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Eventually 1711 cutline how zymmetry arguments, xs captured by the
wreath product of permutation groups, help to resolve ceveral long standing
recearch problems. To introduce the issues, consider why chairing a
department can be a "hair losing" proposition. Start with the spring banquet
where conly one beverage can be cerved. In a hypothetical 1% member department,
& specified to the Chair that they preferred milk to wine to beer
milKiwinerbeerd, 5 specified beerswinemilk, and 4 cpecified wine>beer>milk,
The Chair“s decision was easy; the group’s plurality rankKing is milk beerwine
with a tally of 4:3:4, #Accordingly, the Chair annourczy that milk would bLe
served., For unexplained reasons, milk wasn’t available; so he ordered the
Department’c cecond choice - beer.

During the banquet, the naturally inquisitive wine lovers discovered that
beer wasn’t the Department’s second choice; 273 of the department <10 to 3
preterred wine to beer! With arcused suspicions, further investigaticons

proved that 373 of the faculty (9 to &) preferred wine to milk and 3/3

Wi

preferred ceer to milk! Rumore floated that the Chaic reverzed the

Department’s "true" ranking, winesbeerimilk, so the outcoms wol I ~zvIr B

i

aggravated ulcer,

fince impugned, csuspicions grow, The unrest recsulted in a departmental
meeting to decide among the competing proposals: 1: "The Chair is commended
for his efforts.” 2: "To help the Chair tally ballote, he is to teach
remedial math." 3:"The Dean must replace the Chair." &fter a lively corridor
debate, the department split evenly among the choices 13233, 2>331, and 33132,
Qur Chair tried to protect himself by exploiting his right to set the agenda.
His strategy was to focus debate on his preferred alternatives ! and 2 by
having the first vote between them; then, the winning proposal would be

matched against 3. It failed; the dreaded 3 was overwhelmingly adopted. <Both

votes were by landslide tallies of 10 to 5.2
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What a missed opportunity! Had the Chair used the agenda that paired the
winner of 2 vs,3 with !, he would have left the meeting with "proof® that hic
problems were caused by a small dissident minority, With this agenda, 2 would
have beaten the feared 3, and his preferred 1 would have won in the second
vote. PBoth tallies would have been decisive - 10 to 3.

The Dean already had her doubte about the Chair’s integrity., Earlier,
she asked him to choose a calculus book to better prepare the students for
Fhreice. In response, he divided the students into two groups of 200 each
where one group used the new Sorry book and the other used the standard
Pathetic text., The choice was to be based on how the students did on a
Phrsics exam at the end of the term. #According to the occasionally reliable
student newspaper, both on North and on Scuth Campuces a higher percentage of
the Sorry students passed the exam than the FPathetic students. But, the Chair
asserted that the Pathetic text did better! {On North Campucs, 20 out of 240
Sorry students passed compared to 20 out of 40 Pathetic students. 0On South
campus, the results were 20 cut of 40 compared to 110 cut of 240, Thus, only
1207300 of the Sorry students passed compared to 130300 of the Pathetic
students.)

Action had to be taken. After consulting with the Political Science
Department about procedurec, the Dean announced a Departmental election to be
tallied according to a method proposed in 1781 by the eminent French
mathematician J-C.Borda. This is where, with N alternatives, N-i points are
assigned toc & voter’s iTH ranked candidate. Back in the department, a
coffee room syrvey showed that 7 preferred Abbott>Boyce:Chair, 7 preferred
BoyceAbbott?Chair, and our beleaguered Chair preferred Chair*Abbott>Boyce,

In this de facto two person race, Bovce would lose. Consequently, Borce’s
supparters acted "strategically" by voting Boyce*ChairrAbbott o that each of

them would give Boryce a two point, rather tharn 3 single point differential
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over Abbott., O0f cource, Abbott‘s supporters suspected thic and marKed their

ballots Abbott>ChairrBoyce. The Chair was reelected.

2. Social Choice

Admittedly, this is a farfetched story, but hopefully it created doubt in
vour mind about how your department filled that one tenure track slot, about
vour last vote for the Chair, or about the election recults for vour
Departmental Budget Committee. It should, because this tale illustrates some
very real voting problems., We tend to diemics the choice of a tallying method
as being a minor issue, but it isn’t. Different methods can lead to
completely different election outcomes., For instance, with cur beverage
example, the Borda Count outcome is winelbeerdmilk with the tally 19:14:12 -
this is the exact reversal of the plurality ranking!

What else can happen? What ic the "best" choice? These are the types of
guestions raised in the 1780°s by the French mathematicians Borda and Marquis
de Condorcet. One of Borda‘s main contributions was his tallying procedure.
But his critics of that time, including Laplace, diccovered several
weaknesses. For instance, ac illustrated above, it’s easy to try to
maniputate his system. (This still servec as an argument against using it.?}

A more serious criticism concerns the lack of any justification for choosing
thecse particular weights. Why not assign 5 pointe to & first place candidate,
3 to a second, and zero tc all others? How about 4, 3.9, and 0? Indeed,

there is a vector cpace of possibilities., If we define the voting vector

W={w;,W2,..,Wwn) to consist of the weights where wy points are assigned
to a voter’s jTH ranked alternative, j=1,..,N, then the only constraints zre
that wyltwrs 1, J=1,..,N-1, and wiswn30. What justifies using

