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Internal Pricing and Cost Allocation

for Efficient Decentralized Control

by Avraham Beja and Israel Zang

Abstract

This paper argues, contrary to the prevelant academic opinion, that
joint~cost allocation can be used efficiently for evaluating the
profitability of planned activities in informationally decentralized
organizations., The issue is studied in the framework of a very general class
of Decentralized Control Rules. These rules are procedures that could be
implemented in a multi-unit organization, in order to verify whether it would
be profitable to eliminate one or more of its activities (but not to specify
which of the activities should best be eliminated). Cost allocations are
identified as a subclass of exceedingly simple procedures. All potential
procedures are examined on three different dimensions: the accuracy of their
conclusions, the amount of information that must be collected before a
conclusion is reached, and the complexity of the internal communication
involved in the process, The analysis shows that, under reascnable
conditions, the simple cost-allocating procedures are unsurpassable in all

three relevant dimensions.

Keywords: Cost—allocation, Decentralization, Mechanism design, Asymmetric
Information,



I. Introduction and Summary

Large organizations almost invariably use some accounting method that
allocates joint profits or costs to individual activities. There is also
evidence that firms use joint—cost allocations not only for taxation and
other regulatory purposes, but also as inputs to their (internal)
decisions.(l) When asked about this, managers will typically say that joint
costs exist and must not be ignored, and hence they want to verify that the
overall profitability of each of the firm's activities is adequate.(z) To
economists, this view is dubious at best. Allocating joint profits and costs
to individual activities has been compared to "clapping one's hands, then
trying to defend how much of the éound is attributable to each hand".(3)
Textbooks forewarn that "attempts to use allocated joint-costs...to evaluate
the profitability of finished goods are likely to yield misleading
conclusions".(h) Some authorities give a more categorical statement of the
predominant opinion: "there is broad mainstream academic agreement that
joint-cost allocations are useless for planning and evaluation purposes, and
theoretical concensus that they are wholly arbitrary and needless".(s)

This paper argues that joint-cost allocations can be used efficiently in
planning the firm's operations and in evaluating the profitability of
proposed ac;ivities. We address the issue in its operational setting: given
a proposed plan, would it be profitable to eliminate some of the planned
activities? The immediate concern is with a straight yes~or-no answer (the
more difficult problem of how to revise the plan will have to be tackled only
if such a revision is found to be necessary). When information is incomplete
and asymmetric, organizational procedures designed to answer this yes—or—no

question must be evaluated on three different dimensions: the accuracy of

their conclusions, the amount of information that must be collected, and the



complexity of the required coordination. The analysis shows that, under
reasonable conditions, procedures based on cost allocation are unsurpassed in
all three relevant dimensions.

The following overview will clarify our framework and highlight the main
results. We posit a multi-divisional organization operating as an
informationally decentralized "team”. A decision is tentatively adopted on
the basis of incomplete information about its profitability. There are
"joint profits”, which can be observed by central management, and "divisional
profits” which the respective divisions can assess to any desired degree of
precision, with commensurate effort. The organization wants to ascertain
that under the tentative plan all divisions are “adequately profitable”,
i.e., that elimination of some of the planned activities cannot increase
profits. To verify this, central management transmits messages to divisions,
instructing them to collect information about their profits until either a
reassuring response or an alarming response is warranted (according to the
received instructions). A "decentralized control rule" is a specification of
the messages, the responses, and the aggregation of these responses into an
overall yes-or-no conclusion. In “internal-pricing procedures”, the messages
are accounting charges (or premiums) made to divisions, and each division
gives a reassuring response if its profits, adjusted for the accounting
charge, are surely non-negative, or an alarming response if its adjusted
profits are surely negative. Cost—allocating procedures are internal pricing
procedures where all active divisions get an accounting adjustment, the
divisional adjustments sum up exactly to the overall joint cost, and the
overall conclusion is “"positive” if and only if all divisions have non-
negative adjusted profits.

Control rules can terminate with errors of two kinds: concluding that



no activity-eliminations can increase profits when in fact some can, and vice
versa. A decentralized control rule is “"conservative” if it never terminates
with an error of the first kind. All control rules are partially ordered by
their performance as follows: (1) every conservative rule dominates all non-
conservative rules, and (ii) one conservative rule dominates another
conservative rule if it generates fewer errors (of the second kind) or if it
reaches the same conclusions using less information. A control rule is
"efficient” if it is not strongly dominated by any other rule. The purpose
of this study is to establish the efficiency of internal-pricing procedures
in general and cost—allocating procedures in particular.

Broadly speaking, the conditions necessary to establish this efficiency
are very mild. They fall into three categories, relating to (i) the
divisions' specialization in collecting information, (ii) the range of values
that the divisions' profits can take, and (iii) profit complementarities

between divisions. The main results are:

1. If the indirect inferences about one division's profits which can be
drawn from the information of other units in the organization are
"limited” in some sense, then every control rule, however complicated,
is (weakly) dominated by some efficient internal-pricing procedure
(theorem 3).

2. 1f, in addition, there is for every division some potential realization
of the division's profits under which it will be profitable to make the
division inactive, then every conservative cost-allocating procedure is
efficient (theorem 7). |

3. If, in addition, the organization's profit structure exhibits a degree
of complementarity which is similar to (but slightly stronger than)

division-wise super—additivity, then every control rule is (weakly)



dominated by some efficient cost—allocating procedure (theorem 6).

Concisely summarized, the overall conclusion of this paper is that,
under fairly weak conditions, a decentralized control rule (however
complicated) is efficient if and only if it is equivalent in performance to a
conservative cost—allocation procedure (theorem 8).

These results lend support to the use of joint—cost allocations as
instrumenté for evaluation and control when complex organizations plan their
activities. But our interpretation of cost allocations contrasts common
managerial interpretations in at least two important respects. First, cost
allocations typically cannot (and clearly should not be expected to) give
meaningful answers as to which activities should best be eliminated. In the
concluding section of this paper, we give an example of an efficient cost
allocation where an activity which shows positive adjusted profits should be
eliminated, while at the same time an activity which shows accounting losses
should best be maintained., The second important difference in interpretation
is that our system is specifically designed also to identify situations where
it is not profitable to eliminate any one activity alone, and yet it is
profitable to elimina;e two or more activities jointly.

The paper is organized as follows. Section II contrasts our approach
with alternative approaches in the literature on cost allocation.

Section III describes the organizational setup and the difficulties in
ascertaining "adequate profitability”., Decentralized control rules are
formally introduced in Section IV. The performance of these rules is
analyzed in Section V, where the notions of conservatism and efficiency are
formalized. Section VI introduces internal-pricing control rules: their
properties are analyzed in some detail and their efficiency under the stated

conditions is established. Section VII does the same for cost—allocation



procedures., Section VIII gives some comments on the role of core

allocations in our framework. Finally, Section IX compares our findings with
some of the prevalent views on internal pricing and joint-cost allocation.

To assist the flow of the presentation, all the proofs are presented in an

appendix.

II. Alternative Approaches to Cost Allocation

Without attempting to survey the vast literature on cost allocation, we
briefly compare our approach to some alternative approaches in the classical
and the more recent literature. The classical view is perhaps best
represented by Stigler, who writes: "any allocation of common costs to the
product is irrational if it affects the amount of the product produced, for
the firm should produce the product if its price is at least equal to its
minimum marginal cost".(6) We concur with the last part of this statement.
But our analysis shows that it does not imply the first part. Marginal
analysis, correctly interpreted, must relate not only to infinitesimal
margins, but also to "broader margins™ such as the complete elimination of
product-lines. In our decentralized setting, broad-margin-analysis induces,
not contradicts, the use of cost allocations for decision—-making.

In recent research, attempts to explain the prevalence of cost
allocations tend to rely on the incentives problem in a principal-agent
relationship.(7) These studies do not suppose or argue that adjusted
divisional profits are surrogates for the division's "profitability”.
Rather, divisional accounts are set as arbitrary bases for the compensation
of division managers, designed to make the decisions that they take in their

own self-interests be consistent with the designer's goals. Basing

compensation schemes on divisional profits sounds reasonable, but why the



adjustments take the particular form of full joint-cost allocations remains
questionable.(S) In fact, an important result in the theory of economic
control mechanisms sheds serious doubt on the power of the incentives problem
to explain cost allocation: in a fairly general set-up, full cost-
allocation, incentive-compatibility and optimality of decisions are not
mutually consistent.(g) Note that both this approach and ours rely on
decentralization, but our model is in the pure "team" framework.(lo) The
adjusted divisional accounts in our model are more in spirit with the "naive”
interpretation of "divisional profits”.

Many studies single out particular cost allocation methods as their
recomnended procedures. These studies usually don't give an explicit
statement of the decision problem that the suggested method is supposed to
serve better than other methods. Shubik(ll) argued that official accounting
statements must serve diverse users facing a variety of decision problems,
and suggested that if joint-costs are to be allocated the choice of method
should be based on general "equity"” principles to which all users can agree.
His reinterpretation of the Shapley (1953) axioms singles out the allocations
given by the Shapley value of the associated "divisional profit game”. Other
axioms lead to the "Auman-Shapley prices".(lz) Quite a few cost allocation
schemes have been examined in the accounting literature for their core
properties, and many have been found to be in the core whenever it is non-
empty.(13) In this respect it is of interest to note that under our
condition of profit complementarity the divisional profit game is convex and
thus its core is non-empty. In our framework, this complementarity gives
rise to efficient cost allocations which are in the core. But our core

allocations arise in a manner which is "dual” to the usual requirement that

the profits allocated to any subset of divisions be sufficiently high:



"conservatism” requires that the costs allocated to every subset of divisons
be sufficiently high (i.e. allocated profits must be sufficiently low).

