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Abstract

A general model of normal form games with uncertainty about payoffs and
abstract player information is proposed, with an appropriate notion of
convergence of game characteristics. Conditions analogous to those used by
Milgrom and Weber are shown to be sufficient for players' expected payoff
functions to be jointly continuous with respect to strategies. Under these
conditions, the equilibrium correspondence is nonempty valued and upperhemi-
continuous with respect to players' characteristics and the Boylan metric, but
not the pointwise convergence metric, of information. When a player's infor-
mation is nonatomic, the set of pure strategies is dense in the strategy
space. Conditions for which every Nash equilibrium has a purification when

each player's action space is infinite are given.



l. 1Introduction

In this paper the behavioral similarity of players' information in normal
form games is characterized, using recent work which models information as an
element of a well behaved metric space. Given a probability space which
determines all exogenous uncertainty, Boylan (1971) defined the space of all
possible information fields about the state of nature with a complete metric
on that space. The economic implications of the Boylan metric has been
studied by Allen (1986), who proved that the demand of a competitive utility
maximizing consumer is continuous with respect to information about utility.
An alternative is the pointwise convergence metric proposed by Cotter (1986),
which is the weakest topology satisfying the above continuity of demand. One
way of characterizing the behavioral similarity of games with asymmetric
information is to identify the weakest topology (or metric) with respect to
which game behavior is continuous. This metric can be used to study some
fundamental properties of Nash equilibria which involve relationships between
players' information and the resulting game. For example, robustness of game-
theoretic properties such as the prevelance of games with pure strategy Nash
equilibria can be studied. The stability of equilibria with respect to
perturbations of game characteristics can also be examined. Some progress on
the latter has been made in an elementary model by Fundenberg, Kreps, and
Levine (1986) as a means of refining the definition of Nash equilibrium as an
alternative to using perturbations of strategies [e.g., Kohlberg and Mertens
(1986); Kreps and Wilson (1982)]}. 1In addition, there are cases where infor-
mation is required to be part of a metric space. This arises when information
is part of a player's strategy, such as in signalling and information trans-
mission, and when other players' information is part of a player's belief

hierarchy, such as the one constructed by Mertens and Zamir (1985).



To study the relationship between players' information and their behavior
a theory of normal form games with abstract information fields is presented in
Section 2 of this paper. The key result gives conditions, analogous to those
used by Milgrom and Weber (1981, Assumptions R1, R2) which are sufficient for
the expected payoff function of any player to be continuous with respect to
the strategies of all players. The proof, however, is complicated by the
definition of players' information. Existence of Nash equilibria follows
easily. 1In Section 3, the conditional expected value of each player's payoff
is shown to be jointly continuous with respect all players' payoff functions,
strategies, and information, when the Boylan metric of information is used.
Therefore the Nash equilibrium correspondence is upperhemicontinuous. Using
the pointwise convergence metric, the conditional expected value of each
player's payoff is jointly continuous with respect to his own strategy, payoff
function, and information, but not jointly continuous with respect to other
players' strategies and information.

In Section 4, some results about pure strategies are proven. The set of
pure strategies is shown to be a dense subset of the strategy space whenever
the player's information field is nonatomic. In addition, the set of
nonatomic information fields is shown to be dense with respect to the
pointwise convergence metric, but not the Boylan metric, whenever the
underlying probability space is nonatomic. Finally, some sufficient
conditions are given for which every Nash equiliprium in behavioral strategies
has a corresponding pure strategy equilibrium. These conditions are similar

to, but more general than, Theorem 3 of Radner and Rosenthal (1982).

2. The model

Consider a game with a fixed finite set of players I = {1,2,...,1I}. Each



player i € I has an underlying set of possible actions Ai, a compact metric
space., Let A = ‘H Ai be the space of joint actions of all players. All
exogenous uncertiiity in the game is generated by a common probability space
(Q, ¥, p), where Q is a set of possible states of nature, F is a countably
generated o-field of measurable subsets (events) of Q, and p is a probability
measure on . This probability space affects players only through their pay-
off functions vi:Q x A~»> K. Finally, each player has some private information
about Q. Following Boylan (1971), let the space of information 3* be the set
of all possible sub-o-fields of ¥ (i.e., measurable partitions of Q) modulo
null sets. Each player's information is some information field 44 € 3*.
This definition of information generalizes others which have been used in
game theory. For example, information is defined by Radner and Rosenthal
(1982) to be a random variable which is correlated with the player's payoff
function. This restriction to random variables does not involve any practical
loss of generality. However, the dependence of the game on the underlying
information structure cannot be studied using random variables since changes
in observed signals do not correspond to changes in the information they
convey [Cotter (1987)]. This model also generalizes Milgrom and Weber (1981),
who assumed that each player has a privately observable type space and that
the information structure for all players is a joint probability distribution
over all player type spaces. In the present model, each player's type is the
observed expected payoff function conditional on the player's own information.
As with the Radner—-Rosenthal model, changes in information cannot be easily
examined in the Milgrom~Weber model since varying the probability distribution
over types changes not only players' information but the underlying structure
of uncertainty as well. In particular, there is no meaning to better or finer

information in their model. Defining a tighter probability distribution over
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types places increased weight on a particular type, so to define that as
better information presumes that a particular type is the "correct" one.