E=(N-1,N-2,..,007



In contract, Condorcet believed the emphasis should be on the pairs of
alternatives. He arqued that if an alternative alwave wins by a majority vote
when compared with any other alternative, then it should be adaopted. <(Wine
and &bbott are Condorcet winners.) 1f vou accept Concorcet’s views, then
Bocrda‘c method has another flaw; it doesn”t always elect a Condorcet winner,

The mcdern theory of of Sccial Cheoice doesn’t provide much help for this

type of question. This theory dates to K. Arrow’s book [1]1 where he praoved it
is impossible to concstruct a method for N}3 alternatives that caticfies
certain simple, desirable, and seemingly innocucus axioms. His unexpected,
shocKing conclusions and his axiomatic, combinatoric approach cet off an
avalanche of papers. (See, for example, [2].2 But, it is only a slight
exaggeration to cay that almest a1l of these modern results are negative:
starting with come desirable properties, combinatorics are used to create
examples proving that only those syetems such as dicatorships, oligarchies,
etc., can satisfy them. These frustrating conclusicons provide very little
guidance in the choice of a system. Indeed, ther only heighten the myetery;
what’s the source of the difficulties? (A sneak preview: the wreath product of
permutation groups.)

To address these izcues, 1711 start with tallying methods (veoting
vectors)., Ideally, we’d liKe to discover evervything that could possibly go

wrang. Namely, we’'d 1iKe to have & catalog of all possible election outcomes

over all subsets of candidates for all possible choices of voting vectors, To
makKe sence of this, note that W alternatives determine 2N subcete of
candidates where one subset is empty and N of them have only cne element.
This leaves ZN-iN+1) csubsets with encugh alternatives {at least two) to Lbe
ranked by an election. Label these subsets in some order, let Wy be the

voting vector assigned to tally the ballots for the jTH cubcet, and let

WH=Cldy, .. Wz2N-(n+1)) be the listing of these voting vectors.
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Suppose a profile of voters, p, is specified., (A profile is a listing of
gach voter’s ranking of candidates; we impocse no restriction on number of
voters.) Once p is given, WN uniquely determines the election outcomes for
thece =zame voters for each of the 2ZMN-IN+1) subsets. Call the resulting
sequence of election rankings, denoted by f{p,WN), a word, and call the set
of a1l possible words, DMy={fip,WN)I| for all p), the dictionary generated
by WH, For instance, in our beverage example, {winelbeer; winemilk;
beerdmilkK; milk:beerdwine} is Just cone word (determined by the cspecified
profile) in the dictionary generated by voting vectors
{01,003, ,00,40,00,¢1,0,002, 1f we could characterize &11 entries in all
dicticnaries for all choices of WM, we would have our catalog of all faults

and o

w

radoxes admitted by tallring procedures,

This 17ve done. [31 To describe the results, the dictionaries need to be
viewed as cubzets of a universal set. GSo, let SK be the set of all possible
complete, binary, transitive rankings of the alternatives in the KTH cubset
of alternatives and let UM, the universal set, ke the product of thece
2H-{N+1) sets., In other words, UN contains all possible listings of
election rankings, over all csubsets, whether or not ther make cenze. Of
cource, we hope that DNy is a small subset of UN,

Theorem. 1f each of the 2N-(N+1) voting vectors defining WN correspond to
a plurality election, then
1. DNy = UN,

Indeed, except for & lower dimensional algebraic subset of WN‘s, Eq. |

holds.

Anything can happen! For almost all choices of voting vectors, any
"paradox", any wild or weird listing of election outcomes actually can occur!
As an extreme, use a random number generator to choose the election rankings
for each of the ZN-(N+1) sets of candidates. nAccording to the thecrem,

there is & profile of voters so that their election ranking for each subset of

candidates agreec with the generated result. MNamely, the same voters vote
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cincerely over each of the 2N-{N+1) subsets of candidates ~ they never

change their minds - wet their election cutcomes over the subsets of
candidates coincide with the randomiy generated rankings! This is most
disturbing because the purpose of an election is to capture come type of
consensus of the voters. It is difficult to accept that a voting procedure
does thic if the outcomes can be so indeterminate and depend so sensitively on
which subsets of candidates just happen to be presented!

There are many consequences of this result, and in my partial sampling
I“11 "pick on" plurality voting only because it is so commonly used. <(For
almoet any other choice of WN, the came ctatements hold.> The first one
extends the beverage example (K=3) by i1llustrating that even though the
voters’ rankings of pairs is extremely well behaved, their election rezults
over other sets of candidiates can vary, say, with multiples of three,.
Corollary. There exists a profile of voters so that for each pair of

candidates, a majority of the voters prefer ay to ax iff j<K.
Nevertheless, for the same voters, their plurality election ranking of the
sets {aj,az,..,ax}, k=2,..,N, is axrak-1>...>a; if 3K,

arrazr...2ax if 31k+1, and agla;dak-12.... if 31k+2,

In the beverage example, the plurality election not only relegated the
Condorcet winner to last place, but it elected the Condorcet loser. The next
statement illustrates that plurality elections can show even more disregard
for Condorcet’s winners and losers by doing this same thing for all subsets,
Corollary. There exists a profile of voters so that for each pair of

candidates, {aj,ax?, the majority outcome is ajdax iff j<k. For

the same voters, the plurality ranking for each subset with three or more
alternatives is the transitive ranking generated by the reversed binary
relationship aj<ax iff j<K.