Yet, efficiency makes the allocations "tidy"” (i.e. sum up to the overall
joint cost), and this tidiness then drives the allocations to be in the core.
In the absence of the required profit complementarity, the core may be empty
but, as long as the organization has limited indirect inferences, (non-tidy)

internal pricing procedures still dominate all decentralized control rules.

I1I. A Decision Problem in a Multi-Unit Organization

We study an organization composed of n operating divisions
(alternatively “"departments”, or "product-lines”), and a central management.
The organization operates as a "team”, in that none of its units has
incentive or power to deviate from organizational procedures designed to
maximize total profits. Asymmetric information and interdependence of the
divisions' actions require that decisions be coordinated.

Let potential decisions of the organization be denoted by

X = (Xl""’xn)’ where X4, an element of an arbitrary set A,, is the action

i’
n

to be taken by division 1 under the joint decision x. A C I Ai denotes the
i=1

set of all joint decisions. Let T(x) denote the total profits associated
with a joint decision x. Evaluating T(x) requires organizational effort in
data collection, computation and communication., This effort is the focus of
our analysis. The information structure that we posit is as follows:
1) The profit function T is decomposable as

n

T(x) = J(x) + ] D,(x,) (1)
1

i=1

where Di(xi) is a "divisional profit/cost component” which depends only on

the action X, of division i, and where J(x) is a "joint” profit/cost



component which captures all aspects that depend on more than just the
isolated action of any one division.

2) The organization's prior information is summarized by a probability
measure on {J(x),Dl(xl),...,Dn(xn); xeA} . This measure is common to all of
the organization's units.

3) Central management can identify the joint profit structure J, which
implies the values of {J(x), xeA}. Evaluation of J(x) for particular
decisions x requires computatfonal effort (e.g., running a very complex
computer algorithm).

4) Each division can collect information about its own divisional profits,
Information about Di(xi)’ collected by division 1, narrows down the support
of the marginal distribution of Di(xi)' With sufficient data collection
effort, the division can accurately identify Di(xi)' Of course, some
inferences about a division's pfofits can also be drawn from the information
collected by other units (by applying Bayes law to the prior).

Under the obstacles imposed by this information structure, it may be
practically impossible for the organization to evaluate all plausible
alternatives in order to make an optimal choice among them. Suppose that on
the basis of incomplete information the organization reaches some tentative
joint decisfon. The profits assoclated with this decision and with many
(perhaps all) of its alternatives are not precisely known. Yet, the
organization wishes to ascertain that the decision is not inferior to a
selected number of simple alternatives. In particular, the organization
wishes to avoid undertakiﬁg any "unprofitable activities”, i.e., activities
whose elimination will increase profits., This is formalized as follows.

Suppose that for i=1,...,n there is one particular divisional action

eisAi, which is interpreted as "letting division i be inactive”, such that



Di(ei) is known (to all) with certainty. Without loss of generality, we
assume the profit functions to be normalized, and let J(el,...,e ) = 0 and

] n
Di(ei) = 0 for i=l,...,n. Also, let N={1,...,n} and for any %A and S CN

let xSeA be defined by

(XS)i = % if ie S

=0 otherwise.

That is, we assume that if x is feasible, so are the alternatives Xg SCN
(note also that xN=x).

Let x be a tentative joint decision. If all activities are "adequately
profitable” then letting any subset S of divisions be inactive will not

increase profits, and x must satisfy
T(xy) 2 T(xN_S) for all S CN (2)

where N-S denotes the complement of S in N. Using our decomposition and

normalization, this can be rewritten as

J(xyg) + 1} Dy(x;) = J(xyg) * 0 for all SCN (3)
ieS

We shall refer to this set of inequalities as the Adequate Profitability
Condition (abbreviated APC). APC is clearly a necessary, but not sufficient,
condition for optimality. It simply tests the profitablity of adjusting the
tentative decision x by letting any subset of divisions be inactive while
maintaining all other activities at their level in x.

Due to the difficulty in assessing profits and costs for all the

alternatives x it may be far from trivial for the organization to

N-S°
ascertain whether a tentative decision x does or does not satisfy APC in the
current environment., One possible procedure that can fully resolve the

"adequate profitability issue” at considerable organizational effort would be
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for all divisions to assess their divisional profits with full accuracy and
transmit these values to central management; management on its part will
assess J(xs) for all S and test APC directly as in expression (3). Such a
procedure can identify not only whether profitable activity-eliminations
exist, but also which activities should best be eliminated. Yet, the
procedure may be highly inefficient on two counts. First, it requires a
precise evaluation of all Di(xi)’ whereas frequently some bounds on these
values may be sufficient to give a definite answer. Second, it requires
central management to evaluate J(xs) for a large nubmer of alternatives Xg»
and this number may be exorbitant if the organization has many active
divisions. These difficulties indicate that it may be better for the
organization to employ first some preliminary procedures designed only to
verify whether or not APC holds: the more difficult problem of which
activities to eliminate will have to be tackled only if activity eliminations
are deemed to be potentially profitable. Such procedures should be evaluated
both in terms of the accuracy of their conclusions and in terms of the
organizational effort required to operate them. We shall show later that
"internal pricing procedures” and "cost allocating procedures”™ have

noteworthy merits in both of these respects.

IV. Decentralized Control Rules

Procedures that attempt to verify APC must eventually end in a yes-or-

no statement, and in this sense they are what is sometimes called "control
rules”. Other examples include quality control rules, which specify whether
or not to accept an ordered lot of items, or industrial control which
determines whether or not to readjust the setting of a production process.

In general, a control rule is a procedure which eventually terminates with
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either an 'OK' or an 'Alarm'.
In a multi~-division setting, control rules may or may not be

decentralized. In a decentralized control rule, divisions follow divisional

control procedures, based on information and instructions received from
central management, and on information about the current environment that
they collect directly on the spot. Each of the sub-procedures eventually
ends with a divisional OK or Alarm, and these in turn determine the overall
conclusion,

We choose to start our analysis of procedures for verifying APC with a
relatively large class of control rules. Given our structured multi-
divisional setting, these rules are decentralized. Subsequent analysis will
identify which of these rules are better than others in various respects.
The class of procedures to be considered in this paper, simply termed
"Decentralized Control Rules” or DCR's, can be generally described as

follows.

1) Central management transmits messages to some (possibly all) divisionms,
based on the current joint profit/cost structure J and on the tentative
decision x. Potentially, the messages may be as detailed and complicated
as may be deemed useful, The rule's first parts specify which divisions
are to receive messages, and what these messages will be.

2) Divisions that receive a message respond to it according to the
information available to them about the divisional profit Di(xi)’ as
reflected by the conditional probability distribution of 5i(xi), given
current information. The rule's divisional response subprocedure
specifies, for every possible message and every probability distribution,
whether the division should respond with a divisional OK, respond with a
divisional Alarm, or collect additional information about 51(xi). The

collection of information continues until either an OK or an Alarm is the
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prescribed response (which always holds if Di(xi) is accurately
evaluated, but can also hold for fuzzier assessments).,
3) Finally, the rule's last part specifies how the divisions' responses are

aggregated into an overall OK or an overall Alarm.

Formally, let E_ be a class of normalized joint profit/cost functions, viz.

J
E, C {J:a~+ R, IO 5eees® ) = o} .

Let Em CE, x A be a set of pairs (J,x) under which central management may

J
choose to initiate a control procedure in an attempt to verify APC. Also,
let U denote a class of univariate real random variables u. U includes all
degenerate random variables, and to simplify notation we shall not
distinguish between the real number a € R and the degenerate random variable
u which takes the realization @ with probability one. For any set S, the
standard notation ZS is used to denote the collection of all subsets of S,
viz., ZS = {Q:Q C S}. Finally, note that divisions which are initially
inactive under the tentative decision (and known with certainty to have zero
profits) play no role whatsoever in the procedures described above.
Therefore, we choose to simplify the exposition and avoid burdensome notation

by assuming that all divisions are active, i.e., (J,x) € E implies I 6i

for all 1 € N, We then have

Definition 1l: A Decentralized Control Rule for APC (abbreviated DCR), is a

four-tuple F = (f,s,r,q) such that for every (J,x) € Em

(1) s(J,x) CN is the set of divisions that receive a message from central
management.
(i1) For all i € s(J,x), fi(J,x) € M is the message sent to division i,
where M is an arbitrary set (the "message space”).
(1i1) r: M x U+ {OK, Alarm, Continue} determines the “response rule" as

follows: when division 1 happens to receive a message m it uses the
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. c
random variable ui

assessment of Di(xi) given 1ts current information; then if

,» which represents its conditional current

r(m,uz) = OK the division responds with a divisional p, = OK, if

i

Alarm it responds with a divisional p, = Alarm, and if

r(m,uz) {
r(m,ui) = Continue the division collects additional information about
Di(xi)’ updates its current assessment u;, and reiterates the process.
To guarantee an eventual response, r(m,a) ¢ {OK,Alarm} for all me¢ M
and all degenerate distributions ¢ € R, and it is assumed that, as
r(m,u:) = Continue persists, the collection of information converges
to an exact evaluation of Di(xi)’ where an OK/Alarm response is
prescribed and the iterations must stop.

