results of Proposition 6 to this situation. Suppose that ;(;) is

~

the optimal wage contract expressed as a function of y. Then the equivalent

contract expressed as a function of y is given by

(3.10) o(y) =0 E&(y)).
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~

Thus a menu of linear contracts is optimal if ¢(Z(y)) is a convex function of

y. Differentiation of (3.10) yields
- 5 =
(3.11) 9"(y) =o"E(y)) &' (y) + ' & {y)) £€"(y).

In particular notice that if £ is the convex (or equivalently if u is comcave)

that the convexity of ¢ implies the convexity of ¢. This is summarized helow

in the following corollary.

Corollary 6.1

Fix an environment e. Suppose that when y and y are observable ¢{y) is
an optimal wage contract defined over y. Suppose that n(y) is concave. Then

if (y) is convex, the optimal outcome when y and y are not observable can be

implemented by a menu of linear functions in X.

proof

As above.

QED.

C. Previous Work

In this section the results of this paper will be related to those of
Laffont and Tirole [1986], McAfee and McMillan [1986] and Melumad and
Riechelstein [1986]. TFirst consider Laffont and Tirole [1986]. Laffont and
Tirole confine their analysis to the case defined by (2.14) - (2.17) where the
optimal contract when v Is observable is globally concave. Thus they
correctly conclude in their model that the optimal contract always consists of

a menu of linear contracts. In Section IV-G and in footnotes 15 and 16 of
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their paper they suggest the geowmetric intuition formally modeled in this
paper and speculate that the optimality of menus of linear contracts will
continue to hold true under very general conditions. This paper shows that
their result is much more special.

Laffont and Tirole's model appears to be somewhat different from that of
this paper in three respects. However none of these differences significantly
affects the analysis. First, they explicitly include the agent's effort
choice as a varlable. As explained in footnote 12, this approach Is
equivalent to that of this paper. Second, they maximize a weighted sum of the
principal's and agent's expected utility instead of simply maximizing the
principal's expected utility. It is stralghtforward to show that exactly the
same arguments apply in either case. The approach of this paper was chosen so
that the correspondence of the generalized and standard self-selection models
would be clearest. Most analyses of the standard self-selection problem
employ the approach of simply maximizing the principal's expected utility.

Finally, Laffont and Tirole allow for the possibility that the principal
also controls some extra decision variable, d. They assume that the decision
must be made immediately after the agent's menu selection and before the
observation of x. In the notation of this paper this amounts to the following
generalization of the model described in Section 3.A. The functions ¢, ¥, and

G remain unchanged. However now the prineipal's utility is written as

(3.12) wvi{x,d)

where d is a decision which must be made from some set D. Then let u(y)

denote the principal's maximum expected utility given the mean y. This is

defined by
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(3.13) u(y) = max | v(x,d) f{x/y)dx .

deD
Then if ¢,F,G, and u satisfy (A.l) - (A.14) the analysis of Section 3 applies
in unchanged form. Thus this generalization changes nothing fundamental in
the analysis. It only changes the definition of u(y).20

Drawing the correspondence between the model of this paper and that of
Laffont and Tirole is somewhat confusing because in their interpretation of
the model they use the term "cost' for an entirely different purpose than this
paper does. To minimize this confusion, the correspondence will he explicitly
described. Laffont and Tirole consider a principal who wishes to construct
units of some good. For example perhaps the principal is the Navy which
desires to construct a new jet. The per unit cost of construction is given by
(I-x) where I is the initial cost and x is the '"output" of the agent. That
is, the agent exerts effort to produce reductions in the unit cost of
production. The agent chooses y at a personal cost of c{y,z) which
stochastically determines x according to F(x/y). If a fixed number of units
must be constructed this is precisely the generalized self-selection model as
described in Section 3. Laffont and Tirole assume that (2.14) - (2.17) are
satisfied so the optimality of a linear menu of contracts follows from the
analysis of Section 3.