To model a game with abstract private information, an appropriate defini-
tion of player strategies is needed. Two possibilities are suggested by the

literature. Let Cli be the oc-field of Borel sets of Ai. Milgrom and Weber

(1981) defined a distributional strategy to be a joint probability

distribution over types and actions whose marginal distribution on types is
the one given by the information structure. In this model, a distributional
strategy is a joint probability distribution on (Ai,Cg) x (Q,ﬁg) whose
marginal distribution on (Q,,ai) is p restricted to Aﬁ;. Such a definition
requires that Q be a metric space and 2i be contained in the Borel sets of Q.
In practice, this restriction does not entail much loss of generality since Q
can be taken to be the metric space of possible payoff functions, with its
probability measure given by the map from states of nature to payoffs.
However, distributional strategies are not suitable for the present model. An
alternative, used by Radner and Rosenthal (1982) and this paper, is to define

a behavioral strategy to be a function mapping the state space (or players'

type spaces) into the set of probability distributions on (Ai,czi) which 1is
consistent with the player's information. The interpretation is that a player
makes an observation based on the state, then chooses a mixed strategy over
actions. In this model, a behavioral strategy is a function si: Q XCZ£> R
such that for each B 6611’ si(',B) is g&—measurable, and for a.e. w, si(w,')
is a probability measure on Ai.

In this paper some basic properties of Nash equilibria of normal form
games in behavioral strategies will be studied. Let Si be the set of
behavioral strategies for player i. To establish the existence of a Nash

equilibrium in behavioral strategies using the well-known method of Glicksberg



(1952), a topology on Si must be defined for which the expected payoff of each
players is continuous with respect to all players' strategies. At the sanme
time, Si must be a compact, convex subset of a locally convex topological
vector space. Radner and Rosenthal (1982) solved this problem by giving Si
the weak topology. In this model, a sequence of strategies {s?} converges in
the weak topology if for every measurable function g: Q x Ai-> R with g(w,*)

continuous a.e. and IQ suplg(w,a)|u(dw) finite, f[f g(w,a)sg(w,da)]u(dw)
a.GAi Q Ai

i
*
converges to f[f g(w,a)s,(w,da)]u(dw). The weak topology in the Radner-
Q A, t
i
Rosenthal model is more easily constructed by their assumption that each
player's action space is finite. When the action space is infinite, a more
delicate treatment is required. Let C(Ai) be the space of real continuous
functions on Ai with the norm topology of uniform convergence. Then C(Ai) is a

separable Banach space with dual M(Ai), the space of finite signed Borel

measures on A, with the duality <h,u> = IA h(a)u(da). Then M(Ai) is also a

i

separable Banach space with the variation norm lvl = sup |[v(B)|. 1In addition,
B:Ai

LI(C(Ai)) = {F: @> C(A))|F is Borel-measurable and IFl = jQuf(w)up(dw) is

finite} is a separable Banach space [Neveu (1975, Proposition V-2-5)]. Then

by Diestel and Uhl (1977, Theorem 1, p. 79; Theorem 1, p. Y8), the dual of

LI(C(Ai)) is Lm(M(Ai)) = {G: e~ M(A.)|G is Borel-measurable and IGI_ =

ess sup IG(w)l is finite} with the duality <F,G» = fQ<F(m),G(w)>p(dw). Give
weR

Lm(M(Ai)) the weak™ topology, and let S, = {si € Lm(M(Ai))'Si(w) is a
probability measure on Ai for a.e. w}. S; is closed and convex. By the
Banach—-Alaoglu theorem [Rudin (1973, p. 66)1], Si is compact, and also
metrizable since Ll(C(Ai)) is separable [Rudin (1973, p. 68)].

Note that Si is defined without reference to éé—meaSurability.

Strategies that are not4yi—measurable have no behavioral meaning, but such a



formal restriction is inconvenient when studying the relationship between
players' information and the game. Theorem 2.1 shows that when a player faces
the expected value of his payoff function conditional on his information and
other players' strategies, any strategy is payoff equivalent to the projection
of that strategy on his information. Therefore the player may be assumed to

choose a,& j~measurable strategy without making any such formal restriction.