s(J,x) determines the overall conclusion (OK or Alarm) on

(iv) q(J,x) C 2
the basls of the responses P, as follows: 1if there is some Q ¢ q(J,X)

such that p, = OK for all i ¢ Q, the rule terminates with an overall

1
OK, otherwise it terminates with an overall Alarm (i.e., q(J,x) is a

set of "coalitions” in s(J,x) that can "force" an overall OK),

It 1s evident that the class of DCR's, as defined above, is quite
general., In particular, the arbitrary message space may include conditional
instructions of any conceivable kind, and the divisions' responée rule can
take into account the likelihood of all alternative potential realizations of
the division's profits. The major restriction of DCR's is that they are
decentralized, in that all iterations of the process take place only at the
divisional level, and in that a division's eventual response must be either
an unqualified OXK or an Alarm. These restrictions are clearly motivated by
obvious organizational considerations which are left out of the formal model,
It should also be noted that, as defined, a DCR does not prescribe the
divisions' paths of information collection, provided only that they converge,

if necessary, to an exact evaluation of the divisional profit. 'However, we
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shall see later that this omission is not restrictive, but reiher adds to
the flexibility of good control procedures.
As an example for the use of one familiar accounting procedure as a DCR,
n n n
suppose A = R+, EJ(: {J: R+~+ R}, Em = EJxR++, and let F = (f,s,r,q) be

defined by
s(J,x) = N

fi(J,x) = —xiJ(x)/):xi (where M=R)

r(m,u) = Continue if u is non degenerate

r(m,a) = Ok if m & a
= Alarm ifm > a
q(J,x) = [N}

The reader is advised to interpret to himself the workings of this
procedure, and to assess informally how effective or ineffective it is in

verifying APC at a reasonable organizational effort.

V. The Performance of DCRs

To distinguish between more effective and less effective decentralized

control rules, one must analyze the "performance” of DCRs over a range of
potential situations. The domain of "enviromments™ over which the
performance of DCRs is to be evaluated is defined as follows. For every
(J,x)eEm let H(J,x) C R" denote the support of the conditional distribution
of Dl(xl),...,Dn(xn), given {J(x),x€Al, but prior to the incorporation of
divisional information (i.e., yeH(J,x) is a potential realization of the
divisional profits, given J and x). It will be assumed that all these sets
are convex.(lh). An environment is an element (J,x,y) such that (J,x) ¢ E

and y ¢ H(J,x). Let E denote the set of all environments.

A DCR is a procedure which attempts to distinguish between 'good'
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environments which satisfy APC and 'bad' ones that don't. Let the set of
realizations of Dl(xl)""’Dn(xn) that are 'good' for (J,x) ¢ Em be denoted

by G(J,x), viz.

G(J,x) = {y € H(J,x): J(xy) + ) vy 2 J(xyg) #S CH .
ieS

To avoid trivialities, it is assumed that management initiates a control
procedure only when APC is in doubt, i.e., for all (J,X) e Em both G(J,x) and
its complement in H(J,x) are non-empty.

When (and if) a DCR F terminates with an Alarm under an environment
(J,x,y) such that y € G(J,x), or with an OK when y is in the complement of
G(J,x), F generates a “"classification error”, or "false signal”, A false
signal leads to misguided action. When the control rule used to verify APC
terminates with an OK, the organization presumably proceeds on the premise
that APC is satisfied in the current enviromment., If this premise is false,
maintaining all the activities in x involves a (possibly substantial)
opportunity loss. When the procedure terminates with an alarm, management
presumably acts on the premise that APC is violated, and initiates a search
for a subset of divisions that would better be made inactive, If this
premise is false and APC in fact holds, the search will ultimatély prove to
be futile. We shall assume that the opportunity loss when a potential
improvement is discarded due to an unwarranted OK is immeasurably more
harmful than the wasted effort in a futile search due to a false alarm,

Beyond the obvious interest in minimizing false signals, it is also
desirable that the information which responding divisions must collect before
a response is prescribed would not be unnecessarily excessive. Of course,
there is little merit in a DCR which requires very little information if it

does so by terminating prematurely, thereby frequently generating false
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signals. 1Indeed, the consideration of economy in collecting information
during the control process is secondary to that of avoiding false alarms:
when the organization acts on the false premise that APC is violated, the
(futile) search for a subset of activities whose elimination will show the
best improvement over the proposed decision typically involves an exact
evaluation of all Di(xi)’ and this more than offsets any earlier savings in
data collection.

These considerations suggest a clear hierarchy in the evaluation of
decentralized control rules, First and foremost, a DCR should avoid
unwarranted OK's. Secondly, it should minimize false alarms. Thirdly, it
should economize in the collection of information. Each of these desiderata
implies a (partial) ordering of DCRs, and the hierarchical structure suggests
that the three criteria be applied lexicographically.

To make these ideas precise, we shall need some further notation.,

First, we must identify what the eventual outcomes of a given DCR can be.
This is complicated by the fact that, in general, the outcome of a DCR may
depend not only on the current environment but also on what the divisions
happen to learn about the environment during their process of collecting
information. To analyze what a DCR F will do, we must therefore consider all
potential "status—points” of the process, where the status also involves a
"profile” of the divisions' assessments about their divisional profits,
Precisely, a status is an element (J,x,y,v), where (J,x,y) ¢ E is an
environment and where v ¢ Un is an n-tuple of random variables (vl,...,vn),
Ve U being the ith division's assessment of its divisional profits. Each of
these assessments must be consistent wifh the environment in which it arises,
and also with what is initially known about the division's profits. For the

first consistency condition, we require that, for all i, Y€ support vy
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For the second condition, let ﬁ;(x) denote the support of the (unconditional)
marginal prior distribution of Di(xi). Given %, it is initially known that
Di(xi)éﬁi(x), and we therefore require that, for all i, support viC: ﬁi(x).

Elements v € u" which satisfy these two conditions will be termed "potential
information profiles under (J,x,y)”. A status-point, then, consists of an
environment and a potential information profile under this environment. The
performance of F can then be analyzed via a "path~function” WF which

specifies, for every possible status—point, what F will do next, WF is

defined by:

0K if there is some Q € q(J,x) such that

WF(J,x,y,v)
r(f (J,x),v ) = OK for all 1 ¢ Q.

Alarm if, for all Qe q(J,x),

r(fi(J,x),vi) Alarm for some i ¢ Q

Reiterate otherwise.

.Note that WF does not explicitly depend on y (i.e., WF is constant on the
y-component of the status) but the adopted notation helps clarify the
relationship between potential information profiles and their environments,
The notation also clarifies the range of possible final outcomes of F in each
environment. In particular, it identifies the environments in which F will
definitely terminate with an OK, those in which it will definitely terminate
with an Alarm, and those in which F's final outcome also depends on the

divisions' paths of information collection. Looking at both WF and G thus

identifies all of F's potential "classification errors”,
Before returning to our three performance criteria, we shall first use
the path-function W to identify an important class of "conservative”

procedures, These are DCRs which can terminate with an OK only if APC holds,
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thus completely eliminating the danger of a misclassification error of the

first kind.

Definition 2: A DCR F is (non-trivially) conservative (abbreviated CDCR) if

(1) WF(J,x,y,v)= OK implies y e G(J,x).
(i1i) For every (J,x) € Em there 1s some status—point such that

WF(J,x,y,v)= OK (non-triviality).

Clearly, conservative DCRs exist. Since avoiding unwarranted OKs is the
first and foremost performance criterion, it is also clear that all non—
conservative DCRs are inferior to the conservative ones. We can therefore
restrict our performance analysis to CDCRs only. Noting that all CDCRs are
of course equivalent in the first criterion, we proceed to compare CDCRs by
the second one, i.e., by their propensities to generate false alarms.

In general, the propensities of two CDCRs to generate false alarms are
not directly comparable, because these alarms may occur at different status-

points, F1 may generate false alarms in some environments where F_ does not,

2

while in other enviromments F, generates false alarms and F1 doesn't. Also,

2

there may be environments where F, generates false alarms under some

1

potential information profiles while F2 generates false alarms under other

information profiles. However, there are some pairs of CDCRs where it can

definitely be said that "F, generates at least as many false alarms as F

2 |

This is true if in every environment under which F1 may generate a false

alarm at some status—point, F_, must terminate with a false alarm, no matter

2
what sequence of status points is encountered during the process. When this
applies, we shall write Fy < A F2. Note that if in some environment a CDCR
F1 generates an alarm and a CDCR F
by F

2 generates an OK, then the alarm generated

y must be a false alarm (F2 being conservative), and it can't be true

that F, < A Fp+ The binary relation ' < o' 1s therefore defined on the class
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of CDCRs for the environmments E as follows: F, < s Fp Lf for all

environments (J,x,y) € E and any two potential information profiles vl,v2

2 1
under (J,x,y), WFZ(J,x,y,v ) = OK implies WFI(J,x,y,v ) € {OK, Reiterate}.

