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Abstract

It is known that facets and valid inequalities for the knapsack
poiytope can be obtained by lifting a simple inequaiity derived from a
minimal cover. We study the computational complexity of such lifting. 1In
particular, we show that the task of computing a lifted facet can be
accomplished in O(ns) where s £ n is the cardinality of the minimal cover.
Also, for a lifted inequality with integer coefficients, we show that the
dual tasks of recognizing whether the inequality is valid for P or is a

facet of P can be done within the same time bound.



The convex hull of solutions of combinatorial problems have been
studied extensively over the past few decades. 1Indeed, some of the most
spectacuiar achievements of combinatoriai optimization are directiy
traceable to theoretical developments reiated to the structure of that huiil.
For instance, the classic work of Edmonds [E1,E2] on the matching polytope
has resuited in both a compliete characterization of the convex hull of
solutions and an efficient (polynomial) algorithm for the optimization
probiem. More recently, the work of Gpotschel, Padberg, and others (see,
for example, the survey in [GP]), has lead to computationally efficient,
although not polynomially bounded, algorithms for the traveling salesman
problem. Numerous additional results are available on the facial structure
of problems such as the knapsack and multiknapsack problems, the set
covering, packing and partitioning problems, plant location problems,
scheduling probiems, etc. For a recent survey on these results the reader
is referred to Grotschel [G}] and Pulleyblank [Pu}.

In spite of the wealth of studies on facets, there are few resuits
concerning the computational complexity issues involved. It follows from
i{GLS, KP, PR] that the problem of separating a given point from the convex
hull of solutions is in the same complexity class as the underliying
optimization probiem. More directly related to facets is the work of
Papadimitriou, Yananakis, and Wolfe [PY, PW] on the traveling salesman
polytope. It is shown in this sequence of papers that the task of
recognizing a facet of this polytope is unlikely to be in NP, and is in fact
complete for an apparentliy higher complexity class, namely Dp.

In this note we study the computational complexity of facets and valid

inequalities of the binary knapsack polytope. These facets and inequaliities
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are very useful, since for any 0-1 integer programming problem, each
constraint individually, or each individual aggregation of several
constraints, can be regarded as a knapsack problem. Thus, facets and valid
inequalities for the knapsack polytope can be used for the general integer
problem. This approach is utilized effectively, for example, in [CJP].

The facets we study in’this paper are obtained from minimal covers.
The existence of such facets has been known for over 15 years (see [B, P1,
W], and have been investigated in some detail, e.g., [B, BZ1, HJP, Pe]. It
is known {P1,P2] ithat the caiculation of each facet requires solving
(optimalliy) a large number of auxilliary 0-1 knapsack problems in a
particular sequence. Moreover, each seqguence may potentially yieid a new
lifted facet. Nevertheless, we show that, for a given minimal cover, the
tasks of computing a facet, or of recognizing whether a given inequaiity
with integer coefficients is a facet or valid, can be done simply and
efficiently using an algorithm whose running time is bounded by 0(n2). The
running time can potentially be even shorter, if the minimal cover in
question is not too large.

We introduce the necessary preliminaries and state our results in
Section II. Section III is devoted to the exposition of several known
resuits concerning this family of facets and valid inequalities. Section IV
is devoted to the algorithms. Section V contains the proofs. In Section VI

we present several open quesiions.

II. Preliminaries

Consider the inequaiity



< a

(1) ZjeN ax; < ag

where ao,aj are positive integers and xj =0or 1, jeN-={1,...,n}.
The knapsack polytope P is the convex hull of 0-1 points satisfying

(1), i.e.,

N,
= <
P conv{x € {0,1} !ZJGN ajxj < a,

An inequality

¢ <
Lien Bj%;5 < By
is said to be valid for P if it is satisfied by every x € P. A valid
inequality is a facet of P if it is satisfied with equality by exactly d
affinely independent points x € P, where d is the dimension of P.
Throughout this paper we will assume that d = n, which is true if and only

if a; s a,, ¥ 1 €N.

07

A set S ¢ N is called a cover for P if

jes aj > ao.

z

A cover S is called minimal if

- < 3
jes-(i}?j < 3 Vies.