Howaver, Laffont and Tirole also consider the possibility that the
principal must choose the number of units to purchase. They assume that this
decision must be made after the agent's menu selection is observed but before
x is observed. ULet d denote the number of units and let ${(d) denote the value
of d units to the principal. In terms of the above notation In (3.12) and

(3.13),
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(3.14) wv(x,d) = S{d) - {I-x)d

and

(3.15) uly) = max S(d) - (I-y)d .

d= 0
Then as described ahbove, a menu of linear contracts is optimal 1f the optimal
contract for the standard self-selection problem when vy is observable {and the
principal’'s utility is therefore given by (3.153)) is convex. Laffont and
Tircle make sufficient assumptions on S(d), c{y,z), and G(z) for this to be
true.

Now consider McAfee and MeMillan [1986). Their condition (14) for the
optimality of a menu of linear contracts is simply the requirement that the
optimal wage contract as a function of y {(calculated when y is observable) be
convex. Because McAfee and McMillan choose notation which explicitly includes
the agent's effort cholce as a variable, a small amount of translation of
notation is required to see this. A formal demonstration based on the
translation described in footnote 12 is straightforward and will not be
given. Instead a geometric explanation will be given. Consider Figure 1
where y is on the horizontal axis and w is on the vertical axis and the
optimal contract is ¢{y). Each agent chooses a value of y such that his
indifference curve is tangent to ¢(y). Furthermore from Proposition ! higher
types of agents choose higher values of y. Therefore ¢(y) is convex if and
only if higher types of agents have steeper indifference curves at the value
of y they choose. This is precisely what condition (14) in McAfee and

McMillan requires. It requires that the derivative with respect to z of some
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complex function be positive. This complex function 1s easily seen to be the
slope of type z's indifference curve at the value of y he chooses.

The contribution of this paper is to reveal the geometric basis for the
result and to show that the result follows largely from existing well-
understood analysis of the standard self-selection problem together with this
simple geometric argument. Given the complexity of the analysis in McAfee and
McMillan, this is a large advantage. For example, McAfee and McMillan simply
assume that the first—order approach is valid in their analysis. This paper
shows that the validity of the first-order approach in this problem is
equivalent to the validity of the first—order approach in the standard self-
selection problem which is well-understood. Finally, McAfee and MeMillan
suggest that the optimality of linear menus of contracts will be a fairly
typical result. This paper argues in a series of examples that the result
does not hold in general.

The model of McAfee and McMillan differs from that of this paper in one
other respect. McAfee and McMillan allow for the existence of more than one
agent. The same correspondence between the standard and generalized self-
selection problem can be established for this case.

Finally consider Melumad and Riechelstein [1986]). They formally show21
that the convexity property implies the optimality of a menu of linear
contracts in a very general model with almost no structure. Because of the
generality of their model, they were forced to restrict themselves to the case
where all types of the agent are hired. In the more structured environment of
this paper it is shown that the argument stil! holds when the possibility that
not all types may be hired is allowed. In terms of the formal notation of
this paper Melumad and Riechelstein assume that in the optimal contract zp

equals 0. This paper allows zy to assume any value.
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4. Conclusion

The optimality of a menu of linear wage functions in the generalized
self-selection model really depends on the same property holding true in the
standard self-selection problem generated by assuming that y is observable.
This in turn depends on the convexity of the optimal contract. However the
analysis of Section 2 shows that the optimal contract will not generally be
globally convex in the standard self-selection model. One plausible class of
examples exists where this property holds but equally plausible classes of
examples exist where the exact opposite result holds ~— i.e. —— the optimal
contract 1is globally concave. More generally, the optimal contract will
usually be neither globally concave nor globally convex. Therefore the
optimality of menus of linear contracts in the generalized self-selection
model is best viewed as a very special property holding only in a limited
class of examples. 1In general, menus of linear contracts will not be optimal

and there will be a welfare loss associated with the non~observability of y.
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Appendix

Proof of Proposition 3

Suppose that {y(z), w(z)} are the optimal outcome functions as defined

by (2.7) and (2.8) for some z, ¢ [0,1], Any optimal contract must be defined

by (2.11) over [y(zg), v(1)]. As explained in the body of the paper, one
possible choice for an optimal contract would be to define ¢ to be zero for
all other values of y. The first major step in the proof is to construct a
different optimal contract. To do this the following Lemma is useful. Since

this is a standard result in this type of model it will not he proven.