1t is evident that 'cA' is a partial order, and we denote its strict

(15)

component by '<,' and its equivalence component by '=A', in the usual way.

A

In short, then, F, ‘A F2 means that "F2 generates at least as many false

alarms as F. ", F1 <A F2 means that "F2 generates more false alarms than Fl"

1 =a F2 means that "F1 and F2 generate false alarms in precisely the

same environments”. In general, it may be that neither of the above holds.

and F

In a similar fashion, we define another binary relation, denoted ' il'a
to reflect the third criterion, i.e., economy in data-collection. Let the

relation F, SI F, apply if Wp (J,x,y,v) = Reiterate implies
1

Wy (J,x,y,v) = Reiterate. Again ' 41' is a partial order, with its
2

associated components '<I' and ' = I" and F| $; F, if and only if F, always
requires the collection of at least as much information as does Fl’
Applying the three performance criteria lexicographically induces a

dominance relationship between DCRs. We shall say that a DCR F1 (weakly)

is not, or (ii) both are

dominates F_, if (i) F1 is conserveative and F

2 2

conservative and Fy <y F2’ or (iii) both are conservtive, F1=A F2 and

FI‘I F2. F1 strongly dominates F2 if Fl dominates F2 and F2 does not

dominate Fl' As usual, F is said to be "efficient™ if it is not strongly

dominated. Since this notion plays a central part in our analysis, we put it

down as a formal definitionm.
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Definition 3: A DCR F is efficient if it is conservative and there is no

CDCR F' such that F' <A F or F! =A F and F' <I F.

Finally, we note that when two DCRs F1 and F2 weakly dominate each other

= = imply W, =W
1= F2 and Fl 1 FZ’ which in turn imply -

termed performance-equivalent, or in short equivalent: they always terminate

then F e Such rules are
at the same status-points and with the same conclusions, but they may use
very different means to get there, The four-tuple (f,s,r,q) puts emphasis on
the means: which messages are sent and to whom, how responding divisions
behave, and how responses are aggregated to the procedure's conclusion. On
the other hand, W summarizes the signalling quality and the information-
collection effort associated with the procedure.

16
In the terminology of general allocation mechanisms,( ) equivalent DCRs

are alternative implementations of their mutual path-function W. The

"design"” problem, then, is to choose an attractive implementation of a
desired W, Efficiency is of course highly desirable, provided that it can be

attained with a sufficiently simple implementation.

VI. The Efficiency of Internal-Pricing-DCRs

Much has been saild and written in various contexts on the efficiency of
price-mechanisms as concise means for the communication of complex
information between agents. In the same spirit, we shall now show that, for
verifying APC in certain classes of environments, control rules based on
internal pricing can perform as well as any of the other DCRs which employ
much more complex means of communication.

Internal-pricing-DCRs are exceedingly simple organizational procedures.
Based on its information about the joint profit/cost structure J and on the

tentative decision x, central management charges divisions with "internal
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prices” (when an internal price is' ‘negative, this is interpreted as a
“premium” credited to the division). Each division so charged assesses its
potential divisional profits net of the charged internal price (or augmented
by the credited premium). The division is then classified as 'OK' if its

ad justed profits are surely non-negative, or as an 'Alarm' if they are surely
negative: the division is responsible for the collection of sufficient
information about its potential profits and costs until either of these

classifications is warranted. This is formalized by

Definition 4: An internal-pricing DCR (or in short a price-~DCR) is a

DCR F = (f,s,r,q) such that range f CR and r = r°’ where r° 1is defined by:

°(m,u) = OK if « 2 m for all a € support u
= Alarm if a < m for all @ € support u
= Continue otherwise.

In the search among all DCRs for those which are efficient, price-DCRs
are marked with two salient limitations: their real-valued message-space and
their special response rule r’. Since r® makes straightforward:use of the
price messages, it would seem that the real valued message space of price
DCRs is their most restrictive feature. Our first result rectifies this
false impression. We first identify three distinctive properties of r°,
listed as P1-P3 below, which may or may not be also satisfied by other
response rules to arbitrary messages. Theorem 1 then reveals what can and

what cannot restrict the performance of price DCRs.

Pl (monotonicity). For all m € range f and all aeR, r(m,a)= OK and

a' > a imply r(m,a')= OK,

P2, For all m e range f, min{aeR: r(m,a)= OK} exists., Note that this
combines three statements: the set is non-empty, it is bounded from below,

and its infinum is attained.
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P3, For all m € range f and all ue U

r(m,u) = OK if for all ae support u r(m,a)= OK

Alarm if for all ae support u r(m,a)= Alarm

Continue otherwise.

Theorem 1,
a) For every CDCR F there is a CDCR F' satisfying P3 such that F' SA F.
b) If a CDCR F satisfies Pl and P3, there is an internal-pricing CDCR F°

such that F° <) F.

¢) If a DCR F satisfies P1-P3, there is an internal-pricing DCR F° such

that W =W

F° F*

Proofs of this and of our subsequent results are presented in an
appendix.

Theorem 1 gives a surprising perspective on the inherent limitations of
price DCRs. It shows (part c¢) that P1-P3 fully characterize the performance
of these procedures., Relative to P1-P3, the simple message space of price
DCRs is not restrictive at all, Of the three properties, the highly stylized
structure of P3 never restricts the signaling accuracy of price DCRs (part a)
and P2 is similarly harmless in the presence of Pl and P3 (part b). The key
factor, then, is the extremely intuitive monotonicity property Pl, which
simply asserts that "if lower profits are OK, then higher profits are
certainly OK". But however intuitive Pl may be, it is still restrictive:
there are CDCRs whose signalling accuracy cannot be immitated or surpassed by
any price~DCR. One example of such a DCR which also satisfies P2 and P3 (but
of course not Pl) is presented in the appendix.

While in general the performance of price-DCRs may be limited, our next

two theorems give conditions on the class E of potential environments under
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which the signalling accuracy and ultimately the overall performance of
price-DCRs is at least as good as that of any DCR. These conditions, stated
below as El and E2, relate to the indirect inferences that can be drawn about
a division's profits from data which is observable by other units in the

organization.

Condition El: E has limited cross—inferences if, for every (J,x) ¢ Em,

H(J,x) = Hl(J,x) X eea X Hn(J,x), where Hi(J,x) = {yi: y € H(J,x)}.

Condition E2: E has limited indirect—inferences if it has limited cross-

inferences and, for every (J,x) € Em and i € N, Hi(J,x) = ﬁ;(x)

Recall that'ﬁi(x) is the support of the marginal prior distribution of
Di(xi)’ and note that Hi(J,x) is the support of the respective conditional
distribution, given J. “Limited cross~inferences" means that any potential
realization of one division's profits cannot be totally excluded on the basis
of information about the realized profits of other divisions. "Limited
indirect inferences™ means that realizations which are initially believed to

be possible cannot be totally excluded also on the basis of central

management's information about the current joint-profit structure.

Theorem 2: If E has limited cross—inferences (El) then for every CDCR F

there is an internal-pricing CDCR Fo such that Fo SA F.

Under limited cross—-inferences, the signalling. accuracy of price-DCRs is
thus unsurpassed. But, in general, the information-collection effort
required by price-DCRs can be improved upon if central management can use its
own information to update at the outset the divisions' assessments of their
profits. Under limited indirect inferences, this cannot narrow down the

supports and hence will not shorten the information—collection process.



- 24 -

Theorem 3: If E has limited indirect inferences (E2) then every DCR is
(weakly) dominated by some efficient internal-pricing DCR. In particular,
for every efficient DCR F there is an internal-pricing DCR FO such that

W = W_.

Fe ¥

The communication simplicity of internal-pricing DCRs can hardly be
surpassed if the class E of enviromments is sufficiently rich., The results
of this section establish that, under suitable conditions on E, their
signalling accuracy and thelr economy in collecting information also cannot

be surpassed by any decentralized control rule.

VII. Cost—-Allocating DCRs

Having established the efficiency of internal-pricing-DCRs, we now turn
our attention to a subclass of price-DCRs. In these procedures charges (or
premiums) are allocated to all active divisions, an overall OK depends on all
divisions showing non-negative adjusted profits, and the net charge to all
divisions equals the overall joint cost (or the net premium equals the
overall joint profit). In fact, these rules' allocations coincide with the

familiar (tidy) "cost allocation” procedures.

Definition 5: A cost-allocating DCR is an internal-pricing DCR F= (f,s,ro,q)

satisfying

P4, s(J,x) =N,
P5. q(J,x) = {s(J,x)}

for all (J,x) ¢ Em

P6. XieN £, (3,%) = -J(x).