[ng
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We denote by s the cardinality of S. For any subset V € N, we denote by P

the projection of P into RV:

P = convix € {0,1}ViF

<
v a.}.

jev 2555 = %
It is known (see, for instance, {B, P2, W]) that if § is a minimal

cover, then the inequality

- < « -
(2) Ljesxj <s -1

is a facet of Ps. It is also known that facets and valid inegualities of

lower-than-n~dimensional polytopes can be "lifted" into n-space so as to
yield facets or valid inequalities of P. Specifically, let
(3) X

B.x, < 8,

. X,
Jev 737

be a valid inequality for PV. Then an inequality of the form

(4) Zjev Byxj * zjeN—V Bx; < By

will be called a lifting of (3). The coefficients (Bj: j eN-V) are
called the lifting coefficients. It was observed by Nemhauser and Trotter
[NT} that for every facet (8) of PV, there is aiways at least one 1ifting
{(4) which is a facet of P. A sequential procedure for accomplishing this
was given by Padberg, whose result was first estabiished for the node-

packing polytope [P1], then extended to 0-1 programming polytopes with

\
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positive coefficients [P2].

Padberg's procedure is sequential in nature, in that it calculates the
lifting coefficients one by one in a given sequence. We will discuss this
procedure, which we denote by sequential lifting, in the next section.
However, several of its properties are worthwhiie mentioning now. First, we
note that the computation of each of the lifting coefficients Bj’ JEN-V,
requires that a certain knapsack problem, invoiving S and all the variables
of N - S which precede j in the sequence, be solved to optimality. The
coefficients obtained in this way, which turn out to be integers, depend on
the sequence in which they are caicuiated. In principle, for a given iower
dimensional facet such as (2), there may be an exponential number of
sequences yielding distinct facets of P. Nevertheless, it is known [BZ1,Z]
that there may exist facets which are liftings of (2), but which cannot be
obtained by Padberg's algorithm for any sequence of N - S. A general
characterization of all the liftings of a lower dimensional facet or valid
inequality is given in [Z] and specialized to liftings of (2) in [BZ1i]}. 1t
is also known that not all the facets of P are 1iftings of (2) for some
minimal cover S. A generalization of this form, which accounts for all the
facets of P, is given in [BZ2]}.

In this note we study the computational complexity of facets and valiid
inequalities which are 1iftings of (2) for a given minimal cover S. 1In
particular we examine the computational requirements of the following ihree

computational tasks:

P1: Given a sequence 7 of N - S, compute the sequentially lifted facet

associated with this seqguence.



P2: Given a lifting of (2), is it a facet for P?

P3: Given a lifting of (2), is it valid for P?

The easiest of these tasks, P1, requires a solution of a sequence of
n - s knapsack problems, of sizes varying from s to n, and involving the
original data ai, i € N. P2 seems a much more difficult task since even
when restricted to sequentially lifted facets, it potentially requires
enumerating all seqguences of N - S. Finally, P38 seems to require

enumeration of all the vertices of P. Nevertheless, we have:

(i) The complexity of P1 is O(ns}.
{ii) If the coefficients Bj: j € N - S are integers, the complexity of
P2 and P3 is O(ns).

We devote the next three sections to the proof of Theorem 1.

III. Properties of Sequentially Lifted Facets

This section is dedicated to the exposition of some known results
concerning sequential liftings of (2). We will sometimes refer to such
inequalities as 1iftings of S. We begin by describing Padberg's sequential
procedure, specialized to liftings of S. Let 7 be a sequence of N - S,
i.e., a one-to-one mapping from N - § to {1,...,n - s} and let
S(i) =S U {ﬂl,...,ni}, i=1,...,n - s. For convenience, define Bi =1,

ie€es.



Proposition 1 [P1,P2}: For each i = 1,...,n - s, consider the knapsack

problem KTr defined recursively as follows
i

zTri = max Zjes(i-l) Bjxj

subject to:

<
Lies(1-1) 25%5 S 3% " %

xj =Q0or 1, jeS(i-1)

and let
B =S8 -1 -2z,
i i
Then for i = 1i,...,n - s, each inequality
(5) Lies(1) Fy¥y S 71

is a facet of PS(i)' In particular

(6) z X, t L

jes X5 T Ljen-s Bj¥;
is a facet of P.
The following properties of the lifting coefficients Bj’ j €EN- S, are

useful. Propositions 2-4 are taken from [BZ1]. See also [HJP,Pe].