So much for any runoff election procedures baced on plurality, or almost
any other voting vector! The final outcome need not have anything to do with
how the voters rank the paire of alternatives, or, for that matter, how they

rank almost any other subset of these candidates. To see this, choose

rankings where a; is top ranked for all of the subsets containing it except
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for the set of all N alternatives. In this set, choocse a ranking where a;

is ranked just below the cutoff point that determines which candidates advance

to the next stage of the runoff election, According to the thecrem, a profile

of voters can be found that simultaneously realizes all of these zpecified
election cutcomes., aArguably, a; is their favorite (it is much stronger than

Just being a Condorcet winner!), but a; doesn’t even survive the first stage

of the runoff election,

These examples may lead »ou to believe that Condorcet®s approach is the
correct one. I'm not so sure. By using Eg.l! and concentrating only on the
pairs of candidates, it follows that the majority vote over pairs can define
any conceivable binary relationship with crvcles, subcycles, etc. Consequently,
& Condaorcet winner, or any ochvious extension of this concept, need not alwars
exist,

Our zgenda example i< ancther manifestation of the binary behavior. An
agenda is a listing, sar [as,az,..,anl, of the N alternatives. The
firzt two, aaz, az, are voted upcn, and the one receiving a malority vote
is compared with the third listed alternative. This iterative process
continves until only crne alternative, the "winner", remains. As suggested by
the "Departmental meeting", it‘s possible that the winner more accurately
reflects the choice of the agenda rather than the preferences of the voters!
Such "agenda manipulation" opportunites provide a savvy Chair with
considerable, unintended power,

Corollary. There exists a profile of voters and N agendae <o that when the
JTH agenda is used, the winner is ay, j=1,..,N. Indeed, such profiles
can be found so that in each of the the pairwise elections, the winning
alternative receives at least 2/3 of the vote. 1In fact, if N>4, all of
this can occur even though all of the voters prefer ay to ay4: for
J=3,..,N-1.

A profile illustrating the last statement is where the voters are evenly

split among a)2azd... 23N, &2, .%aNr&1, 332..r3N&) 32,
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Even though aw isn“t highly regarded by anyone, it wins with the agenda
lanw-y,anN-24.veyar1,and. (1711 leave it to the reader to find an zgenda
that celects ay. The answer is suggestive of the role plaved by symmetry in
the znalysis of voting.? Al1 sorte of other examples, such as chowing how the
cutcome of various types of tournaments depend on the initial seeding, etc.,
can be created by using this theorem. I leave them to the interected reader.
Is there any qood news? le there a method where the election outcomes
rneed not be so sensitive to which subcet of candidates just happens to be
presented? In other words, can a WN be found where DMy is a proper subset

of UN? Yes, and the best choice is Borda‘s method!

Definition. A voting vector (wi,..,wn) for N alternatives is a Borda
vector iff wy-wy4 is the same positive constant for j=1,..,N-1. Let
BN denote a WN where all of the voting vectors for sets of three or
more candidates are Borda vectors, and let the dictionary be dencted by
DHg.
It is a simple exercise to show that for & profile, the words generated
by two different Borda vectors are the same. The following asserts that BN

minimizes the number and types of paradoxes.

Theorem. Let N}3 and let WN # BN be given. Then
3. DNg DNy,
=

In other words, if & profile defines & word demonstrating a flaw of the
Borda Count, then 21! other choices of WN admit this exact same word.
Consequently, any criticism of Borda“s method advanced by an example alsc
serves as a criticism for all possible voting vectors! To illustrate, Borda“s
method need not elect & Condorcet winner, so this is true for all voting
vectors, Conversely, any other WN admits a large number of words fi.e.,
paradoxes) that aren’t permitted by Borda“s methed., In fact, from our
characterization of the entries of DNy for any WN (not given herel!, it
follows that Ecorda‘s method ic the only one that doesn’t elect a Condorcet

loser nor rank a Condorcet winner in last place (e.g., see the Borda ranking
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of the beverage example), it is the only method that avoids many of the
“runoff" election problems, it is the cnly method where D3y # U2, the
cardinality of DHg is much smaller than that of DNy for any WN#BH

{i,e., the Borda Count admits much fewer paradoxes)2, etc. etc, So, if vou
want to minimize the number and the types of woting paradoxes, if you want to
reduce the difficulty of interpreting what an election result "really means",
then the unique choice is the Borda Count! This is an answer for Borda‘s

critics.
2. Proofs via Statistical Paradoxes

What else can happen? Do these paradoxes reflect highly unlikely,
specially constructed anomclies? With the above criteria, Borda‘s method is
superior, but what about the telling criticism that it is obvious how to try
to maniputate it? How about using methods where we can register our intensity
of like or dislike for each candidate; e.g., how abcut giving each voter 10
points to distribute among the candidates in any desired way? The intuition
for the answers of thece and related issues comes from the proof of our
thearem,

To outline the ideas, 1711 use the "book celection®” problem. Thisz

.. o= zmftrizz o2f a dictionary are "characterized” because there are too many
to list; e.q., in general [Dsyi26.4x1072, To appreciate this number,

recall that the supercomputercs are projected to do 1012 gperations per
cecond. Only 3X1027 seconds of time have elapsed since the "Big Bang". GSo,
if a computer started at creaticn to list these cutcomes, it would be about
171042 through. You may suspect from this number that for these theorems to
be applicable, trillions of voters are required. But note, é candidates and
30 voters, generate (4!)3¢ = 5,25x1085 possible rankings. <«The relevant
number is smaller because of symmetriec due to the "anonymity" of the voters,
but this suggests why small numbers of voters can create so many different
cutcomes.) On the other hand, (4'315 = 7.2x1042, =0 many of the paradoxes
can‘t be realized with only 15 voters.