1 @ *

Theorem 2.1: Let u € L (c(a)), s € L'(M(A)), and,ﬁi € ¥ . Then the
conditional expectations E[u{ﬂi] € Ll(C(Ai)) and E[s[ﬂi] € Lm(M(Ai)) exist and
uniquely satisfy f E[sba.]du = f sdp and f E[uLg.]du = f udp for all G GAJ.,

G i G G i G i
where all integrals are Bochner integrals [Diestel and Uhl (1977, pp. &44-

45)]. In addition, <Elulf),],s> = <u,E[s|}4, 1>

Proof: The existence of vector-valued conditional expectation follows

from Theorem 4 of Diestel and Uhl (1977, p. 123), which also implies that

E[ulﬁi] € Ll(C(Ai)). Since [using Proposition V-2-5 of Neveu (1975)]

sup |E[s|d, 1(w)(B)] < E[supls(-’B)llH.](w) < E[nsumlﬁ.](w) = ¥sl_ a.e.,
BeA, t BcA . .

it follows that HE[S|2&]H® < Isll_, so the former lies in ﬁm(M(Ai)).

k
To show <E[ulAi],s> = <h,E[sL&i]>, let {u} be a sequence of simple
k

L
functions increasing to E[uLdi], with uk = Zk fE-I o fl € C(Ai) for each k

2=1 Gl

and &, and GE eggi, where L; is the indicator function of F. Then using
L
Proposition V=2-5 of Neveu (1975) again, <uk,E[ngi]> = Zk I k<f§’E[SLgi]>

L 2=1 Gl

= 12? IGkE[<f;’S>Lgi] = E[(uk,s>Lﬁi] since GE E)ii. This implies
- L

<uk,E[s[3i]> = <®,s». Then |<<E[u|,ﬂi],E[sL511>> - a[uiﬁi],s>>|

< |<E[uhﬂi]—uk,E[sL&i]>| + |<E[ulﬂi]—uk,s>| which goes to 0 by dominated



convergence. An identical argument shows that (E[ulﬁi], E[slﬁi]>

= <u, E[s[ﬁi]>3 completing the proof. Q.E.D.

Corollary 2.2: For every s € Si’ E[sLHi] € Si. Furthermore, if
* *
{sk} c Si is a sequence converging weak to s, then {E[skLgi]} converges weak

to E[slgi] for everyZ’i € é’*.

Proof: The first part follows from the definition of conditional
k
expectation. Let {s } be as in the statement of the result. Then by Theorem
1 k k .
2.1, for every u € L (C(Ai)), <u,Efs Iﬂi]> = <E[uLji],s >, which then

converges to <E[uLgi], s» = Lu, E[sLﬂi]>, completing the proof. Q.E.D.

Let S = 1 Si. The payoff function of player i is v, € Ll(C(A)), or
i€l
alternatively, a function vy Q x A> R which is Borel-measurable such that

vi(w,') is continuous for a.e. w and [ sup|vi(w,a)|u(dw) is finite. The

Q

a€A
payoff function can be defined in terms of strategies. Let S.; = I Sj and
j#i
A, = 1l A,  with generic elements s ., and a , respectively. Define 1w : S-> R
-i -i -i i

j#i 3
to be the induced payoff function

ni(S)

A

I 1 v (sha,a_ s (+yda_) Y 1w s, (w,da dutaw)
i -i

= é i {f vi(w,ai,a_i)s_i(w,da_i)}E[si[zt](w,dai)u(dm).

. A .
i -i

It is easy to show that T is separately continuous in each player's

strategy Sye However, m; need not be jointly continuous in all players'

i
strategies. Joint discontinuity can occur even when each player's action

space is finite and payoff functions are independent of the state of nature,



as demonstrated by Example 2 of Milgrom and Weber (1981). Another example is

given here for later reference.

Example 2.3: Suppose there are two players, with A1 = A2 = {1,2}.

Consider a pure coordination game in which each player's payoff is one if a; =
a, and zero otherwise. Note that payoffs do not depend on the state of
nature., Let Q be the unit square with its Borel sets and generic element

(wl,wz). Define pl to be Lebesgue measure on 2, p, Lebesgue measure on the

2

diagonal of @, and let the probability measure on Q be p (pl+ pz)/Z. Let
consumer 1 have the information field generated by the first coordinate of Q,

and consumer 2 the information field generated by the second coordinate of Q.

n A
Let s, € 5. be defined by s?(wl) the point mass on 1 for w

n
1 1 2 odd, and the

1

n
point mass on O otherwise. Let 82 € 52 be defined by s;(wz) the point mass on
n

0 for w2-2 odd and the point mass on 1l otherwise. Then coordination is
perfectly achieved on the diagonal, and randomly otherwise, so

n n , n n
ni(sl,sz) = 3/4 for each n and i. Then s and s, both converge to the
strategy s which assigns probability 1/2 to both actions, regardless of the

state of nature. Since m (s,s) = 1/2, m. is not continuous.
i i

Note that the above example amounts to a discontinuity of the degree of
coordination of strategies. A sequence of pairs of strategies can be
perfectly coordinated, while the joint limit is completely uncoordinated. To
assure continuity, the ability of players to perfectly coordinate strategies
must be limited. The assumptions used by Radner and Rosenthal (1982) and
Milgrom and Weber (1981) both exclude possibilities for perfect coordination.
Milgrom and Weber (1981, Assumption R2) required that the joint probability

distribution over the product space of all player types be absolutely



continuous with respect to the product of the marginal distributions. Radner
and Rosenthal (1982, Theorems 2 and 3) imposed more severe assumptions. They
required that the set of players' information fields {gjjlj=l,...,l} be
independent, and that each player's information about other players' payoffs
is a finite partition.