Let Rt' t =0,...,8 be the sum of the t smallest aj, j €8, and let bt
be the sum of the t largest. For any number 0 £ a £ a, let y(a) be the
smallest integer i such that Rs—l—l < a, - a and iet o(a) be the iargest
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integer i such that bi < a. We let yi = y(ai) and similarly for ai.
Ciearly, both «(a) and ¥(a) can be calculated in time O(log (s)) if the
cover S is already sorted and in time O(s) otherwise. As it turns out, the
coefficients aj, yj, j € N - 8 play a crucial role with respect to liftings

of S:

Proposition 2: Every lifted ineguality of (6) which is valid for P

satisfies Bi < yi for every i € N - S.

Proposition 3: Every lifted inequality (6) which is a facet of P, satisfies

> i -
Bj P ai, ieN S.

Proposition 4: For every 0 < a < ag,

a(a) <€ Y(a) < a(a) + 1.

In view of Propositions 2-4, let I € N - S be the set of variables for
which ai = yi, and iet J = n -8 - 1, It follows from Proposition 4 that
J=({ieN-S: Yi = ai + 1}. The variables i € I play a particularly easy

role with respect to the tasks P1-P3:

Theorem 2: Consider the inequality (6) and let

7 . X. Y. X
(7) Lies X5 * Ljes By¥;



(a) (i): (6) is valid for P
iff
ii): . S, jeI
(ii) BJ jr
and
(iidi): (7) is valid for PJUS’
(b) (i): (6) is a facet for P
iff
ii): L, =, J €1
(ii) BJ i 3
and
(iii): (7) is a facet of P

Jus®

We leave the proof of Theorem 2 to Section V. We conclude this section
by a characterization of those iifted facets (6) which can be obtained by

using sequential lifting.
Proposition 5 [BZ1]: A lifted inequality (6) which is a facet for P can be
obtained by sequential lifting for some sequence w of N - 8§ iff all the

coefficients Bj’ j € N - S are integer.

IV. The Algorithms

In this section we give the algorithms which support Theorem i. We
open with several general observations. First, in view of theorem 2, we can
restrict our attention to the set J. We will thus consider liftings of (3)
of the form (7). To keep track of the computational complexities of the
appropriate tasks, we assume that a certain preprocessing phase is carried

out before the algorithms which follow are applied. Specifically, we assume

that the partial sums b '3 t=1,...,8 - 1 are available, and that for

t’ Tt
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each variable i € N -~ S, the constants ai’yi have been computed. Finally, we
assume that the set J is identified. This preprocessing phase can be easily
done as foilows. First, we sort the set ai, i € S and compute the partial

sums bt' e t=1,...,s - 1. This requires O(s log s). Then we compute

t)
aj’yj for each j € N - S and identify whether that variable is in I or in J.
This requires O((n - s) log s). Thus, the total preprocessing effort is O(n

log s). All the computational requirements reported in the remainder of

this section are in addition to this amount.

Vi. 1. The Task P1: Computing a Facet

We first consider the task of computing a sequentially lifted facet

(7). Recall that S(i) = S U {nl,...,ni}, and that Bj =1, j € S. We have
to solve the sequence of Knapsack probiems K1T s, 1 =1,...,17]
i
Zp, T MAX Lyes(i-1) By%;

i
subject to:

X

> —
jes(i-1) %% = %0 7

xj =0or 1, j € S(i - 1)

Using a standard dynamic programming technique, consider, for eacn

i=1,...,1J3!, the set of dual knapsack problems Di(z) for z =0,...,s - 1:

ai(z) = min Zjes(i—l) ajxj

subject to:
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Lies(i-1) By¥; 2 2

xj =0or 1, j e S(i-1).

Clearly, the problem K1T of Padberg's procedure is related to the set
i
of problenms Di(z), zZz=0,...,8s — 1 via the relation

= Z: a, < - .
Z1Ti max{z al(z) < a, aﬂi}

This suggests the following aigorithm:

Algorithm Lift

Input: a sequence w of the set J. The partial sums Rt'
t=1,...,8 - 1.
Output: The coefficients Bj’ j € J for the lifted facet (7) which

corresponds to 7.