2. For instance, in general, IDgel/IDgyl <{1/105%,
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doesn’t concern voting; it illustrates what can happen when conditional
probabilities are combined, Indeed, the book example is a special case of

Simpson‘s Paradox, a paradox of particular concern in statistics because it

describes what can occur when contingency tables are collapced to determine
the marginal information. The explanations of this peculiarity are based on
the rules of combining conditicnal probabilities, so they don‘t addrecs (nor
are they intended to) what other, related phenomena can occur along with
Simpeon‘s Paradox. Rs we’l]l cee, some rather surprising examples can be
created.

The four relevant variables are determined by the two choices of books
and the two sections on campus. Let x5° be the fraction of students passing
the Phwysics exam that use the jTH book, j=1,2, on campus C = NC tnorth
campus), SC ¢south campus). Four more variables, d;¢, determine the
fraction of the students using each book on each campus. (So,
d=id ;NS daNC,dy3¢,d25%) is on the unit simplex in 4 space, S5i(43.)

The typec of examplecs that occur are determined by the orthants of R3 that
meet the image of

4. FixX=I14xSi{4)----3R3

defined by (x NE-xNC x 8C—yx35C v |-¥y3),

yi= L ixstdsas i nds O,

dnything can happen if F meets all eight orthants or “ranking regicns”.
This happens if at an interior point g in Xf\F"(Q), the Jacobian, DF, has
maximal rank, tBecauce F maps an open neighborhocd of q to an open
neighborhood of 0, the image meets all ranking regions.} Indeed, from the
centinuity of F, each ranking region containe the image of an cpen set of X,
This is important because finite examples are identified with the rational
points in X. But, the rationals are dense, =0 the existence of thece open

sets implies there are an infinite number of finite examples illustrating each
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tvpe of behavior. Moreover, because of these open setec, the examplec cannot he
dismissed as representing highly unliKely anomoliec; they are robucst.

This simple argument can be used to explain and extend many statistical
and probabilistic paradoxes as well as our voting results., Furthermore,
because all I“m using is an open mapping, an obvious modification of this
argument determines what else can occur. To illustrate, I“11 extend Simpson’s
Paradox by augmenting F with a mapping G to define (F,G):X--2R% where
(F,Gx{gi=0, = = dim(X) = 7, and the Jaccbian of {F,G> at q is of rank <.
Then, each orthant of the new rankKing space, RS, contains the (F,G) image of
an open <et of X, In this way, different choices of G create new paradoxes,

To figure out what choices of G can ke used, notice that the three row
vectors of DF define a three dimensiconal subspace. 3So, just by "erveballing"
the form of F, one can pick out what vectors aren’t in this vector space. 1In
the book example, such a vector could depend on all four variables decscribing
North Campus, or all four variables describing South Campus. Concsequently,
any comparison (G) inveolving thece variables, such as comparing expected
waiting times for csampling without replacement, has a gradient vector of the
appropriate form., For instance, let z3;¢ be the probability that after two of
the students using book j from campus C, C=NC, SC, are randomly selected
{without replacement?, at least cone of them passed the Physices exam. If
G=(zNC-z NC,25C~2,5C), then (F,G‘) satisfies all but the dimension
statement. This means a new extensicon of Simpson’s Paradox can be created
where on each campus, in two tries, it is less likely to find a Sorry student
than a Pathetic one that pasced the exam.

We can‘t extend G to also create a waiting time paradox for the total
school. This is because the first 5 comparicons force q to be in the cet
®1=x2, X3=xs, d;=dz, d3=ds, and the independence requires

X1®%x3, dz#d3z. Thus, any new "paradoxes" cannct impose further
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restrictions on q. The maximal rank condition on D(F,G°) eliminates the
pos=iblity of using "symmetric" compariscne of the form gix),xz2,d;.d2?

- Qi{%3,%X4,d3,d4?. On the other hand, the last twoc comparisons could be
of the form (x;—-x2)02x+3x3) and {x3-x3)2(Sx3d3-x4).

The same open mapping approach explains the paradoxes for other
aggregation models, and, in particular, for voting, once an analogue for F is
found. The N alternatives define N! types of voters according to the N!
rankings without ties (or indifference). If py is the fracticn of voters of
the jTH type, then py is one of the N! components of a vector p in Si{N!J.
The standard tally for an election is equivalent to a p tally just by dividing
the tally by the total number of voters. So, p can be viewed as being a
profile, and the domain for voting systems can be viewed as being the N!-1
dimensional simplex Si(N!).

