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WE EVENTUALLY AGREE

This paper is concerned with convergence of beliefs under iterative
processes of information exchange. Given different agents with different
information, those agents will typically attach different probabilities to any
given event. Geanakoplos and Polemarchakis (1982) showed that, with the
information of each player represented as a partition of states of the world,
if each player's information partition is finite and if agents iteratively
announce the value of their posterior distributions then the value of each
agent's posterior distribution converges to a common value. Nielsen (1984)
extended this result to a more general information structure. With the
information of each agent represented as a Boolean sigma algebra, a more
general communication process and possibly an infinite number of agents,
Nielsen showed that the posteriors of agents converge almost surely to a
common posterior. Recently, McKelvey and Page (1986) generalized the result
of Geanakoplos and Polemarchakis to an iterative process of public
announcement: at each stage individuals compute their posteriors, a (scalar)
statistic based on these posteriors is computed and announced. Then, at the
next stage, individuals compute new posteriors, conditional on the value of
this statistic and their information. They show that with this iterative
process and finite information partitions, convergence to a common posterior
occurs.

The purpose of this paper is to extend the results of Geanakoplos and
Polemarchakis and McKelvey and Page to the case where agents' information
structures are represented by sigma algebras. In many economic models,

information of agents is represented as the observation of a signal or random



variable. In such circumstances, the conditional probability of an event,
given the random variable, is understood the mean the conditional probability
of the event, given the sigma algebra generated by the random variable. In
this case it is natural to represent the informational content of a random
variable by the sigma algebra it determines. Similarly, the conditional
probability of an event, given a partition is understood to mean the
conditional probability of the event, given the sigma algebra generated by the
partition. To see that partitions may not adequately represent information
when conditional probabilities or expectations must be defined, consider the
following example.

Let @ = [0,1], let ¥ be the Borel field and let p be lebesgue measure on
[0,1]. Define the random variable x as x(w) = w, w € [0,1]. Thus the
partition of [0,1] determined by x is the set of all points in [0,1]. This
random variable or the partition determined by it correspond to what one means
by full information: knowing that the random variable has the value X, one
can infer that the value of w is w = x—l(i) and knowing the element of the
partition that contains w is an equivalent to knowing the value of w. Let 7
be the sigma algebra generated by x (¥, = 7 here) and ?p the sigma algebra
generated by the partition. Also, let 7, = {{#}, a}, %, corresponds to no

information.

Given any A € 7%,
p(A|7,) = p(A) = p(a]5), a.s.
while

p(A‘JX) = lA’ a.S.



where IA is the indicator function of A.

Also, given any integrable random variable vy,
E(y|7,) = E(y) = B(y|7,), a.s.
while
E(yl?k) =y, a.s.
Yet another way of viewing the issue is to consider maximizing a state

dependent utility function conditional on the different sigma algebras. Let

u(x,w) =1 - (x - m)z. Then

MaxE{u(x,m)|§p} gives x(w) = 1/2, a.s.
and
MaxE{u(x,w)'?ﬁ} gives x(w) = w, a.s.
The decision function x(w) = w a.s. (and not x(w) = 1/2 a.e.) corresponds

naturally to the decision rule of an informed individual. However, any
function which is Zﬁ measurable is constant almost surely.

It is clear that the fully informative partition does not determine a
conditional distribution which reflects full information, whereas the algebra
¥y does. (Note, however, that the algebra ¥, is not generated by any
partition, since it contains all the singleton sets.) Furthermore, since any
decision function which is 7p measurable is constant almost surely, this

conflicts with the intuition that one wishes to allow a decision function to



vary with information.1 These observations make clear that in this example 7,
is the appropriate algebra to represent the information and makes clear the
need to discuss the convergence of beliefs when information is represented by
sigma algebras. In section 2 the framework for the discussion is given.
Section 3 provides the extension of the result of Geanakoplos and
Polemarchakis. This is essentially the same result as that given by Nielsen
although the way in which information is represented is slightly different.
The main reason for providing this discussion is that it serves as an
introduction to the work of McKelvey and Page which is the main focus of this
paper. The extension of the work of McKelvey and Page to the case where
information is represented by sigma algebras is taken up in section 4. It
should be pointed out that both Nielsen and McKelvey and Page discuss other
issues in addition to convergence of beliefs. Here the focus is exclusively

on their results with regard to convergence of beliefs.