Begin Lift
(1) Let al(O) = 0, al(z) = ﬂz, z=1,...,8 - 1
For j =1,...,1J]
= . < -
(2) zﬂ‘ max{z: aj(z) < a, a"'}
J J
(3) B". =s -1 - z.
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(4a) aj+1(z) = aj(z)
For j = BT yeoess — 1
"
{4b) aj+1(z) = min{aj(z), aj(z - B"j) + a“j}

End Lift.

To check the validity of Lift, note that the cruciali step is (4a)-(4b)

which is a typical dynamic programming update of aj(-) into aj+1(°)' The
only nonstandard feature ‘here is that the coefficients Bn" used for this
update, are not given in advance but are computed as one ;oes along.
However, this is not a problem since B". is computed in step (3), before it
is used in step 4. This makes for an iiteresting property of Lift, namely
that the work performed by this algorithm is identical to what would have
been required to solve the last knapsack problem, K , the other knapsack
problems in the sequence K“., j =1, |J]| being solveéJ;s a by-product.
Another way of saying this is that the work to lift the facet (3) all the
way to (7) is the same as the work needed to compute just the last
coefficient of (7), given that the other coefficients are known. Note that
the latter task can be thought of as a recognition problem, since the last
coefficient is restricted to one of the two values a"lJl or a"]J| + 1.

It is easy to assess the complexity of Lift. Cleafly the'dominant

factor is the computation of step 4 which requires constant time but is

executed |J|es times. Thus, the complexity of Lift is O(]|J|es).
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IV. 2. The Task P2: Recognizing a Facet

We now examine how algorithm Lift can be used to perform the task P2.
Recall that we are restricting the discussion to a lifting (7) with integer
coefficients. It follows from Propositions 2-3 that Bj = aj or aj + 1,

j € J. By Proposition (5), the inequality (7) is a facet of PSUJ iff there
exists a sequence w of J which yields (7) via Algorithm Lift. The difficult
part is to identify the sequence w or to prove that none exists. This

difficulty is addressed in the foliowing theorem, which asserts that it is

enough to check (7) against one, easily identified sequence :

Theorem 3: Consider a lifting (7) and let J1 = {j € J: Bj = aj + 1},

J2 = {j e J: sj = aj}. Let 1 be any sequence of J such that ni < nj for
every pair i,j such that i € Jl’ j e Jz. Then (7) can be obtained by
sequential lifting iff it can be obtained by sequential lifting according
to m.

We leave the proof of Theorem 4 to the next section. The following

algorithm is a natural conseguence of this theorem:

Algorithm Recognize

Input: The set J together with the coefficients aj’yj' j€J.
An inequality (7) with integer coefficients aj < Bj < Vj.
jeJ.

Output: A sequence 1 which yields (7) as a facet if one exists, or a

negative indication otherwise.
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Begin Recognize:

For jeJ
Ifg. =7, =a., +1set jeJ
BJ 73 i J 1
If g, =&, set j €J
BJ i J 2
(1) Generate an arbitrary sequence m such that ﬂi < nj for every
ie Jyr 3 € Iy
L]
(2) Apply Lift Facet according to m. Let Bj be the 1lifting
coefficients.
$
(3) if Bj = Bj’ j € J, output w. Otherwise (7) is not a facet.

End Recognize.

iIV. 3. The Task P3: Recognizing Valid Inequalities

We finally consider the task P3. For integer coefficients Bj’ j € J,

this task turns out to be closely related to P2. Let J1 = {j € J: Bj = Yj}

and J, = J - J,. Let m be any sequence such that “j < ni for every "j € J

2 1 1’

T €J Apply Algorithm Lift Facet to w. The resulting inequality is a

5"
1
facet. Denote its lifting coefficients by Bj’ j € J. Then:

]
J

The proof of Lemma 3 closely resembles that of Theorem 3. It follows

Lemma 3: (7) is valid for P iff Bj < B, J€J.

from Lemma 3 that P3 can be achieved by the same algorithm used for P2, with
!

the only exception that we require Bi < B,

1
i 1 € J (instead of Bi = Bi) in

step 3.