We wish to identify conditions on E under which all efficient DCRs can
be imitated by intermal-pricing-DCRs which are also cost—allocating. To

clarify the different issues involved in this question, we shall concentrate
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separately on properties P4~P5, which are jointly equivalent to q(J,x) = {N},
and on property P6, which requires that the allocations be "tidy". Each of

these two parts involves different conditions on E. For analyzing the first

one, consider

Condition E3. All divisions are "vulnerable": division i is wvulnerable if

for all (J,x) € E there is some y e H(J,x) such that J(x) + ¥y< J(xN—{i})'

Recall that a DCR is initiated by central management only if there is
some potential realization of the divisional profits under which it would be
profitable to let a subset of the divisions be inactive. 1If a division is
"vulnerable”, it means that one can never exclude the possibility that

letting this particular division alone be inactive would be profitable,

Theorem 4. If E has limited cross~inferences and all (active) divisions are

vulnerable, then every CDCR must satisfy P4-P5.

Conditions El through E3 have two things in common., First, they all
relate to the sets H(J,x) of potential realizations of the divisional
profits. Second, they all require that these sets, and thus the class E for
which performance of DCRs is to be evaluated, Be sufficiently "rich” in some
sense.(17) The last condition that we shall study differs from the first
three in both of these respects. First, it relates to pairs (J,x) ¢ Em, not
to the potential realizations of divisional profits associated with each
pair. Second, it requires that Em be sufficiently "narrow” in some sense,
In essence, our last condition on E focuses on the performance of control
rules only in those environments where the profit structure shows a certain
degree of "profit complementarity” between divisions.

We shall say that (J,x) exhibits "increasing returns to scope™ if, for

every triple S,» SZ’ S3 of disjoint subsets of N, (J,x) satisfies
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J(x )y - J(xs ) < IJ(x )y = J(x

) 7.1)
Sy US, 9 Sy uSy U5, S

S,u53

Equation (7.1) says that, in the decision x, letting the divisions in S1 be
active rather than inactive when initially the divisions in both 52 and S3
are active adds at least as much to profits as making S1 active when
initially only divisions in 52 are active. Clearly, in this respect the
implications for joint profit amd for total profit are identical. Note also
that by letting 52 =P (7.1) becomes

J(xS ) + J(xs ) < J(xg

. 5 1US3) + 84,83 €N (7.2)

Thus (7.1) implies division—wise super—additivity of profits. Indeed, it can
be argued that division-wise super-additivity of profits, and increasing
returns to scope, are the major reasons for the evolution of large multi-
divisional organizations.(lg) It is in these large organizations that the
problems of decentralized control are most acute. Hence, it is of utmost

interest to study the performance of DCRs especially in environments that

exhibit increasing returns to scope.

Condition E4, E exhibits increasing returns to scope, written in short

E CE#*, if, for all (J,x) ¢ E » (7.1) is satisfied for all disjoint

515555853C N.

Theorem 5, If E C E* then conservative cost—allocating DCRs exist.

Furthermore, every internal-pricing—-CDCR F which satisfies P4-P5 is (weakly)

dominated by some cost allocating DCR F*,

Theorems 4 and 5 show that, under various conditions on the class E of
environments in which a DCR is supposed to perform well, two of the basic

features of cost—allocating DCRs arise from considerations of conservatism,
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and the third then arises from considerations of efficiency. Combining these
results with the earlier Theorem 3, we get an overall statement on the

efficiency of cost—-allocating DCRs.

Theorem 6. If E €E* has limited indirect inferences and all (active)
divisions are vulnerable, then every DCR is (weakly) dominated by some
efficient cost-allocating DCR. In particular, for every efficient DCR F

there is a cost—allocating DCR F* such that W, = W

* F*

Theorem 6 gives a strong case for the use of cost-allocation procedures
to verify APC in a relevant class of environments. The set of efficient
cost—allocating DCRs is not only non-empty, it is indeed performance-
equivalent to the set of all efficient DCRs. But the theorem does not

indicate which of the cost allocation procedures are efficient and which are

not. The next theorem answers this question.

Theorem 7, If E has limited indirect inferences and all (active) divisions

are vulnerable, then every cost—allocating CDCR is efficient.

In other words, Theorem 7 says that, under the stated conditions, if a cost
allocation is conservative then it is also efficient. Recall that if E C E*
then conservative cost—allocations exist, and note that the conservatism of a
cost allocation can be fully ascertained by central management on the basis
of its own information.

An immediate corollary to Theorems 6 and 7 shows the direct
correspondence between cost-allocating-CDCRs and efficient CDCRs, Since this

neatly summarizes the analysis, it is stated as our last theorem.

Theorem 8. When EC E* has limited indirect inferences and all {(active)

divisions are vulnerable, then a DCR F is efficient if and only if there is a

cost—-allocating CDCR F* such that WF* = WF.
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VIII. Some Comments on Core Allocaticons

In recent research on cost allocation, considerable attention has been
given to allocations which are in the core of the associated "divisional
profit game”. It has been argued that if the organization is a loose
alliance of autonomous divisions which can retract at will to form
alternative alliances, then the portion of joint costs allocated to any
subset of divisions must not be higher than the costs that they would incur
as a sub-organization operating on its own. Such considerations are of
course irrelevant in our pure "team™ context. Yet, these core allocations
are interestingly related to the allocations of conservative and efficient
price-DCRs in our framework. This section is devoted to a number of brief
comments intended to clarify this relationship. "Core-DCRs” are cost-
allocating DCRs satisfying

P7 (core allocation). For all (J,x) € Em, 2 fj(J,x) < —J(xs) ¥ Sc N.
ik

The following observations can be readily verified (see appendix):

1. Every core-DCR satisfies part (i) of definition 2. Hence, if a core-DCR
is non—trivial (i.e. satisfies part (ii) of definition 2) then it is
conservative,

2, Under the conditions of theorem 6, every cost-allocating CDCR is a core-
DCR.

3. However, not all core-DCRs need be non-trivial (hence conservative) even
if the conditions of theorems 6 or 8 hold. Therefore, core-DCRs cannot
replace the cost-allocating CDCRs in theorems 7 and 8, as stated.

To resolve this last issue, consider the following strengthening of

condition E3.
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Condition E3(a): All divisions are "pivotal™: division i is pivotal if for

every (J,x) € Em there is yeH(J,x) such that

) J(xN) + yj < J(XN—{j}) for all #1
an

J(xN) + 3 yj > J(x if S C N and ieS.

jes N-s
If a division is pivotal, there is a potential realization of the
divisional profits such that letting the division be inactive is not
profitable while letting any of the other divisions alone be 1inactive is
profitable, Note that if one division is pivotal then all other divisions

are vulnerable, hence when all divisions are pivotal all divisions are also

vulnerable., Our last observation is:

4. 1If all divisions are pivotal then every core-DCR is non—trivial, hence

conservative.,

The impact of these observations is summarized by the following version of

theorem 8:

Theorem 8(a): If EC E* has limited indirect inferences and all divisions

are pivotal, then a DCR F is efficient if and only if there is a core-=DCR F**

such that WF** = WF.

IX DCRs and Management Practice

The last section of this study is devoted to some comparisons between
our framework and the corresponding concepts in accounting and managerial
practice., Besides the apparent similarities, there are also differences -

some of them substantial - which must be noted.
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The first clarification relates to matters of terminology, and therefore
is of relatively minor importance., In our cocst—allocating DCRs, charges to
some divisions and credits to other divisions may occur simultaneously. In
accounting, such adjustments will usually be labelled (at least in part) as
"transfer-prices”, not joint profit/cost allocations. Conversely, some
organizations occasionally use “"partial™ (as opposed to "tidy") cost-
allocations, in which only part of the (central-management) overhead cost is
allocated to divisions.(lg) In our terminology these are internal-pricing,
not cost—allocating adjustments — regardless of their common sign. More
importantly, the partial cost—-allocations observed in corporate practice
cannot be "conservative”: in internal-pricing CDCRs

that satisfy P4-P5 the charges to all divisions must sum up to at
least the overall joint cost.(zo)

In prevalent managerial attitudes, joint-cost allocations are perceived
as means to assess "overall profitability”, Our framework appears to capture
this basic concept: when all divisional accounts in a conservative price-DCR
show non-negative adjusted profits, no elimination of activities can increase
overall profits, and in this sense all divisions are indeed "adequately
profitable”™, The interpretation of the adjusted divisional accounts when
some divisions show "accounting losses” is a more subtle matter, First,
recall that decentralized control rules cannot be guaranteed to have perfect
performance, and conservative DCRs can generate “"false alarms". Managers
seem to appreciate this possibility when they refrain from eliminating
divisions which show accounting losses - a not uncommon occurrence. But even
when the 'Alarm' associated with the existence of divisions which show

accounting losses is "genuine” (not "false"), divisional accounts must not be

construed as evidence on the profitability of each division individually.
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Decentralized control rules cannot, and should not be expected to, specify
which divisions should best be eliminated.

This point is i1llustrated by the following example. Consider an
organization consisting of three divisions with planned sales levels of 1, 4
and 5 (million dollars), respectively, and suppose that in this range the

joint profit/cost (in thousands) is given by
J(x) = 10(2—x1)(5—x2)(12-x3) - 1200

where x, 1s the ith division's sales level. The organization's sales plan
involves an overall joint cost of 1130 (thousand). Suppose that this cost is
allocated to divisions in proportion to their dellar sales levels, viz., 113,
452, and 565 (thousands), respectively. Note that the organization exhibits
increasing returns to scope and that the allocations specified above are
"conservative”. Assuming that divisional profits can take any value in a
sufficiently wide range, these allocations are also “"efficient”, Table 1
depicts six possible combinations of the divisions' profit levels. 1In all

six cases, overall profits are positive, the adjusted account of division 1

is also positive, and the adjusted account of division 2 is always negative.