The next theorem extends the results of Radner and Rosenthal with
conditions similar to those used by Milgrom and Weber. By defining
information separately from the payoffs of players, these results make clear
the extent to which players' information, as opposed to their payoff
functions, must be restricted. The requirement that A € Ll(C(A)) for each i
is identical to the assumption of absolutely continuous payoffs used by
Milgrom and Weber (1981, Assumption Rl). Condition (AC) below is analogous to
their assumption of absolutely continuous information (R2). For each player
i, define the probability measure ui to be U restricted to éji v G(Vi), and

for every other player j, define uj to be U restricted to 49 Then, loosely

j-
speaking, u is absolutely continuous with respect to the "product measure"
ulx p.2><...x uI. This statement is not quite correct since there is no product

space of player types. The absence of independently defined type spaces

requires a more complicated proof than the one used by Milgrom and Weber.

Theorem 2.4: m. is continuous on S whenever v, € Ll(C(A)) and for

every € > 0 there exists & > 0 such that

K
k 1
(AC) For F = u {[ n G5l n (5 n v)} with G, eia, for each
k=l j#i S ot b
k X k ko k
j€Tland V, € o(v.), ) [ T wG)p(G: nv)] <& implies p(F) < e.
* Pok=l g I oo

Proof: The first step is to expand the state space and the information
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fields on a set of measure zero such that events from different information
fields are never disjoint. Let QO = II Q with the product o-field, and
jel
u(QO) = 0. Define the state space Q7 =Q U QO and define p on it accordingly.
For each J&é, j # i, define a sub—c—field'ﬂ% on ° as follows. For each
G. ed, let H. = G, U (QX.eoXQXG XQX4eoXQ) with the latter G. in the jth
J J ] ] ] ]
place and (QX...Q2%XG xQx,,.XQ) ¢ Q ., Then defineiq: to be the sub-o-field
J 0 3

generated by all events of that form. Define ﬁ#i similarly using {Z v G(Vi)-
All changes from the original state space are on sets with u—probability zero,
so the expected payoff functions are unchanged on Q7.

The second step is to define a new probability measure v on @7 with
respect to which the information fields {?ujlj € I} are independent. For each

n -
j let {ﬁij}n be a sequence of measurable finite partitions on £ which

. . . n n . .
increase to 4%., with the restriction that for each H, e‘}#_, j € I, it is the
]

J
n
case that N H, # P. Define ‘7#“ = Vv ﬁ%‘?- On 749 define the measure
jer jer ' 4
v by v( n H?) = I u(H?). To show v is consistently defined for all n, let
j€1 3 je1
H? e?#? for each j, and write H? = U H?+l where H?+l efH3+l. Then using v
3 3] Ik, Ik 3k, 3
i J
+1
as defined on ¢Ln+l’ v( n H?) = ) v( n H? K ) = ) I u(H?+i )
j€1 kl""’kI JEL Y75 kl""’kI jE€I >

n
= II p(H,), so the definition of v is consistent for each n. Then v is
j€l

uniquely defined, countably additive on the field U?@n, and for each
n

Hj € U ?#?, V(Hj) = u(Hj). By Cotter (1984, Lemma 24, p. 33)’?JH is
n

increasing to ‘?L= v Therefore by Diestel and Uhl (1977, Theorem

jer
II1.5.8), v has a unique extension to 7%; Let Hj €7Q% for j € I. By Chung

n n
(1974, Theorem 8.l1.1), given € there exists n and Hj Gf#ﬁj such that

n
v(H, A H,) < € for each j. Since v( n HY) = T v(H)) for each n, it follows
] j jer 3 jer
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by continuity of the intersection operation [Dunford and Schwartz (1957,
Theorem A, p. 168)] that v( n H,) = 0O v(H,), so {;Llj € I} are independent
je1 3 jer 4 1

with respect to v. For the remainder of this proof, take 27 to be the state
space with the G—field’ZL, restricting both p and v to TQL.