Lemma 1:

Suppose that (w,y) and (w,y) are two wage—output pairs and that

A A ~ ~

y < y. Consider two types of agent, z and z, with z < z. Then

A ~ EY
~ ~

(1) If type z prefers (w,y), so does type z -~ i.e. ——

~ ~ - A A ~
A EN ~

If w - ¢(y,2z) » w - c(y,z), then w — c{y,z) » w — c{y,z) .

-
-~

(ii) If type z prefers (w,y), so does type z —— i.e. ——

~ A -~ A -~ -~
-~ A A ~ A A A A A ~ ~

If w~c¢ (v,2) » w — c(y,z), then w — c(y,z) > w - c(y,z) .

This result basically says that higher types of agent are more pre—disposed
towards producing more output because they have lower marginal costs of doing

S0
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Lemma 1 allows construction of the desired optimal contract which is

described in Lemma 2.

Lemma 2:

The contract ¢*, constructed as follows, is an optimal contract.

c{y,24), y < ylzy)
(a. 1)  o*(y) = w( (¥y)), y(zy) <y < y(1)
c(y,1l) + u*, y 2 y(1)
where
(a.2) u* = w(l) = e(y(1l), 1) .

proof:

Notice that $*(0) = 0., Given this, by the definition of y, we know that
an agent of type z prefers y{(z) to choosing y = 0 or y £ [y(zo), y(1)].
Therefore it is sufficient to show that an agent of type z also prefers to
choose y(z) over any y > y(1) or y & (O,y(zo)).

First consider y > y{l). The contract $* is constructed so a type 1
gent is indifferent between choosing any v € [y(1l), =)}. All other types of
agents prefer y(z) to y{(l). Therefore by Lemma 1, all other types of agents
prefer y(z) to any y » y(1).

Now consider y < y(zO). This must be divided into two sub-cases. First

suppose that z 2 z_. Then by an argument very similar to the above argument,

0
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an agent of type z prefers y(z) to any y « y(zo). Second, suppose that

z < zp» The contract ¢* is constructed so that an agent of type Zq earns zero

profits by choosing any y < y(zo). Therefore an agent of type z < z5 must earn

1
<

non-positive profits, since costs decrease in type. Therefore choosing y
and receiving w = 0 is at least as preferable as choosing any other

< Z. )

y s ylzg)

QED.

The contract ¢*{y) has two properties which are crucial for the proof.

These are described and proven in Lemma 3.

Lemma 3:
(i) p*% is convex over [O,y(zo)] and [y(1),=)
(ii) p* is continuously differentiable. (In
particular, ¢* is continuously differentiable
at y(zo) and y{(1).)
proof:

Property (i) is obvious. Now consider property (ii). The contract ¢* is
obviously differentiable at all points except y(zo) and y(l). Furthermore ¢*
is constructed to be continuous at these two points. Therefore it only
remains to show that the derivatives of ¢* calculated from the left and right

are equal. This will be done for y(zo). The case of y(l) is almost exactly

the same.
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For any v € [y(zo), y(zl)], the slope of ¢* is determined by the fact

that the indifference curve of an agent of type y(y) is tangent to 9* at y.

That is,
(a.3) L at () = e (3(2),2)
. 4 VOO c (y(z),z
18 , . ' ) . .
for z > z,.  In particular, if p* (y(zo)) is calculated from the right it

therefore equals cy(y(zo),zo) according to (a.3). However this is the same

value as to be had from calculating the derivative from the left according to
(a.1).

QED.

Proposition 3 can now be proven. First suppose that w(y(y)) is convex
over [y(zy), y(1)]. Then by Lemma 3, $*(y) is convex over [0,=). Therefore it is
gzeometrically clear that the menu of linear tangents to ¢* for y € [y(zo), y(1)]

implements the outcome.