Insert Table 1 about here

In case #1, the signs of the divisions' adjusted profits give correct
indications of their profitability: division 2 is the only division with
negative adjusted profits, and also the only division which can profitably be
made inactive. However, the value of the adjusted profits does not give an

accurate indication of how "profitable” or "unprofitable” the divisions are.
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For example, making division 2 inactive will save only 30, not 202
(thousand).

Cases #2 and #3 demonstrate “"false alarms”: divisions 2 and 3 have
negative adjusted profits in both cases, but neither of these nor any other
subset of divisions can be profitably made inactive,

The last thrée cases are even more interesting. In case #4, only
division 2 shows negative adjusted profits, but it is more profitable to make
both division ' and division 2 inactive. In case #5, both division 2 and
division 3 show negative adjusted profits, but it is only profitable to make
division 2, not 3, inactive. Finally, in case #6 divisions 2 and 3 again
show negative adjusted profits, but letting either one of these alone (or
both of them jointly) be inactive will not be profitable. Yet, it is
profitable to let divisions 1 and 2 be inactive, even though division 1 shows
positive adjusted profits (and division 3 doesn't).

When managers identify such peculiarities, they tend to attribute them
to the particular cost allocation which is being used (indeed, the reader may
be inclined to react in the same way...). But our analysis shows that these
phenomena are not idiosyncratic., The allocations in Table 1 are efficient,
and hence they cannot be improved upon. Other allocations will give rise to
similar phenomena for other potential realizations of the divisional profits.
Yet, this does not detract from the power of price-DCRs in general, and cost
allocations in particular, to identify potentially profitable eliminations of
activities, as effectively as can possibly be done under the bounds imposedf
by decentralization., On the other hand, a choice among the infinitely many
conservative cost allocations cannot be made on the basis of efficiency

considerations alone.
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Table 1

J(x) = IO(Z-XI)(S—X7)(12-X3) - 1200 = -1130

Cost Allocations
Unad justed 113 452 565

Divisional
Profits Adjusted Profits

Case

No. 1 2 3 1 2 3
1 400 250%* 600 287 -202% 35
2%% 400 300 450 287 =152 -115
%% 300 350 500 187 -102 ~65
4 300* 250% 600 187% =202% 35
5 400 250% 500 287 -202*) <65
6 300* 300%* 550 187* =152%} ~15

*Making the division

**False alarm.

inactive is profitable in this case.
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Footnotes

See e.g. Thomas (1977) pp. 5-8.

See also Fremgen and Liao (1981, p. 65) for the responses of managers in
a survey sponsored by the National Association of Accountants. When
asked why they allocate common costs, the desire to assure "adequate
profitability” was the most frequently cited motive.

Ijiri (1975) p. 184,

Kaplan (1982) p. 409.

Thomas (1977) p. 4. Xaplan (1977, p. 52) uses almost identical
language.

Stigler (1966) p. 165.

See Biddle and Steinberg (1984, p. 6~7) for a partial survey.

In the absence of a more definite argument, Zimmerman (1979) argues that
cost allocation can be an efficient means for motivating managers
because "the firm is already calculating cost allocations for tax and
external repo;fiﬂg purposes, (and) the additional bookkeeping costs of
repértfég thesg-allééations internally are minimal” (p. 508).

See Groves (1985) and the references cited there.

In the sense of Marschak and Radner, e.g., The Ecomomic Theory of Teams

(1972).

Shubik (1962). See also Shubik (1985),

E.g. Billera and Heath (1982), Mirman and Tauman (1982), and Mirman
Samet and Tauman (1983).

For a survey of these studies, see Biddle and Steinberg (1984).

The assumed convexity is essential only in theorems 1(b), 7 and 8, but

it is also used elsewhere for convenience,
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20,
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< i <
Viz, F1 A F2 if F1 =, F

F, SA Fl'

9 and not F, SA Fl» and F =\ F2 if Fy ﬁA F2 and

Cf. Hurwicz (1973).

The following example demonstrates the mildness of conditions El1-E3,
Suppose (as is often done in various contexts) that DI(X1)°°°’Dn(xn) has
a joint-normal distribution, with means, variances and covariances that
depend on J and x. Then El-E3 hold automatically whenever X, # ei
implies oi(J,x) > 0, however small. El1-E3 may of course also hold with
bounded supports.

Baumol et. al (1982) use the term "economies of scope” for super-
additivity, which they discuss extensively. In our terminology,
economies of scope mean that the associated "divisional profit game” is
convex. for a discussion of this concept, see Shapley (1971).

See, for example, Mautz and Skausen's (1968) report on a survey by the
Financial Executives Research Foundation.

Surprisingly, conservative DCRs share this property with the “"Groves
Mechanism” which is designed to elicit truthful revelation of the
divisional profit function from division managers pursuing their own

self-interests (see e.g. Groves, 1985, and Groves and Loeb 1979). Note

also that partial profit—allocation (not usually exercised in corporate

practice) may be consistent with conservative DCRs.

See Fiedler M. and V. Ptak "on Matrices with non-Positive off-Diagonal

Elements and Positive Principal Minors", Czech. Math. J. Vol 12, No 87

(1962) pp. 382-401 (Theorem 4.3 - 2°, 11°),
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Appendix: Proofs of Theorems

Proof of theorem 1:

(a) Given a CDCR F=(f,s,r,q) let F'=(f,s,r'q) be defined by
r'(m,e )=0K if there is a status (J,x,y,v) and ies(J,x)
such that w=f, (J,x), o=y,, r(m,vi)=0K and Wp(J,x,y,v) = OK.
= Alarm otherwise
and r'(m,u) is then defined by P3 for all ueU.
Clearly F' is non—-trivial. Suppose WF,(J,x,y,v) = OK, Then there is
Qe q(J,x) such that # ieQ r'(fi(J,x),vi) = 0K, and by P3 r'(fi(J,x),yi) = OK.
Then, by the construction of r', ¥ ieQ there is ui € U such that
r(fi(J,x),ui) = OK and v € support ui - ﬁ;(x). Hence there is a status
(J,x,y,v) such that ¥ ieQ‘Vi = u' and r(fi(J,x),;;) = OK, implying
WF(J,x,y;;) = OK and (F being conservative) y ¢ G(J,x). Thus F' is a CDCR.
Now suppose wF(J,x,y,v) = OK. Then there is @ q(J,x) such that ¥ ieQ
r(fi(J,x),vi) = 0K, hence r'(fi(J,x),yi) = OK, Hence if (J,x,y,v') is a
status then, by P3, y4€ support vi implies r'(fi(J,x),vi) # Alarm ¥ ieqQ.
Hence WF.(J,x,y,v') # Alarm. Thus F' <, F.

A
(b) Given a CDCR F=(f,s,r,q) satisfying Pl and P3, define F*=(f°,s®,r,q")

by q* (J,x) = {Qeq(J,x): for some status (J,x,y,v)
r(fi(J,x),vi) = 0K ¥ ieQ} a.l)
s (J,x) = {1i e s(J,x): 1ieQ for some Qeq® {J,x)} (A.2)

and for ies?(J,x)
0
fi(J,x) = inf{eeR: there is a status (J,x,y,v) such that,

a=y,, WF(J,x,y,v) = OK and r(fi(J,x),vi) = 0K} (A.3)



Note that the conservatism of F and the construction of s’ imply

J(x - J(x) < fi(J,x) < =,

N-{ 1}’
Clearly F° is non-trivial. Suppose WF,(J,x,y,v) = OK. Then there is
0

Q€ q°(J,x) such that y; % fi(J,x)'¥ ieQ. By (A.l), there is a status
0
(J,x,y,v) such that ¥ ieQ r(fi(J,x),vi) = 0K, and then by (A.3) ;& 2 fi(J,x).

For t=1,2,... let 2t = (y+(t-1)y)/t. By the convexity of H(J,x), zteH(J,x).

- t . t -
Now, for ieQ, if zz =y then r(fi(J,x),zi) = OK by P3 and if zZ F Yy then
t
2y
t t . . t t .
Hence WF(J,x,z ,2 ) = OK, implying z €G(J,x) for all t. =z + y then implies

—_ 0 t
> min(yi,yi) 2 fi(J,x) hence r(fi(J,x),zi) = 0K by (A.3), P3 and Pl.

that y satisfies APC and yeG(J,x). Thus F* is a CDCR.
The proof that F° SA F is similar to that of part (a).
(¢) Given a DCR F=(f,s,r,q) satisfying P1-P3, define F'=(f’,s,r’,q) by
]
fi(J,x) = min{acR: r(fi(J,x),a) = 0K}
0
By P2, these minima exist. By Pl, r°(fi(J,x),a)=r(fi(J,x),a) ¥ aeR,

0
ies(J,x). Then by P3 r°(fi(J,x),u) = r(f,(J,x),u) ¥ uelU, hence Wy = Wg.