The range is a product of simplices. A tally for a cubcset of candidates
is a listing of candidates” individual tallies; this is a vector in an
Euclidean space where each candidate’s tally ic identified with a ccordinate
axis., But p & SiiN'3, so the election tally is a vector in the simplex
defined by the sum of the components of Wy, Call this simplex Sig, then
3. FO- WNI SN ) -—=28i 1%, .51 2N+ 1) s

The baricentric point of each simplex, which correcponds to a complete
tie vote among all candidates, is a boundary point for all other ranking
regicns. So, it plars the came role as 0 in the book example. The
replacement for the point g is a profile that causes a tie vote for all
poscible subsete. The cbvious cheoice is where the voters are split equally
among all possible types. Only the rank of Df is left, but this involves a

symme try argument, so 1711 discuss it later,
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4. From Multiple Srstems to Strategic Voting

There are sorts of other paradoxes! This is becauce, for NX3, the
dimension of the domain, Si{N'), is much larger than that of the range. So,
as with the book example, the mapping fip,WN) can be augmented with cther
maps to create still wilder types of concomitant, unexpected behavior. (Some
of them concern AMS and MAR procedures,? Many of these new paradoxes can be
identified just by "exyeballing" the subspace generated by the row vectors of
Df. For example, becauce this Jacchian depends on WN, other voting vectaors
need not be in this subspace. A consequence is our earlier assertion that
election results tallied with different procedures need not agree. More
precisely:

Theorem. To rank a set of N alternatives, let {(Wni,..,WnNN-12 be N-i
vaoting vectors that, along with ¢(1,1,..,1), span RN, Choose N-1 rankings
of the N alternatives. There exists a profile of voters so that when this
profile is tallied with Wny, the outcome is the jTH selected ranking,
J=1, . ,N-1.

Thus, there is no reason to expect any concistency of electicn results
among different tallying methods. For instance, the plurality ranking of the
beverage example is the exact revercal of the Borda ranking. Examples are now
easy to create; e.g., there is a profile of voters where their (1,0,0,0) tally
is ajrazazraa, their ¢1,1,0,0) tally is asrazrazra;, while
their (1,1,1,0) tally is az*ai?as>az. Not much consistency here!

This result extends to all 2ZN-i{N+1) cubcetc to create a "super versicn"
of our first theorem. <‘Again, the Borda Count minimizes possible ocutcomes,)
As an illustration, there is a profile of voters so that their plurality
ranking of {aj;,..,ax¥, is araz?>..>ax if K is even, and the reverse
of this if k is odd, k=3,..,N. For the same voterc and for each Kk, their

{1,1,0,..,0) election ranking (vote for your top two candidates) always is the

exact revercsal of the plurality ranking.
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&11 we need for such theorems is the independence of the augmenting map,
so voting vectors can be replaced with other vectors, e.q., <0,0,..,0,1), In
this way, we can analyze more sophisticated runoff procedurec, such as the one
used by the American Mathematical Scciety, where at each stage, candidates are
dropped if ther don’t satisfy certain criteria. To see this, consider the
simple s¥ctem where at each stage the list of candidates ic narrowed by
dropping the candidate with the largecst number of last place votes; i.e., the
candidate with the largecst ¢0,..,0,1) tally. An above type statement asserts
there can be a lack of any relationship among cutcomes; if anything other than
a Borda Count is used to tally the election, then there are cituations where
the first candidate to be dropped is the Condorcet winner, etc. The beverage
example illustrates ancther charactericstic; the winner of the first stage,
milK, is dropped!

An amusing paradox that emerges from this analysis is motivated by
Simpson“s Paradox where the aggreqgation of two favorable situations created an
unfavorable cne. Can this happen in voting? It can and in many different
ways; I711 just identify one. It’s ocbvious that positicnal voting methods are
monctonicy if vou vote, you're improving the chances of your candidates, On
the other hand, our first theorem proves that monotonicity can be lost when
reculte cver different subsets of candidates are used, ac in runcff electicns.,
When a procedure involves several sets of candidates, it isn‘t difficult to
show it need not be monotonic. Ah, this provides all sorts of opportunities
such as showing that there are profiles where, by voting, the ballot hurts the
voter’s candidates; indeed, the vote has a reversed effect on the final
outcome! In other words, there are situaticns where it is in a voter’s best

interest to abstain, even to vote againcst his or her candidates! <«This is

related to "strategic voting".> In fact, by using this approach, it isn’t

overly difficult to characterize thece procedures. <(Using completely
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different arguments, Steve Brams and Peter Fishburn [4] discovered one such
procedure in terms of the standard runoff elections.?

1 think 1“ve made my point that the Known and the previously undiscovered
difficulties of tallyving procedures {as well as in probability, nonparametric
statistics, etc.? are concequences of the very large dimension of the domain.
So, Jjust imagine what new electoral micschief is created if the zize of the
domain is increased! This is an unexpected, unintended by-product of any
"reform" procedure that provides voters with added cpticns. For instance
Definition. A multiple voting system is an election procedure equivalent to

having each voter specify his or her ranking of the N alternatives and
then select a voting vector to tally this ballot from the set

M={(Win,.. ,WynI! J22, the difference between any two vectors is not a
multiple of (1,1,..,1)%}.