The third step is to show using (AC) that p is absolutely continuous with
respect to v. Choose € > 0, and let 6§ > O be as in (AC). Let F 664- with

. n n

Vw(F) < 8. By Chung (1974, Theorem 8.1.1) there exists n and F G‘?# such
that v(Fn) <8 and u(F A Fn) { & Then p(Fn) < g so pu(F) < 2e. Therefore
u is absolutely continuous with respect to v. Note that some of the "dummy
states” added to the original state space may have positive v-probability.

The fourth step is to show that with respect to v, {7¢j|j # i} and G(Vi)

are independent relative to ji' Denote the conditional expected utility

operators with respect to p and v by Eu['ljﬂi] and Ev['lzyi] respectively, and
similarly for conditional probabilities. Let Gy €‘?$j for each j, and V., €

G(Vi). Then for each G; € /51,

dv=v[{n G} n(, nv)l =T v )vG, nV,)
1 1 1 1

[.1
N i
Gi [ naG.] v, j#1 J j#i

j#Fi

- fGipv[vilgji].ggiv(cj)}dv = fGin[vifgii]-gzin{cj[gji]}dv

S0 Pv[FilAji]'ggin[GjIzji]} = PV[{-:icﬁ} n Vi|;yi]. Therefore {743}j¢i and
G(Vi) are independent relative to-éfi’ with respect to v.

The fifth step is to rewrite player i's expected payoff function in terms
of conditional expectations on v. Let f be the Radon—-Nikodym derivative
du/dv. Choose € > 0. There exists W 6‘1! such that for some M,

f(w) < M for all w € W, {vi(w,°)|w € W} is uniformly equicontinuous with

sup |v. (w,a)] < M and [ sup{v(w,a)}u(dw) = [ f(w)sup{v(w,a)}v(dw) < e
aa 1 WS acA we  aea
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-~

Then on f restricted to W, there exists some function f = b, I such that

I B~25%

k=1 k wk
k k k k
= n n . . c ,
for each k, Wk {jEIGj} Vi with Gj E‘?éj for each j and Vi o(vi) with

|f(w) - f(w)| < &/M for each w € W, reducing W on a set of measure zero if

necessary. Let S, s; € Si, S—i’ s:iG S—i’ and define w € Ll(Q’{?é,u;R) by

w(w) = [

AijA;ivi(w’ai’a—i){s—i(w’da—i) - s j(w,da_NE [s;-s7] 1(w,day)
K
Then ]ni(s) - ni(s’)l = |fQ,f(m)w(w)v(dw)| < 2e+ kZlbklfg,lwkw(w)v(dw)

Consider the kth term in the above sum. By Theorem 2.1, and the fact

that p and v coincide on ;@%, it equals

f kf Ev[f 1 vi(',ai,a_i){s_i—s:i}(',da_i)[ét]'{si—sl}(w,da zu(dw) (1)
Gy A A W

=/ J 1 B v ]l E k(sj-sg);éz’il(w,daj>}{si—s'i}(w,daimu (1)

G, A, A | vV, Jj#Fi G,
i 71 7~-1 i N

by the argument of step 4. Since, with respect to v, 1}45 is independent

of ﬁJi for each j # i and Sj’ s are 7Qg—measurable, it follows that
' J

” - —e = "k _ -,k
»EV[IGk(sj sj)IAai] = EV[IGk(Sj sj)] sj sj (say), so (1) equals
| h|
—k —’k ° - rd ,r
IGiIA_f% .EV[IVFvi|A5i](w’a).§zi[sj_ sj ](daj)} [si si](w,dai)u(dw) (177)
i =i i

Then by Parthasarathy (1967, Theorem II.6.8) and Cotter (1986, Lemma 4.2),
given € > 0 there exists for each j a finite collection {stIRj = 1,2,...,L}
c M(Aj) such that for every Ej € M(Aj)’ there exists lj such that for all

a . €A ., and w € W,
~J ~J
2

- o
UA.EV[IVFviI,gi](w,aj a_) J{Ei[sj(daj) sl <dm). @
1
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For each X = (l.). 4; define gl € Ll(C(A.)) by gl(w a_) =
) J .
fA E [ k JJAH J{w,a_ i34 )e {H sJ (da )} By Corollary 2.2, s_; and s -1

-i j#i
can be maée close enough for each j so that for some l, and all a; and w € W,

£

Ly o
|fA_ M1 |Aﬂ J(w,a,,a_ §Ei[8j (da_y) - 5,(da]}] < e/(Roy).  (3)

In addition, s and s; can be chosen close enough so that for all k and f,

|kafAigl(w,ai){si(w,dai) - s7(w,da)}uldw)| < e (Rb). (4)

i
Then |ni(s) - ﬂi(s')| < 5e by use of the triangle inequality and equations

(1”7, 3, 4), completing the proof. Q.E.D.

Corollary 2.5: A Nash equilibrium exists whenever the conditions of

Theorem 2.4 hold.
Proof: Use the standard existence proof of Glicksberg (1952). Q.E.D.