An example of an efficient CDCR which is not "price-compatible”

Let n=3 and suppose that for all (J,x)eE_
J(XS) =J(x)<0%S+0
and
H(J,x) = [yeR: y, 2 0¥ 1eN, y, < ¥})
let F=(f,s,r,q) be defined by
s(J,x) = {1,2,3}
q(J,x) = {{1,2}, {1,3},{2,3}}

fi(J,x) = (1,-J(x))
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]

r((1,8),2) = OK if 0,283 £ a < 0,38 or 0.78 <a

r((2,8),a)

OK if 03B < «a

OK if 0.88 € a

]

r((3,8),2)

with r(m,a) = Alarm otherwise, and r{m,u) then defined by P3 for all ueU.

Proof of theorem 2. Given a CDCR F=(f,s,r,q) let Fo=(f°,s°,r%,q°) be defined

by (A.1) - (A.3) as in the proof fer part (b) of theorem 1. Non-triviality
of F implies non-triviality of F®., Suppose WFO(J,x,y,v) = 0K, Then there is
Qeq®(J,x) such that y; z fl(J,x)-% ieQ. By (A.3), for every ieQ there is a
sequence of status points (J,x,zi(t),vi(t)), t=1,2,... such that

. . 0
r(fi(J,x),v;(t)) = 0K for all t and z;(t) *> fi(J,x). Then, by El, for every

t there is a status (J,x,z°(t),v’(t)) where

0 zg for ieQ
zi(t) - Y; for ieN-Q
. v]i“(t) for ie Q
Vi(t) - s for ieN—Q

and z°(t) » z, where ;; = f;(J,x) if ieQ and ;; = y; if ieN-Q. By
construction, WF(J,x,z°(t),v°(t)) = OK for all t, hence z°(t) ¢ G(J,x).
Let

G*(J,x) = {eeR: ) £, > Ixg ) = I ¥5C N (A.4)

ieS

and note that G(J,x) = G*(J,x) n H(J,x) and G*(J,x) is closed, hence
;kG*(J,X). But yz2 ;-implies yeG*(J,x), and yeH(J,x) then implies yeG(J,x).
Thus we have established that wFo(J,x,y,v) = OK implies yeG(J,x) and that F°
is a CDCR.
F is then proved as in theorem 1,

0
F SA
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Proof of theorem 3.

Let T'° denote the set of all internal-pricing CDCRs F=(f,s,r’,q) such
that for all (J,x)eEm and ies(J,x), fi(J,x)eﬁ;(x). Note that for every
internal-pricing CDCR F there is F° € I'’ such that WF0 = WF. Also, define
for every DCR F and every (J,x)EEm

VF(JsX) = {YEH(J,X)= WF(J,X,Y,Y) = OK} (A-S)

Note that when F ,F? are internal pricing CDCRs the following three

statements are equivalent:

(1) For all (J,x) € Em VFz(Jsx) C:VFl(J,x)
1 2

(2) Ftg, F

(3) F!' (weakly) dominates F?

(3) == (2) ==> (1) is immediate, and (1) ==> (3) follows from the special
structure of r°,

The proof of the theorem consists of two parts:
1. First, we establish that every DCR F is weakly dominated by some F°er°.
This needs proof only when F is a CDCR. By theorem 2, and by our preliminary
analysis above, there is F°e¢I'’ such that F° SA,F' We shall now show that if
F® =, F then F’ <. F, Let

n
Z(v) = {zeR : z ;e support v, ¥ ieN} .

By E2, if (J,x,y,v) is a status then ¥ zZ(v) (J,x,z,v) is a status.
Suppose WFO(J,x,y,v) = Reiterate. Then there is a Qeq® (J,x) such that
¥ ieQ r°(f1(J,x),vi) # Alarm, hence there is zleZ(v) such that
WFa(J,x,zlzl) = 0K, Also, ¥ Qeq®(J,x) there is ieQ such that
r(f;(J,x),vi) # OK, hence there is z?¢Z(v) such that WFO(J,x,z’,zz) = Alarm,
Now if WF(J,x,y,v) = OK then WF(J,x,zz,v) = OK, contradicting

1
F° SA F, and if WF(J,x,y,v) = Alarm then WF(J,x,z ,v) = Alarm, contradicting
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F SA F°. Hence when F° =\ F WFO(J,x,y,v) = Reiterate implies WF(J,x,y,v) =

Reiterate, and thus F* < F, so that F° dominates F. 1In particular, if F is

I
efficient then WF° =W_.

F
2. Finally, we show that every F' ¢ I’ is weakly dominated by some
efficient F*=(f*,s* r° ,q¥)el®. Given F'=(f°,s’,r’,q’), s*,f* and q* are
defined as follows.

Let (J,x)sEm be given,

For every pair (s,q) such that s = {i(1),...,i(k)} C N and qcC ZS,

define

I'(;,E) = {F"_'(f' ’S' :r' ’q' )E:I'O: S'(J,X)'_'—S-’ Cl' (J,X) = ;’ VF° (J,X) c VF'(J,X)}
- k —_ .

B(s,q) = {€eR : for some F'er(s,q) gj = f;(j)(J,x) for j=1,...,k}

Clearly B(s’(J,x), q°(J,x))# . We shall now show that whenever
B(s,q) # ﬁ there is a "minimal” element b(;;a) € B(;;;), i.e., EEB(;;;) and
£ < b(;}g} imply ¢ = b(gxa). Let {g(t),t=1,2,...} be any decreasing
sequence in B(E}E). B(;;a3 is bounded from below (by J(XN-{i(j)p_J(x) for
j=1,..,k), hence £(t) has a limit point, say £(t) » £. Let F(t) denote the

corresponding sequence in F(E;E) and let F = F(¢) = (f,s,r’,q) be defined by
s = S(l)’ - q(l)

s 4
(1) 1
ji(J',x') = fi (J',x') ¥ ies (J',x') for all (J',x') # (J,x). Suppose

, and ii(j)(J,x) = Ej for j=1,...,k and

WF(J,x,y,v) = OK. Then there is Qea-such that Yi( ) > E& whenever 1i(j)eQ.

F(t)er(EIE) implies F(t)er°, hence for all ies fit)(J,x)eﬁi(x) = Hi(J,x).

Hence, as in the proof of theorem 2, there is a sequence z° (t) such that for
[ [

all 1eN-Q z,(t) = y, and for all ieQ z,(t) = fgt)(J,x), and then

0 . —
z (t)eG(J,x), 2°(t)*z y 2 z and yeH(J,x) imply yeG(J,x). Thus F is a CDCR
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and it is readily verified that g;r". Also, silnce E(t) is a decreasing
sequence, VF(t)(J,x) c YE‘J,X) hence VFo(J,x) C VEfJ,x), and thus Fel(s,q)
and EeB(s,q). This establishes the existence of (at least one) minimal
element b(s,q) of B(s,q), and for the corresponding F = Eﬂb(§;E>) it is true

that if F'el(s,q) and Vzﬂb(ﬁui))(J’X) c VF'(J,x) then

— =V J .
V_F_(b(?,q))(J’X) F'( ’X)
After repeating this for all the (finitely many) pairs (E;E) such that

r(s,q) # #, let F = F (b(s,q)) be such that

VE(J,X) - Yz(b(EZE))(J’X) implies VE(J’X) = YE(b(EZE))(J’X)'

Then let s*(J,x) = ;, a*(J,x) = z and f:(j)(J,x) = b(;’;)j for j=1,e¢e,ka
Applying this definition to all (J,x)eEm defines F*eI'® such that

' (J,x)eEm VFo(J,X) C VF*(J,X), hence F* weakly dominates F°., To see fhat

F* is efficient, suppose to the contrary that F* is strongly dominated by

some DCR F'. Then by part (4) above there is some F'' € I’ which dominates

F' and thus also strongly dominates F* and F°. Hence there exists (J,x)eEm

such that F'' e T(s''(J,x), q''(J,x)), VF*(J,X) cV (J,x) and

F"
VF*(J,X) f’VF..(J,x), which contradicts the construction of F*, Thus F* must

be efficient and the proof is complete.

Proof of theorem 4. Let F=(f,s,r,q) be a CDCR., We first show that if

WF(J,x,y,v) = 0K on Q, 1.e., if (J,x,y,v) is a status, Qeq(J,x), and

r(fi(J,x),vi) = OK % ieQ, then Q=N. Suppose to the contrary that ieN-Q. By

E3, there is ; e H(J,x) such that J(x) + ;i < J(XN—{i})' Let ?ERn be defined

— = - - - .n
by v, =Yy and y, = yj for j # i, and by El yeH(J,x). Also, let veU be
defined by ;; =y and 5} Vj for j # i, and then WF(J,X,§;TD = 0K on Q.
But this is a contradiction, since F is a CDCR and by construction §-is not

[

<

in G(J,x). Hence Q=N.



To conclude the proof, note that by non—~trivialitv of all CDCRs there is

for every (J,x)sEm some status such that WF(J,x,y,v) = 0K, hence
WF(J,x,y,v) = OK on N, and if Q¢ q(J,x) then necessarily WF(J,x,y,v) = 0K on

Q, implying Q = N. Thus q(J,x) = {N}.

Proof of Theorem 5.