Multiple voting systems are fairly common, The Mathematical Association

of America recently adopted one ~ approval voting. This is where each voter

indicates approval or dicapproval of each candidate, so it ic the multiple
system defined by M= {1,0,..,00, (1,1,0,..,00, .., ¢1,,.,1,023, 1In my own
department, we elect our EBudget Committee by voting for no more thanm our top
three candidates; namely, we use the system M = {{1,0,..,0%, (1,1,0,..,07,
{1,1,1,0,.,.,00%., & commonly cuggested multiple voting method is to let each
voter distribute a fixed number of points among the candidates. If the voter
has 10 pointe where any fracticon of points can be assigned to any candidate,
then M has an infinite number of voting vectors., Or, as used in some Illinois
electicne, only certain divisions of the points are allowed. Multiple systems
are created whenever an organization is tolerant of "truncated ballots"; e.qg.,
suppose for a Borda election, everyone is to rank the five candidates for a
tenured position, but suppose some of the ballots list only one, or maybe two
candidates. If all ballots are tallied, thics creates the multiple system
M={(4,3,2,1,0), (4,0,..,00, (4,3,0,..,0032.

A "reform" jucstification for using a multiple system is that it permits



Page 14

the voters to register the intensity of their likes and dislikes for the
candidates. But, nc good deed goes unpuniched; the penalty accompanying this
virtue forcefully comes from the significant increase in the dimension of the
domain, In fact, the dimension is so large that it creates all sorts of new
diabolical surprises for the tallying process. After all, not only must the
domain reprecent the N! types of voters {(the profile p), but also it must
represent what fraction of each type of voter uses each of the possible voting
vectors., This creates a fiber bundle cver SiiN!) where a point in a fiber
specifies the selection of the different tallying methods. If M admits K
choices of voting vectors, then the dimension of a fiber ies (K-1){N!), so the
dimension of the new domain is KiN')-1, As just a sample of what new
paradoxes can be admitted, Jill Yan Newenhizen and I [5] chowed that
Theorem. Let M be a given multiple voting system used to rank N22
alternatives. There exists a profile of voters so that as the voters only
change in their choice of how to tally the ballots, all N! election

resulte occur.

Thue, multiple s¥stems introduce complete indeterminacy even with the

=3

me set of candidates and with the same voters'! *You can see this with the

W

beverage example; if approval voting is used in this electicon, then, as thece
same voters vary in whether they approve their first, or their first and
second beverage, all 13 rankings result! <(This includes the 7 rankings with
ties.) Again, this statement extends to all of the subsets to create a
general, multiple voting vercion of our basic thecrem. By excluding an
algebraic set that contains the Borda “Jectors, VYan MNewenhizen and 1 showed
that & profile can be found where the election rankings for each of these sets
varies over all possible rankings as the voters changes choices of tallying
procedures! As before, the reculte are robust because they are cupported with
open sets in the base space SiiM!),

This creates doubt why anyone would ever want to uce a multiple svestem.



{There may be reasons, but it must be shown that ther are worth the
accompanying price of indeterminacy.) Earlier, 1 gquecticned whether cone could
trust a voting system if its rankings can be so sensitive to which candidates
Just happen to be precented. Multiple systems not only preserve these serious
flaws, they add a host of distrubing new ones' &s a personal example, I
wonder what the election resulte for our Departmental Budget Committee or for
the MAA really mean?

fe a last sample of what can go wrong o =lections, we’1l vicit the world
of strategic voting. Responding to the criticism that his method could be
manipulated, Borda reportedly asserted that his csystem was meant only for
honest pecple. This leaves cut Chicago and most of the modern world!
Strategic behavior exists. Of course, we now Know from the important Gibbard
[&1 and Satterthwaite [7] result that all reasonable {(e.g., nc dictatorchips)

election procedures ranking three or more candidates can be manipulated.

1 P 2

Tzrefore, we need a zzd

zeconi

approach; we need to know what methcods
;#elihoed of & successful manipulation.

An approach to resolve this gquestion is suggested by our method of proof.
Let gip,W> be the W tally of an election of the set of N candidates for
profile p. To manipulate the outcome, some voters will assume a different
rankKing of the candidates; i.e., the election will be tallied with p° instead
of p. Here, p’=p + v where v indicates the change due to manipulation. If
the manipulation is successful, it altered the election ranking of some two
candidates. This means that gi{p,W) is on one side of the tie tally for the
two candidates, while gip+v,W) is on the other. So, to analyze this problem,
ook at the hyperplane of profiles in Si{N!'} that cause a tie vote between the

two candidates. The cusceptibility of a voting method is measured by the

number of p“e that are positioned close enough to this hyperplane so that the

sincere profile, p, ic on one side while the manipulated profile, p+y, ic on
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the other. Namely, it measures the number of opportunities admiting a
zucces=ful manipulation.

Notice the similarity of this formulation to a fluid flow problem {y(p)’
through a higher dimensional membrane {of dimension N!-2). Continuing this
analogy, the prcblem ic to minimize the amount of (manipulaticn) fluid passing
through. In this way, the problem can ke solved. For instance, with
appropriate neutrality assumptions fany profile is equally likely, it is
equally liKely that any pair is the target of a manipulation, etc.>, and for

N=3, I‘ve shown that Borda‘s method minimizes the Jlikelihood of a successful

manipulation! [91 ({How appropriate; Borda’s main research involved fluid

flow.? This was surprising to me hecause i1t’s poscible to construct examples
where Borda’s method is the worst! (So, Borda’s method minimizes the number
of such examples.) O0Of courcse, different azcumpticons yield different ancwers.
In fact, it turns out that any srstem can be justified as being the "best" if
you impcse the appropriate assumptions on how certain voters behave, their
predilection to cheat, etc. That‘s one reason I adopted “"neutrality”
assumptions.,