Note that the above results hold even if the players have asymmetric
beliefs about Q, where (R,F) is common knowledge and each player i has a
unique probability measure By In order for the definition of "almost
everywhere” to be consistent across players, the events of probability zero
must be common knowledge, so ul,...,un must be mutually absolutely continuous.

The necessity of condition (AC) is an open question. If (AC) does not
hold, then the first two steps in the above proof remain valid, but p 1is no
longer absolutely continuous with respect to v. It seems likely that a

construction based on Example 2.3 can be made to show discontinuity.
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3. Convergence of player characteristics

One advantage to modelling informatioﬁ as an explicit variable of the
game as in Section 2 is in studying properties of the relationship between
players' information and their resulting behavior. A basic property of this
relationship is its continuity with respect to some appropriate topology of
information. A topology which satisfies this property provides a meaningful
description of the game-theoretic similarity of game characteristics. In
addition, topologizing the space of games would provide rigorous means for
studying perturbations of game characteristics, and allow the study of
stability of equilibria with respect to perturbations. Several topologies on
the space of information 3* have been defined, including the Boylan metric
[Boylan (1971)] and the pointwise convergence metric [Cotter (1986)]. A
sequence of information fields {ZL} converges in the pointwise convergence
metric if and only if for every f € Ll(m), lim ||E[f|ﬂn] - E[f|d]n = 0,
while it converges with respect to the Boylan metric if and only if the latter
convergence is uniform over all f which are uniformly bounded a.e. Define
/bf= {vi € Ll(C(A))I the set {vi(w,')} is uniformly equicontinuous and
bounded over a.e. m}. This condition was used in analyzing both metrics of
information by Cotter (1986) and Allen (1983) respectively.

Give J* the Boylan metric unless stated otherwise, and define

* I
m 8 X (T) x”Y/ > R as in Section 2.

Theorem 3.1: The payoff function L is continuous over all

<{gjj|j € 1} ,v;) which satisfy (AC).

n %
Proof: For each j € I let {}ij} c© F be a sequence converging to %% and

n ) . g .
{vi} c/Vfbe a sequence converging to vj 6/}/'. It suffices to show that
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{ni(s,{zg;|jel},v:)} converges to ﬂi(S,{4yj|j€I},Vi) uniformly in s € S.
. 1
Choose (si,S_i) € 3, and define gn €1 (C(Ai)) by gn(w) =
. 1 .
IA Yi(w’ai’a—i)s—i(w’da—i) and define g € L (C(Ai)) similarly, so both depend

on s_j- Note that g, converges to g« Let llel be the norm of the

_i,gyi,vi)l
< uE[gnlgﬂz] - E[g|2ﬁi]ﬂ <lg - gl + uE[g|giz] - E[glgyi]n. Choose

€> 0, and let & > 0 be such that for p(ai,ag) <5, it follows that for

1
space L (C(Ai)), 7o) Ini(si,sﬁi,ij,vg) - ni(si,s

a.e. w and all a__ that |v,(w,a,,a ) - v (w,aj,a )| < & Then for all s_,,
-1 i i’ -i i i’ -i 1

Ig(w,ai) - g(w,a;)| < & Cover A; by balls of radius & with centers

1 2 K
}I

{a, ,ai,-oo,ai

i Then choosing a? to be in the same ball as a.,

1
HE[glgﬂE] - E[g]AJi]H <[, sup |E[g<-,ai>|g£§1 - E[g(-,ai)léﬂzlldu
aiGAi
K K
+ IQ SEPIE[g(-,ai)I/d:] - E[g(°,ai)|gji]|du
+ [y suplElg(+,aD ] 41 - Bl a1 1 |aw
a,€A,
1 1

The first and third terms are less than € for all n, while the second term can

be made less than € for sufficiently large n for all S_j* Q.E.D.

Corollary 3.2: The Nash equilibrium correspondence is

upperhemicontinuous over all player characteristics satisfying (AC).

Based on the results in Cotter (1986), it is surpising that a similar

result does not hold for the pointwise convergence metric.



Example 3.3: Consider the game with two players in Example 2.3. For
each 1 and n let lj? be the information field generated by the random variable
which equals 0 if the integer part of wi'2n is even, and 1 otherwise. By
Cotter (1986, Example 3.4), {jd?} converges pointwise to the trivial
information field (note that it does not converge in the Boylan metric). Let
s: be the strategy defined in Example 2.3. Suppose player i has the
information field Aﬂ?- Condition (AC) is satisfied for each n and for the

i

L n n gn : _ .
limit. Then ni(sl’sz"ﬂi) = 3/4 for each n, but ﬂi(Sl,Sz,zji) = 1/2, so m; is

not continuous with respect to pointwise convergence of information.