2. The Model

A probability space (Q,7,p) is given where p is the prior distribution
over I, common to all individuals. The set of agents is denoted N and the
information of each agent i € N is represented by a sub-sigma algebra %; of
¥. Information represented in this way has the following informal
interpretation: given w € Q, for any F ¢ 7;, agent i "knows"” if w € F or
w € F¢ (FC is the complement of F). Given an event A € 7 a conditional
probability with respect to ¥; is an ¥; measurable, integrable function

p(A,Ti) which satisfies the functional equation pr(Al7i)dp = p(A nF), for

all F € 7;. Denote by ¥ = n 7, the maximal sigma algebra contained in all
v ieN
of the F;'s and by ¥ = v 7. the minimal sigma algebra containing all the
ieN

?i's. (Thus, F € a'implies that F € 7; for all i € N.)



3. Iterative Announcement of Posterior Distributions

The situation considered here is that where agents announce their
posteriors on an event A at each stage and iteratively update their posteriors
conditional on their private information and the past history of announced
posteriors.

The iterative process is described as follows: at stage 1 agent i

announces p(AlJi) = q£1), i € N. The information revealed by these

announcements is represented by dl = i;N dil where ail = 0(q§1))' At stage 2
agent i computes and announces p(AlZi v dy) = q§2)). Let

at = 5 ds, ds = .v dis and ajg = o(qgs)). At stage t agent i computes and
annoui;id p(A'?i vlzg‘l) _ qgt)-

Theorem 1: qgt) converges almost surely, say to q§w), for all i € N and

q£m) = qgm) almost surely, for all i,j € N.

Proof: Let g = Szl ag and let qgm) = p(AiJi v d”). Since?; v at7l < 7 v
ae,
(=) t-1, _ 5 t-1
E{q l:{i va '} = E{E{IA|7i v d Hji va "}
_1 -
= E{1,|7, v a" ) = p(A|7, v a1t

q; a.s. (almost surely).

(v

Therefore, (qi s Yi \ dt_l) is a bounded martingale so that qgt)

converges almost surely to qiw) = p(AI?i v a’).

t

Next, since d" = v d_,d_= v d._ and d, = O(QSt)), q§t) is

s s . is it i 1
s=1 ieN

measurable at dt. Therefore,



Thus,
E{ it)|dt} q(m) a.s.
and
E{ gt)[at} E{qiw)’dm} a.s.,
so that
E{q:|dm} = q: a.s.
and
B{q;|a"} = E{E{1,|7, v d"}|d"}
- B{1,]d}
= p(A‘dm) a.s.
Thus,
q: = p(A|dm) a.s., ¥ ie N. I

This iterative process involves each agent obtaining a substantial amount
of information at each stage—-the posterior distribution of each agent.
McKelvey and Page restrict the amount of information made available to
agents. Instead of the posterior distributions being announced at each stage,
a (scalar) statistic based on the posterior distributions is announced with
all agents having finite information partitions. For a class of admissible
statistics an iteration similar to the above leads to convergence, almost
everywhere, to a common posterior distribution. The next section is concerned

with extending the result to a more general information structure.

4. Iterative Announcement of an Admissible Statistic on Prior Distributions

The discussion of this section follows closely that of McKelvey and



Page. Central to extending their result is the introduction of regular
conditional distributions which are proper almost everywhere. Given a
measurable space (Q,¥), a regular conditional probability distribution on ¥
given d ¢ 7 which is almost everywhere proper is a function p on @ x ¥

satisfying the following three properties:

(i) for each w € , p(+,w) is a probability measure on %;
(ii) for each F € ¥, p(F,+) is an d measurable function with
p(F,*) = p(F|a) a.e.;

(iii) 3 A€ d with p(A) = 0 such that p(G,w) =1 if w e G e 4, w ¢ A.

To proceed, some notation and definitions are required. These are taken
directly from the paper of McKelvey and Page.
Let T = [0,1], 1™ = [0,1]®, M(I) and M(I™) the set of probability

measures on I and IP, respectively.