Although 1t's cbvious, it's worth mentioning that multiple methods
provide far more opportunities to manipulate the system than ordinary vcting
systems. This ic because the indifference zurface in the fiber space has
dimension KN!'-2 rather than just N!-2Z. This extra dimension provides the
strategic voter with extra advantages. To illustrate, suppose a profile is
tco far from the surface for a voter to manipulate the system by using Winj
however, it could be close enough to successfully manipulate the system with,
say, Wan. In other words, a multiple system not only provides more
cpportunities to manipulate the =ystem, but it even canctions the added, new
strategies! But, vou Knew this, and you’ve used it. When vou're a candidate

with an electicn procedure that permits you to vote for several candidates,
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vou probably "truncate" your ballot {to create a multiple system) by voting
enly for yourself, You Know rou're trying to manipulate the syetem to wvour

advantage.

S. Symmetry and the Axiomatic Approach

The principal cause of these paradoxes is that, unknowingly, we’re
forcing & large domain onto & lower dimensicnal range; the "=zquacghed" cverflow
creates the paradoxes. Thics is only part of the story. Occasionally on this
excursion through the perils of the electoral procecss, I’ve hinted that part
of the difficulty is due to the symmetry of permutation groups. The groups
arice by identifying each zlternative, {asy2, Jj=1,..,N, with its subscript,
so a ranking of the alternatives can be identified with a cspecified
permutation of thece symbole. In this way, the ranking azrajrasz is
identified with the permutation [2,1,3] and aj2az>az with A& = [1,2,3].

Let P{1,..,N) be the space of all of N! permutaticns for N alternatives.

The symmetry group, Sw, acts on P{1,..,N) where its orbit of any

AN

ranking in P{1,..,N) is all of P{Y,..,N). For incstance, [2,1,3] = (1,2)(2)4,
So, by choosing one permutation, say, A=[1,..,N], Sy ic identified with
P{t,..,N) by identifrving B in P{1,.. N) with q in Sy where gA=B.

In voting, we're interested not just in P<1,..,N), but alsoc in the
rankings of the subsets of alternatives. To describe this, consider P{1,2,3)
and P{1,2>. A voter defines a ranking in P{1,2,32, and this ranking uniquely
determines a ranking in P{1,2); e.qg., if [2,1,3] characterizes the voter in
Pi1,2,3), then the restriction [2,1] is the appropriate ranking in P(1,2),

Thus, a voter’s ranking is an element of the diagonal D in P{1,2,3)%FP(1,2),

It turns ocut that many of the negative results from social choice are

based on the difficulty in expressing D as the orbit of a group. Clearly, the
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group acticon involves S3xSz. But, D isn‘t an invariant subset of

S3xS2, so restrictions need to be imposed. To cee thic, start with the
permutation ¢1,2,3) and consider (1,2,3301,2,31 = {2,3,1]. The restriction of
the image, [2,11, i¢ the trancpeosition, or flip, of the restriction of
{1,2,31, [1,21. This suggests that associated with 1,2,3) in 53 is the
flip, F, from S2. It works here because {((1,2,33,F¥{[1,2,31,01,2]1} =
{[2,2,11,02,11> maps an element from D to D.

This ten“t cufficient, For instance, consider {{1,2,3),F} acting cn
arnother element of D, say {41,2,3),F3{[3,1,21,01,2)} = {[1,2,31,02,11}. This
image is not on the diagonal. To force the image on D, the group acticn needs
to be {¢1,2,3),1 where I is the identity. Evidently, the choice of the

element from S depends not only on what group acticon is celected from 33,

but alsc on what element in P{1,2,3) is acted on, In other words, the group

action selected from S2 is determined by a mapping s:53xP3--»Sz. When
certain appropriate assumpticns are imposed on s, this defines a new group,
S378z - the wreath product of the two groups. 1711 need the extensicon to
several groups - the iterated wreath product.

To have a better idea of what is going on, consider the geametric
reprecsentation of the rankings given in Figure ! where each vertex is
identified with one of the alternatives. A point in the simplex represents a
binary relationship in the following way: the closer a point is toc a vertex,
the stronger that alternative is preferred. In this way, the baricentric
divicion of the simplex defines all possible rankings. For instance A& =

[1,2,31, E = [2,3,11.

[ 2N)

The permutation (1,2,3) can be viewed as rotating a ranking 1200 in the
counterclockwise direction. For instance, ¢1,2,3)C = A, This rotation induces
a flip in P{1,3) and in P<2,3%, but no change in P{1,2). «(This can be ceen by

projecting the ranking onto the rankings on the appropriate edges.) Alcsao,
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(1,2,3)2C = E; again, this group action and C define various flips and
identity operations on the paire. So, to understand a change in a voter’s
rankings, view it as an element from the iterated wreath product
$3752752752 operating on the diagonal D3 in P3 =
Pi1,2,33xP(1,2)xP(1,3xP(2,3).

This 1200 rotation - the simpliest group action available in the plane
but not on the line - explains the agenda problem faced by our Chair. Five
members of this Department have ranking &, 5 have ranking C, and 5 have
ranking E. The tally for any pair is computed by projecting the numbercs to
the appropriate edge. In this way it's clear what happens - the projection of
the symmetry in the plane is a cycle on the edges. With this symmetry, the
last listed alterpative in an agenda alwars wins. Alternatively, this cycle
corresponds to the number of flip and identity group actions acting on the
cets P(Jj,k) created by the orbit from the wreath products.