To prove the theorem, we need some preliminaries, which we state as

n
lemmas for convenience. For every (J,x)eEm, yeR and A C N, define

d,(y;d,0 == 1y, +Jxy ) - I
ieA

and note that if yeG*{J,x), where G*(J,x) is defined by (A.4), then
dA(y;J,X) < 0'

Lemma 1, If E C E*  then for every (J,x)eEm, A,B C N and yeG*(J,x)

dy U p(ysJsx) + dy 0 glysJd,x) 2 dA(y;J,x) + dB(y;J,X)

Proof. Let S‘ = A-B, S2 = N~-(A V B), S3 = B~A and S4 AN B, Then

{Sl""sh} is a partition of N, and

U = - 3. U =
S, VS, =N=-B S, Vs, =a
U = - U =
5, YUSy = N-a S;U s, =B
= - ’ =
Sl U S2 v S3 N (AN B) S1 v S3 V) S4 AUB

Then

dy ugysdex) +dy gy, =~ § y,. - 1 y - 2] y
1eS1 1eS3 ieS4

+ J(x. ) + J(x )y = 2J3(x)
SZ S1 U S2 V) S3

d,(y33,%) + dp(y;3,x) == ) y, = ] ¥, - 2) ¥y
ieS1 1eS3 1584

+ J(xS U s ) + J(xS Us ) = 2J(x)

2 3 1 3

and the desired inequality follows directly from (7.1),
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Lemma 2: If (J,x)eEm satisfies (7.1) and yeG*(J,x) satisfies

dA(y;J,x) = dB(y;J,x) = 0 then d (y;J,x) =d (y;J,x) = 0,

AU B AN B
Proof: This follows from lemma 1, since for yeG*(J,x) ds(y;J,x) < 0 for

all SC N.

Lemma 3: Suppose (J,x) € Em satisfies (7.1). 1If yeG*(J,x) and

dN(y;J,X,) < 0, there exists jeN such that
ds(y;J,x) < 0 whenever jeS, SC N,

Proof: Suppose to the contrary that for every ieN there is a subset Si C N

containing {i} such that dS (y;J,x) = 0. Clearly, U Si = N. Moreover,
i ie N

lemma 2 implies that dS U s (y;J,x) = 0 and applying lemma 2 recursively we
1 2
obtain dN(y;J,x) = 0, a contradiction.

The proof of theorem 5 now consists of two parts.
l. Given an internal pricing CDCR F°=(f°,s’,r’,q’) satisfying P4-P5, a cost
allocating CDCR F*=(f*,s®,r’,q’) which dominates F* is found by the following

algorithm, which defines f*(J,x) for every (J,x)SEm.
0 0
For i=l,...n let gi(J,x) = max{fi(J,x), inf Hi(J,x)}.
For i=l,...n, define recursively

i-1
ki(J,x) = max {ds(g1 (J,x)3J,x): S C N, icS}

i

i, -1
gj(J,x) = gj (J,x) + Ai(J,x)Gij-V jeN (s is Kromecker's delta.)

ij
n
Let F*(J,x) = g (J,x).

To see that F* is satisfactory, note first that F° being a CDCR implies
i-1
g° (J,x)eG*(J,x). Assume inductively that (i) dg(sg (J,x);J,x) < O¥ ScCN
and (ii) for all j=1,...,i-1 there is S C N such that jeS and

i-1
ds(g (J,x);J,x) = 0. For i=1 (i) follows from g° (J,x)eG*(J,x) and (1i)
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holds trivially. By construction, if (i) and (ii) hold for 1 they also hold
for i+l. Hence (i) and (ii) hold for i=1,.,..n, and in fact also for i=nt+l.
Then from (i) it follows that f*(J,x)eG*(J,x) and F* is a CDCR, and then it
follows from (ii) and lemma 3 that dN(f*(J,x);J,x) = 0 and F* is cost
allocating. Also from (i) g§+l(J,x) < gE(J,x)-V'i,j, hence if yeH(J,x) and
ys 2 f;(J,x) ¥ ieN thea y; 2 fI(J,x)-V ieN and thus F* <, F°. Since both F°
and F* are price DCRs, it follows that F* weakly dominates F°.

2. To conclude the proof of the theorem as stated, we note that
conservative price DCRs satisfying P4-P5 exist. For example, for (J,x)eEm

0
take some yeG(J,x) and let fi(J,x) =y for all ieN.

Proof of theorem 6. Let F be a CDCR., By theorem 3, there is an efficient

internal-pricing CDCR F° which weakly dominates F. By theorem 4, F° must
satisfy P4-P5, and by theorem 5 there is a cost allocating DCR F* which

dominates F°, Hence F* is an efficient CDCR which dominates F.

Proof of theorem 7.

i. To start, we show that, under the stated conditions, if F is a

cost—allocating CDCR then, for every (J,x)eEm and ieN, fi(J,x)eHi(J,x).
First observe that if there is keN such that fk(J,x) > Y, ¥ yeH(J,x)

then non-triviality is violated. Second, suppose that there is keN such that

k
fk(J,x) < yk-¥ yeH(J,x). By E3, there is z( )eH(J,x) such that

(k) <
2k N—-{k}

;i 2 £,(J,x) ¥ 1eN (thus wF(J,x,yi) = 0K) and ;k = zék) so that ¥ is not in

J(x )-J(x), and then by El there is yeH(J,x) such that
G(J,x), contradicting conservatism. With the convexity of H(J,x), these
observations imply fi(J,x)EHi(J,x) for all ieN.

If £(J,x) is viewed as an element in Rn, we can write in short

£(J,x)eH(J,x).
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2. Now let F=(f,s,r’,q) be a cost-allocating CDCR, and suppose, contrary
to the theorem, that there exists a DCR F' that strongly dominates F. By
theorem 3, there is an internal pricing CDCR F°=(f°,s’,r’,q") that dominates
F', and by theorem 4 s°(J,x) = N and q°(J,x) = {N} ¥ (J,x)eEm. By
transitivity, F° strongly dominates F, and there is some (J,x)eEm such that
VF(J,x) C VFO(J,x) and VF(J,x) # VFO(J,X), where V is defined by (A.5). Llet
erFo(J,x) - VF(J,x), i.e., Yi 2 f;(J,x)-V ieN and e < fk(J,x) for some keN.
Then fk(J,x) > f;(J,x). But by our analysis above f°(J,x)eH(J,x) and, F°
being a CDCR, £f°(J,x) must satisfy ZNf:(J,x) 2 - J(x). Together with
XNfi(J,x) = = J(x) and fk(J,x) > f;(J,x), this implies f;(J,x) > fz(J,x) for
some LeN. Hence f(J,x) € VF(J,x) - VFO(J,x), a contradiction of

VF(J,X) c VFO(J,X). Thus F must be efficient.

Proof of theorem 8.

Follows immediately from theorems 6 and 7.

Proofs of observations in section VIII

1) Let F = (f,s,r’q) be a core-DCR. Then P6 and P7 imply

izs fi(J,x) 2 J(xy_g) = J(xy) ¥ (J,x)EE , S C N.

Suppose that WF(J,x,y,v) = OK. Then Yy 2 fi(J,x,) + ieN and consequently

) vy 2 J(xN_s) - J(xN)-V S CN,
ieS

that is yeG(J,x) and part (i) of definition 2 holds.

2) Let F°=(f",s’,r’,q") be a cost-allocating CDCR. Vulnerability, El,
and the convexity of H(J,x) imply (as in part 1 of the proof for theorem 7)
that f°(J,x)eH(J,x)-v(J,x)eEm. wFo(J,x,f°(J,x),f°(J,x)) = OK and the

conservatism of F* imply
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) f;(J,x) 2 J(xy ) - I(x) ¥ SC N (A.6)
ie$S

and since F° is cost allocating it also satisfies

) f;(J,x) - - (%) (A7)
ieN

Substracting (A.6) from (A.7) gives P7, hence F* is a core-DCR.
4) Let F°=(f°,s,r’,q°) be a core~-DCR. Let (J,x)eEm and for every jeN

let stH(J,x) satisfy, as in E3(a),

k| ] o .
yi < J(}SN__{ 1}) u(X) 1 f hi (A.S)
iZS yi > J(xN_S) - J(x) ¥ S CN, jeS (A.9)

To show that F* is non—trivial, we will establish the existence of XeRn

such that A 2 0 | A =l and

T oLy 2 £0(J,%). (A.10)
jeN J

Let T = (tij) be the n x n matrix given by

3

o (3
tij = yi - fi(J,x) % i,J € N

Since F° is a core-DCR, (A.6) and (A.7) hold, and by (A.6) and (A.8)

tij <0 #1i,jeN, 1i# j (A.11)
Also, by (A.7) and (A.9) with S = N

s )
I t,.= 1 yi-1 £4,00>0 (A.12)
teN 11 gen bt gen
Finally note that (A.10) holds if and only if T™ 2 0, However, (A.l1) and
(21) -1 -1 n
(A.12) imply that T exists and T > 0. Let EeR satisfy £ » 0 and

T—IE # 0, Then let

-1 -1
A =T 7%/ § (T %),
. 1
ieN
x satisfies A 2 0, [A; = |, and T > 0, so that z = ] AijeH(J,x) and

jeN

WFO(J,x,z,z) = 0K, hence F* is non-trivial. i