Definition 1: If X,y € M(I), X stochastically dominates p (written X > p) iff

x(10,b}) < u(lO,b]), ¥ b e [0,1].
Given p € M(I"), define p; € M(I) from y by pi(C) = u(l x oo C x +u. 1),
¥ C € B(I). Here B(I) is the borel sigma algebra on I and C is the 1th

coordinate of the product I x ... C x ,.. I.

Then A stochastically dominates u, (A,p € M(I™)) if Ay > ny,

i=1,...,n. This is written X » p. If X > y and X # u, this is denoted by

A D U

Definition 2: f: I™ » R is stochastically monotone iff ¥ A,u € M(ID),

A D> w = £(3) > f(u), where £(1) = [fdx and £f(u) = [fdy.

Definition 3: h: IM » R is stochastically regular iff h = g o f where f is




stochastically monotone and g: IR + R is invertible on the range of g.
Given any function h, h: I™ » IR, the iterative process of public

announcement may be described.

Stage 1
Agent i computes q% = p(A'!i)
¢1 = h(ql) is publicly announced, q1 = (q%,...,qé)-

Let dy = o(¢l)-

Stage 2
Agent 1 computes q% = p(Al?i v ab)
¢2 = h(qz) is publicly announced, q2 = (q%,...,qg).

Let dy = (¢2) and a% = 4, v 4,.

Stage t
Agent i computes qg = p(A'Ti v dt—l)
t-1 t-1
where "' = v a, a_ = 5(4%)
=] S S

6t = h(qt) is publicly announced.

t
i}ieN'

The interest is in the limiting behavior of {q

To proceed, some additional structure will be imposed on the measurable
space (9,7), introduced in section 2., It will be assumed that Q is a complete
separable metric space and 7 the set of borel subsets of Q. Then given a
stochastic process (X|,Xp,.es,Xg,++.) = X, if 4 = o(x) there exists are
regular conditional distribution on ¥ given d which is almost everywhere
proper.

The conditions under which such a probability exists are quite general

and are discussed in Blackwell (1955), Blackwell and Ryll-Nardzewski (1963)



and Blackwell and Dubins (1975). Recently, Brandenburger and Dekel (1985)
have used properness of regular conditional distributions in the context of a
common knowledge framework.

The theorem may now be stated. Recall the context of the discussion: a
probability space (9, 7, p), an information structure Flseeesdy and an

aggregation function h: " > R

Theorem 2: For all i, qg converges to q; (say), almost surely. If h is
continuous and satisfies stochastic regularity then q; = q; almost surely, for

all i,j € N.

Proof: An important part of the proof involves extending a theorem of
McKelvey and Page from the case where information is represented by partitions
to the case where information is represented by sigma algebras. This is done

in Proposition 1 below.
For the following proposition it is assumed that there exists a
stochastic process (Xj,Xp,se«,Xz5+++) = X such that 4 = o(x).

Proposition 1: Let ¢ = h(q) satisfy stochastic regularity. If 4 c ¥

satisfies 4 ¢ n 7. and o(é¢) < d, then for almost all w € @,
ieN
qi(w) = p(A'd)(w) where q; = p(A|?i).

Proof: 1If p(A) = 0, then ¥ i € N

IQ p(Alzi)dp =0

so that p(AIJi) =0 a.e. ¥1 € N, Similarly,
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/g p(A|2)dp = 0

so that p(Ald) = 0 a.s. and the proposition holds.

Suppose that p(A) > 0. Define the measure p, on 7 by

PA(F) = p(A n F)/p(A), ¥ Fe 7

Fix regular conditional probabilities on ¥ given 4 which are almost everywhere
proper. This gives two functions p(F,w) and ps(F,w) defined for F € ¥, w € @,
where, for example:
i. for each w € @, p(F,w) is a probability measure on ¥;
ii. for each F € 7, p(F,w) is an d measurable function with
p(F,w) = p(F'd)(w) a.e.

iii. 3Ved, p(V) = 0 such that
p(G,w) =1 if w e Ge d, wdV
The properties of py(F,w) are the same except that in (iii) the set V is

replaced by a set V, with p,(V,) = O.