V. Proofs of Theorems 2 and 3
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In this section we prove Theorems 2 and 4. In preparation for the

proofs, we quote the following two theorems from [BZ1, Z]:

Theorem 4 [BZ1,Z]: Let V € N be arbitrary, and consider a valid inequality

(3) for PV:

(3) Zjev Bjxj < 8y

C - = = - —_
For each subset TE N - V, let an ZieT a; and JT s 1 WT’ where
WT = -» if aT > a, and is the optimal value of the following knapsack
program otherwise:
W, = max ZjeV Bjxj
subject to:
PN X, <a, - a

jev 35%5 = % T %t

xj =0or 1, jeEV.

Consider the polyhedral set, K, defined by the set inequalities:

L

g. < JT for every TEN - V

JeT 7j
Then:

(i) (4) is valid for P iff B

(Bj: jeEN-V)€eKk.
(ii) If (3) is a facet of PV, (4) is a facet of P iff B is an extreme

point of K.
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Note that if we take V = S, then for every TE N - S8, with a,, € a_.,

T 0
JT = V(aT).

Theorem 5 [BZ1]: Let S be a minimal cover, V 2 S. Consider the knapsack

problem K(r)

Max .. X
ZJGV BJ J

subject to

X

< -
jev aJ.xJ. = ao r

xj =Qorl, jeV

with Bj =1, j€S, and 0 £r £ a,- Then K(r) has an optimal solution with

X; = 0 for every i such that Bi < a(ai).

Proof of Theorem 2: It is obvious that a(ii) is necessary for a(i). It

follows from Proposition 2 that a(iii) is also necessary for a(i). It
follows from Propositions 2-3 that b(ii) is necessary for b(i). Consider
the inequality

(8) x + ¥ B.X, <s -1

. X, .

jes 7j je1 T3%;

It follows from Propositions 3-4 that b(ii) implies that (8) is a facet for
P and that a(ii) implies that (8) is valid for that polytope. Assume

SUI

that a(ii) or b(ii) holds, and consider lifting (8) into (6). We wish to
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compare this to lifting (2) into (7). Consider a set T € J with a_ £ a

t 0’

m

We call such sets feasible. For each feasible set T, consider the knapsack

problem of Theorem 4. Denote the optimal values resulting in the two cases

by w1 and w2, respectively, and let 6;~= s -1 -w i=1,2. We have

i
T T T’

already noted that 6? = y(aT). Note that a(ii) or b(ii}) imply that Bi < ai,

iel. Thus, the stipulations of Theorem 5 hold, and for each feasible set

T € J we have w% = y(aT) as well. Thus, w; = wi for every feasible set

T

n

J. Using Theorem 4 we then get that given b{ii), b(iii) is necessary
and sufficient for b(i) and given a(ii), a(iii) is necessary and sufficient

for a(i). []

Proof of Theorem 3: For every sequence mw of J, let a reversal be an index i

such that m, € J,, T, € J,. Let m be a sequence of J which yields (7) as

2’ Ti+1 1

a facet and which minimizes the number of reversals. We wish to prove first
that m has no reversals. Otherwise, consider the first reversal in the

sequence and flip ﬂi and ﬂi+ Note that by calculating ﬂi+ earlier in the

1’ 1

sequence (in the i-th rather than the i + 1-th position) we cannot decrease

its coefficient Bﬂ (since the feasible region of K1T is smaller, z1T
i+l i+l i+1

cannot increase). Similarly, by delaying the calculation of ﬂi to the

i+ ISt position, we cannot increase to value 5“ . However, B is

i i+1
already at its upper bound, ¥ and BTr is at its lowest bound,
i+1 i i
Thus, after the flip, the coefficients of the facet (7) remain the same.

This demonstrates that there exists a sequence w of J which yields (7), and

which satisfies ﬂi < ﬂj for every "i > Jl, ﬂj € Jz. We have to show that
every sequence with the latter property yields (7) as a facet. But this is

easy since otherwise one can produce two facets for PSUJ or two facets for
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PSUJ , one of which dominates the other, which is impossible. {i
1

VI. Summary

We have shown that computing or recognizing a facet or valid inequality
(5) can be done in O(nz) provided: (a) the minimal cover S is specified,
and (b) the inequality involves integer coefficients. The complexity of
these tasks, when either (a) or (b) is relaxed, is still an interesting open
problem, as is the problem of recognizing a general facet or valid
inequality for P, not necessarily associated with a minimal cover. 1
conjecture that unless P = NP none of these tasks can be done in polynomial

time.
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