More complicated problems can be analyzed in a similar way. This
includes the seminal Arrow’s Theorem as well as most of the other results from
Social Choice. To illustrate this, 111 use my notation to reconstruct a
special case of Arrow’s Theorem with 3 alternatives and two voters. We are
interested in the maps
&, F:D3axD3-->P3
where the goal is to characterize the subcset of maps that satisfy
7. {F:D3xD3~--->D3l F is ontol.

Thece are the mappings that admit all possible election rankings where the
election ranking of all three alternatives agree with the election rankings of
the paire; i.e., there are no surprises, paradoxes, or cause for Departmental
suspicion,

It's easy to find cuch & mapping; any surjective F from

P{1,2,3¥xPi1,2,3)---2P{1,2,3) defines a ranking of the three alternatives.



Mow, let the group’s rankings of the pairs be the natural restrictions. But
this isn’t what we want becauce it deoecsn’t address the real problem introduced
by the beverage example. It just imposes statements that the Departmental
members rank milk above wine, etc. To addrece the real problem, we want the

election rankings of any two alternatives to depend only on the voters’

relative rankings of thece came two alternatives. This means that for all

choices of j and K, we require the cbvious restriction of F to satisfy
g. FiPCj ,KoxP{j,Ky===2PCj,K),

The identity map on ane variable satisfies 7 and &. In our Department,
this isn’t acceptible because it corresponds toc making one of the woters a
dictator, but not nececsarily a benevolent one. Concequently, our vercion of
arrow’s last assumption is that
7. F canncot be reprecented by a function of one varizble,

Surely, with some imagination, =zuch an F can be found. However
Theorem. The set of mappings satisfying 7,8,9 is empty.

The proof relies on the iterated wreath product of groups. To get a
flaver of this, notice that because of 8, to construct such & map vou would
start with the pairs and let their rankings dictate the full ranking of the
triplet. EBecauce of 7, there are situations where each voter can affect the
outcome. According to 8, we can assume this cccurs with some pair,

With all the symmetry, it doesn’t matter which pairs we choose. So,
assume the first voter can affect the P{2,3) ranking and the second can affect
the PC1,2) ranking. 1t may be that thic is true only when the other voter has
a fixed specific ranking of the same two alternatives. For instance, suppose
that voters 1 and 2, respectively, need the rankings [1,2] and [2,3] for the
above to be true. (By symmetry, evervthing can be modified for any other
choice.)? These conditions are satisfied if the first voter’z rankings vary

N

between & and B while the second veter’s rankings vary between A and F.
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“ccording to the above, this means that the election ocutcome of the pairs
varies between [1,2) and [2,13, [2,3) and [3,2) independent of each other,
But, the [1,21 and [2,3] cutcomes forces the full ranking to be A while the
(2,1 and [3,2) rankings forces the ranking to be D. This means that although
the two voters never changed their P(1,3) rankings, the P{1,3) election
cutcome did! Thi=z contradicte & and proves the thecrem.

80, it is the changes in the voters’ preferences that are captured by the
wreath product of groups. To prove the rezult, elements from F{1,2,3) and
actions from the wreath product are chosen so they define a flip on one pair
of the alternatives and the identity on the other twoc paire. By 9, thics means
that the image is characterized by independent flips over two different pairs
of alternativee. In turn, this forcec the image to flip on the remaining
pair, but this cannot occur.

All of the other Zccial Choice results that I7ve encountered, including
the Gibbard - Satterthwaite thecorem and results about restrictions on
preferences, are of a similar nature, Certain "independence" conditions,
either implticitly or explicitly, reguire that the rankings over certain
subsets of alternatives to be determined by the voterc’ relative rankings of
theze same alternatives. This defines the appropriate wreath product of
permutaticon groups. Instead of ucsing the usual combinatoric arguments, thece
theorems could be prove and extended by showing there doesn‘t exist a mapping
from the product of certain wreath products to another wreath product that
satisfies the specified properties. The alternative is that F is a mapping of
ane variablej i1.e, the system is a dictatorcship.

Our first, basic theorem about tallying methods is proved with similar
techniques. 1 examined the vector cspace spanned by {fip,WN)IpeSisN!)} where
f gives the actual tally. This space is invariant with respect to the

iterated wreath product defined by the ZN-{N+1)> permutation groups. So, the
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proof is based on finding and characterizing all of the invariant subspaces of
this group action. In particular, one goal was to find the cubcpaces of lower
dimencsicon, Because of this approach, it is reascnable to expect, and it
cccurs, that thece lower dimensional zets form & stratification much like in
singularity theory. (It should, these are the singular sets of the group
action.) The zecond theorem is based on the fact that the zet of lowest
dimencion comes from the Borda Count. Finally, with this approach, the normal
bundle for the vector cpace can be determined. From this, the
characterization of any dictionary follows with simple vector analrsis
arguments.

In summary, it ic the symmetry of the Borda Count that accounts for its
highly favorable properties. These properties are so strong that I recommend
»ou uce the Borda Count for your next election. If you den’t, you’'ll pay for

it -- »ou may need to go to ancther departmental meeting!
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