Next, ¥ w € Q let

MCw) = py(a”l(C),w), € e B(IM

and

u(C,0) = p(q 1), w

For each w € @, define measures A (+,w), u;(+,w) on B(I) by
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Ai(C,m) A(I x voe C x vue I,w), C € B(I)

pi(Cyw) = u(I x oo Cx «..I,0), C € B(I)

th

where C occupies the 1 position in I x ... C x ... I.

The following two lemmas will be used in the proof of Proposition 1,

these lemmas are proved in the paper of McKelvey and Page.
Lemma 1: Let A,y € M(I). Suppose that there exists ¢: R + IR, monotone on I
with

A(C) = fc¢du, ¥ C € B(I)

Then A » y with A > up unless u({t}) = 1.

Lemma 2: Let A;(C,0), p;(C,w) be defined as above. Then

P(A[2) () (Cw) = [ tu;(dt,u) a.e. w € Q

In the following, the expression "p a.e.” means that the statement holds
for all w € Q except on a set of p measure 0. Similarly, the expression

" * "

p(e,w ) a.e.” means that the statement holds for all w € Q except on a set of
*

p(e,u” ) measure O.

Next, it will be shown that p a.e. w € Q
* * . *
A(e,w7 ) > p(s,w ) unless q is constant p(-,w ) a.e.

To see this there are two cases to consider:

Case 1: p(AId)(w*) = 0. If o* is in the p null set on which the equality in
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Lemma 2 does not hold for i € N, ignore it. Otherwise, by Lemma 2

*
Jotu;(dt,w ) =0, ¥ Ce B(I), ¥icN

* * * -
Therefore, Ui({o},w Y =1, ¥ie N (so A(+,0w ) > p(e,0 )) and p(qil(o),w) =1,

¥ie N (since u;({0}, o) = pla7l(0), v))

0, p(-,m*) a.e. and so q = 0, p(-,m*) a.e.

Consequently, ¥ i € N, q4

Case 2: p(A'd)(m*) > 0. Again, ignore the p null set on which the equality

in Lemma 2 does not hold for all i € N. Since p(A,ﬂ)(w*) > 0,

* t *
A (Chw ) = fc{————————;—} ;(dt,w ), ¥ Ce B(I), ¥i €N

’ p(A|@)(w )

Applying Lemma 1 gives, ¥ i € N there exists t; such that
* * ) * *
Ai(',w ) > ui(-,w ) with Ai(-,w ) > ui(-,w )

* ) -1 *

unless ui({ti},w Yy =1 (i.e., p(qi (ti),w ) = 1). Therefore,
* * -1 *

A(e,w ) > p(e,0 ) unless p( n 94 (ti),m ) = 1.

ieN
Let t = (tl,...,tn). Then,

p({w € afqw) = t}, W) =1

Combining cases 1 and 2 gives the result that p a.e., 4 € Q,

* *
A(e,w ) > u(e,0 ) unless q is p(-,m*) a.s. constant.
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Let M be the null set (i.e., p(M) = 0) on which this result does not hold
and recall the definition of regular almost everywhere proper conditional
probabilities introduced earlier. There, sets V and V, were given, with the

property that
Ved, p(V) =0 with p(G,n) =1 if we Ge d, w ¢V

V € d \Y = i =1 i \Y
A , pA( A) 0 with pA(G,m) ifwetGed, nt A

observe that since 4 ¢ 7;, ¥ i € N, V), € ¥; so that

[y a;dp = [, p(a]7.)dp = p(a n v,)
A A

Since 0 = pa(Vp) = p(A n Vp)/p(A) and p(A) > O this implies that

= ¥ i N
fVAqidp 0, ie

so that on V,, q; = 0 p a.e.

*
Let w e g\ (Mu Vu VA) and let Q € d satisfy

* *
w € Qc {ue afhqw) = higlu N}

(Recall that h(q(w)) = ¢(w) and by assumption o(¢) < d). Since h = g(f),
where g is invertible on its range, ¥ w € Q, f(q(w)) = f(q(w*)).

Next,

* *
EOCe,0 ) = [ExIA(dx,w )
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= [£(a())p, (du,u )

* . * .
and using the fact that p,(Q,w ) =1, since w ¢ V, gives

* * * * x
f(A(eyw )) = f(qw ))pr(dw,w ) = f(q(w )) and since w ¢ V,

[£(q())p(dw,u )

*
f(qlw ))

ff(x)u(dx,w*) = f(u(-,w*))

Since f is stochastically monotone, this implies that A(-,w*) * u(',w*)- Thus
*

w € QN (MuVuVy and Q = 4 with
* * ) . * * .

w €Qc {ue th(q(w)) = h(q(w ))} implies A(+,w ) } pu(e,w ) so that q is

*
p(+,u”) a.s. constant.