This result is disappointing since some of the properties of the
pointwise convergence metric would be very useful in studying games with
asymmetric information. The most important ones are the separability of the
space of information and the denseness of the set of finite partitions.
Neither of these properties hold for the Boylan metric. In particular, it may
be difficult to model players' beliefs about other players' information, since
such beliefs are most easily modelled as probability distributions on a
separable metric space. Nevertheless, these results identify the Boylan
metric as the key for studying similarity of games. Boylan convergence of
information is less cumbersome and more transparent than the convergence of
game characteristics required by Milgrom and Weber for their model (1981,
Theorem 2, conditions iii, iv). 1In particular, the latter convergence concept
does not appear to be topological, and does not permit convergence of
information and payoffs separately.

Note that for fixed characteristics of other players and fixed S_;»
ﬂi(°,s_i,°,°) is continuous over all si € Si and all Vi, {ﬁgjlj € I} which

satisfy (AC). This follows immediately from Cotter (1986, Theorem 4.3).
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4. Approximation by pure strategies

The use of mixed strategies in game theory, including related concepts
such as distributional and behavioral strategies, has been criticized as
useless in practice because mixed strategies either are not observed or are
behaviorally meaningless. In defense, Milgrom and Weber (1981) argued that
the the set of pure strategies is large enough to include all observable
behavior, but a larger set is needed to obtain the required compactness of the
strategy space. To support that argument, their Theorem 4 states that if a
player's information is nonatomic, then the set of pure strategies is a dense

subset of all distributional strategies for that player. A similar result for

behavioral strategies is proven below. Let SE

p p . .
= 18, € 5,[|s.(w) is a point
{s; 1ll() P
mass on Aj for a.e. w} be the set of pure strategies, in which every state of
nature is mapped into a single action. Then if the player's information field
is atomless, any strategy can be approximated to any degree by a pure

strategy. The idea is that a player can recover "almost all” randomization

opportunities by merely randomizing over observable states of nature.

Theorem 4.1: If*Hi is nonatomic, then SE (in fact, the set of all simple

pure strategies) is dense in the set of‘ﬂi—measurable strategies.

1 2 k 1
Proof: Let u, u, «.e,u € L (C(Ai)) bexﬂi—measurable simple functions,

and let {Gl’G ,...,GL} be ajﬂi—measurable partition of Q@ with respect to which

2

k L k k
each uk is measurable, so u = z f oI with £ € C(A,) for each k and X.
=1 "R G/Q 2 i

k
Then for s, € S_, <u ,s.> equals
i i i

0~

/
2=1 G

L
k
/ fk(a.)S.(w,da.)u(dw) = Z [ £.(a. v, (da,)
Ai L7177 i 921 Ai LY71778 i

2
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where v, = fGlSi(w)u(dw) is a measure on Aj-

By Carathéodory's theorem [Royden (1967 p. 321)] there exists a measure
algebra isomorphism @l of (Ai’cli’ Ul) into the unit interval with its Borel
(X
sets and Lebesgue measure. Let ui be the restriction of u to Zfi and 4511 be

the restriction of 451 to GR' Since ui is nonatomic, there exists, with an

abuse of notation, a measure algebra isomorphism ¥

of (Gl,)ﬁ.

1q°PHi) onto the

L

-1
unit interval with Borel sets and Lebesgue measure. Then ¥ o@l is a measure

algebra isomorphism of (Ai,(li, v,) into (Gl’)yil’ui)' By Theorem 15.11 of

2
c G

”

Royden (1967), there exists G/Q

g with u(Gi) = N(GR) and a measurable

function al:Gi-* Ai such that for every B € Cli, poa;l(B) = UR(B)' Therefore,

k
for every k, IA fl(a)ul(da) = ? ;
i

kA

f.(a(w))u(dw). Define s, € Si where, for
) AN
w € Gl’ sg(w) is the point mass at aj(w). Then <hk,si> = <hk,sg> for every

G

1
k. Since the set of simple functions is strongly dense in L (C(Ai)), the

proof is complete. Q.E.D.

Theorem 4.1 is useful only to the extent that nonatomic information is

typical. The next two results give a partial answer to that question.

Theorem 4.2: If (R,7,u) is nonatomic, then the set of nonatomic infor-

mation fields is dense in J* with respect to the pointwise convergence metric.