The other direction of proof of Proposition 3 is straightforward and does
not require the above construction. Suppose that the outcome can be

implemented by a linear menu of contracts. Then consider any
y € [y(zo), y(1)]. There exists some z such that y(z) = y. Therefore the menu

must include a linear function £{y) such that L(y) = w(y{y)). Furthermore

~

L(y) must lie below w(y(y) for every y & [y(zo), y(l)], or else an agent of

some other type will not choose his output properly. Therefore w(y(y)) is

~

convex at y.

QED.
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Footnotes

L See, for example, Grossman and Hart [1983], Holmstrom [1979,1984], Mirrlees
[1975, 1979], Rogerson [1983] and Shavell [1979].

2 See Holmstrom and Milgrom [1985] for an exception.

3 Similar models have also been analyzed by Baron and Besanko [19853], and
Riordin and Sappington [1986a, 1986b]. However these papers do not consider
the issue of implementability by menus of linear contracts which is
considered by Laffont and Tirole [1986]), McAffe and McMillan [1986], Melumad
and Riechelstein [1986] and which is the focus of this paper.

* A specific version of the "standard self selection problem” will be
described in Section 2. Essentially the same mathematical structure appears
in self-selection models of the principal-agent relationship, a moncpoly
using product quality to price discriminate, trading problems, and taxation
problems. See Baron and Myerson [1982], Guesnerie and Laffont [1984],
Maskin and Riley [19841, Matthews and Moore [1986,1987], Mirrlees [1985],
Myerson and Satterthwaite [1983], and Sappington [1983].

> The process by which the standard self-selection problem underlying a given
generalized self-selection problem is identified is simplified somewhat for
the purposes of this introduction.

® Melumad and Riechelstein [1986] also consider a range of other issues
relating to the value of communication in this type of model which are not
of direct concern to this paper. Also see Picard [1986].

7 McAfee and McMillan [1986], page 3.

8 See Section 3-C for a more detailed discussion.

9 For example, Myerson and Satterthwaite [1983].

10

For example, Mussa and Rosen [19378] and Matthews and Moore [1986,1987],

11Sappington employs a slightly different individual rationality constraint
than the model of this paper. However, his discussion and interpretation of
the model is relevant in all other respects.

12This formulation suppresses explicit consideration of the agent's effort
choice. This turns ocut to require the least cumbersome notation. Tt can be
formally derived from a formulation which expliecitly includes the agent's
effort choice as follows. Suppose that an agent of type z exerting effort e
produces output according to

y = y(e,z) .

An agent of type z exerting effort e and who receives w dollars has utility
of

w — p(e,z) .
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Suppose that vy is strictly increasing in e. Let
e =y(y,z)
denote the inverse of Y. Then c(y,z) is defined by

clv,z) = ¢(p(y,z), z).
13See Myerson [1981] and Baron and Myerson [1982] for a more extensive
discussion of this.

14There may exist two different values of z,

-~

z and z, such that y = v{z) and y = y{(z). However, then by

c, wiz) = w(z).

15See the references listed in footnote 4 for various treatments of this
result. The only technically delicate issue is establishing absolute
continuity of certain functions. See Guesunerie and Laffont [1984], Mirrlees
[1985] and Matthews and Moore [1987] for careful discussions of this.

16The extra difficulty lies in showing that agents of type less than zy will

not find it attractive to choose one of the linear functions and produce

some value of y € (O,y(zo)) instead of declining to participate.

7Notice that observation of one of y and y immediately also reveals the other

since they are related by the invertible function y = u(y). Therefore

observability of either variable will be spoken of as observability of the

mean.

18An interesting issue investigated by Melumad and Riechelstein [1986] and
Picard [1986] concerns whether or not offering a menu of contracts is even
necessary for the generalized self-selection model. See these papers for
further discussion.

lng a type of agent is indifferent between two or more actions, assume the
agent chooses the one the principal prefers. For some values of ¢ there will
no optimal action for some types of agents. Define U{y,e) to be — =
in this case.

201t may be that u is not always convex under natural economic assumptions in
this generalized model. This can create extra technical difficulties in the
analysis of the standard self-selection problem.

21500 Corollary to Theorem 2, page 26.

22rhig can also be directly calculated using (2.7) and (2.8).

be
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