Note that p(V,) may be positive, however
* *
0 = fVAqidp = fVA[fqip(dw,w )1p(dw )

SO
*

*
p a.e. w € VA’ fqip(dw,w ) =0
or

*

*
p a.e. w € VA’ q; = 0, p(e,w ) a.c.

* *
Consequently, p a.e. w¥ e q, if u ¢ Qc {we Q|h(q(w)) = h(q(w ))} and Q € 4,

then q is constant p(-,w*) a.e. Recalling Lemma 2 with C = I, p a.e. w* € Q

* * *
P(A|@)(w A (T,0) = [1tu,(dt,0 )
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or

* *
p(A|@) () = [ tu (dt,w )

Using the change of variable formula gives

*
f -1 qi(w)p(dw,w )

4y (1)

*
p(A]@)(w )

]

*
Ja; (wp(dw,0 )
~ A ~ *
For all @ € Q, let qi(w) = fqi(w)p(dw,w). Thus, with p a.e. w € Q
* Ak
p(Al@)(w7) = g4(w)

Since p a.e. w* € 2, qi(w) is constant p(-,w*) a.e., it follows that p a.e.

*
w € Q

- *
[la; () = a () |p(dw,u ) =0
Therefore,

. . R
[1f]ay(w) = a; @ |p(dw,o )Ip(du ) = 0
or
II31<w> - q; () [p(dw) = 0

so that 4; = 4y, p a.e., and so

p(A|a) = q4, P a.e.
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This completes the proof of Proposition 1.

Returning to the proof of Theorem 2, observe that

Thus, (qz, F. Vv at_l) is a martingale so that for all i € N, q% converges

i
almost surely to p(A|?i v a7), where aw = v 4.

s
s>l
Let G be a set such that p(G) = 0 and ¥ i € N,

t ®
qi(m) > p(AISi vV a)(w), ¥ we G

Note that ¢t = h(q%) and since ¥ i € N, qg converges on G and h is

t

. t .
continuous, ¢° converges on G°. Let ¢ = lim inf ¢ , so ¢ is an d” measurable

function with
Lt _ w c
¢p(w) = lim ¢ (w) = h({p(A'?i v d )(m)}ieN), w € G
Pick some q € I™ and define q: on { as

= + bt
ay quG IGCp(A"Ii v a)

* . *
Observe that q; is an ¥V a” v o(G) measurable function and that q; is a

version of p(Ai?i v a® v 0(G)). Next, define 4% as

6 = IGh(E) + IGC ¢
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h(al, + I {p(al7; v aH}, )

G iel

*
h(q )

Note that ¢~ is d° v ¢(G) measurable (and is an almost sure limit of ¢t).

Let fi =9,V a v g(G), i € N and let at = a® v 5(6).

oo 1
Note that o(¢") < at < 7

ieN
Therefore Proposition 1 may be applied with 3% replacing %;, al replacing
o . *
a, ¢ replacing ¢ and q; replacing qj.
*
This yields the result that for all i,j € N, q; = q§ a.e. To complete

* o .
the proof, observe that q = p(Al';’i v 4%) a.e. ¥ i € N, so that for all

i,j € N

p(A|?i va)s=s p(A|75 vda) a.e.



Footnote

lrhis suggests the following way of defining a sigma algebra to represent

a partition. Let 7 be a partition of 2, and let

a = {x'x: 2 + IR, x measurable with respect to 7 and x constant on

elements of T}

Take 7 = VvV o(x) be the sigma algebra representing .

x€d
Thus, d is the set of (Borel) measurable functions which are constant on

elements of the partition. An element of d may be interpreted as the decision
function of an agent with the partition m. Constancy of any decision function
on the elements of 1 is a necessary requirement so that 4 may be viewed as the
class of admissible decision functions. 7. is then the smallest sigma algebra

with respect to which the class of admissible decision functions is

measurable.
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