Proof: Since the set of finite partitions of the state space is dense in
F* [Cotter (1986, Proposition 2.3)], it suffices to show that given

Dl""’D € F and any finite partition }j € F*, there exists a nonatomic

K
information field }i’ € ¥* such that P[Dkizi] = P[DkLA’] for each k,
where P[[ﬂii] = E[IDIAg]' Without loss of generality assume that

{Dl""’DK} is a disjoint partition of Q.
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Define the increasing sequence Lﬂrj inductively as follows. Let_jyl =;é/
and write 4ﬂn = G{Gl,...,GJ}, the latter forming a disjoint partition of Q.

i i n B = D n G 2
For each i and j let Bkj < D, Gj such that B( kj) r( K j)/ [Chung

(1974, Exercise 23, p. 31)]. Then let Gj 1= x
bl

C
. G. . NG, sO
I 7kj js2 | j,l1

. i = O\G G eee, G G
u(Bkj) Define 4 { 1,181,207 %5 1 J,Z}’ s0

|
nc
o]
o
=]
o
G
il
(]

n
u(GJ.’l Dk)

P[Dk|£5n+l] = P[Dklgin] for each k. Then {/Hn} is an increasing sequence of

finite partitions, and therefore converges pointwise by Proposition 2.2 of
Cotter (1986) to ZH’ (say). Then P[Dklfﬂ] = P[Dklii’] for each k, so it

remains only to be shown that )ﬂ’ is nonatomic. Let G € lj’. By Theorem

8.1.1 of Chung (1974), given € > Q0 there exists n and Gs e'z{ such
n
that W(G A G) < &, where GA G_= (G n Gi) u (6% n G). Let

€ < u(G) so that p(G n Gs) > 0. Using the construction of the previous
e
j=l 3,2

J P
these allows p(G”) > 0. Since jgl Gj ) € an’ it follows that p(G”) < n(G).
= ’

-, . J
paragraph, let G° be either G N Gs n (jgl Gj l) or G n Ge n ( ); one of

Therefore zﬂ' is nonatomic, completing the proof. Q.E.D.

Theorem 4.3: If F* is given the Boylan metric d, then the set of

nonatomic information fields is never dense in J%*.

Proof: By Fact 9.3 of Allen (1983), for all<d € F*, d(ii,{Q,ﬂ}) >
sup{Iu(F) - BIFLY 11]a € 7} > suplin(e) - 1 0]c e d ) =

sup{p(G){1l - u(G)]|G Efﬂ Y. If Aﬁ is nonatomic, the latter equals 1/4. Q.E.D.

Another argument mitigating the use of mixed strategies is that in many
games, an exact Nash equilibrium in pure strategies exists. Milgrom and Weber
(1981, Theorem 5) and Radner and Rosenthal (1982, Theorems 1l and 2) identify
similar but restrictive conditions for which a Nash equilibrium in pure

strategies exists. An analogous result for this model is proven below.
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Following the terminology of Radner and Rosenthal, a purification of the

p p p

Nash equilibrium vector s € S is s° € § =1 S, such that for each i,
ier ‘'
= p } ,
ni(s’vi’ﬂi) - ni(s ’Vi!gi) (5)
= P
Els;] = E[s]] (6)
sP is a Nash equilibrium. (7

Radner and Rosenthal (1982, Theorem 1) give conditions for which every Nash
equilibrium has a purification. One requirement is that each A; 1is finite.
That proof applies directly to this model with the same conditions. If A; is
infinite, a different condition on v, may be used instead, which in turn
requires a separate proof. Note that the weaker condition (AC) of Theorem 2.7
is not sufficient. A counterexample is provided by Radner and Rosenthal (1982,
Example 1). The necessity of condition (c), even when (a) and (b) hold, is

demonstrated by their Example 3.

Theorem 4.5: Suppose, for each i,
(a) {}dj[jii} are independent of gyi v U(Vi)
(b) gyi is nonatomic,
(¢) either vy is simple or Ai is finite.

Then every Nash equilibrium has a purification.

Proof: The case of Ai finite follows from the proof of Radner and

Rosenthal (1982, Theorem 1) without modification. Suppose conditions (a) -

L
hold d v, i imple. Writ , = I =
(¢) hold, an v, is simple rite v, le quil and uil(ai)

fA_iuiX(ai’a—i).s—i(da—i)’ so
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- L /g -
S iE[vilg?i](w,ai,a_i>-s_i<da_i> SRR EAIOTNCI RN

Define, for each 2, Vv, = IQP[FlLigi](w)si(w)u(dw) to be a measure on Aj. Then
L ~
(8) equals lzl inGil(ai)vl(dai)° Construct a, and s? as in the proof of

Theorem 4.1, and let sP = (ST, sg,...,sg). To verify (6), let Bc A . Then
i

Fy

L L
= lzl v (B) = 121 IQP[FRI,ﬂi](w)'si(w,B)u(dw) = Jg s, (,B(dw) = E[s;1(B),
proving (6). To show (5), note that each player's payoff depends only on the

L
s |
S71egy @h(dw) = 121 u(a  (B))

L L
E[sP1(B) == ] [ sP,BuGaw) = J fo1:
=1 =1 L

expected value of all other strategies, so replacing them with their
purifications does not affect the expected payoffs by condition (6), which

also demonstrates that sP is a Nash equilibrium, verifying (7). Q.E.D.
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