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1. Introduction

Following the seminal work of Black and Scholes (1973), considerable
attention has been given to the fact that a finite number of securities can
span a continuum of contingent claims when security trading occurs
continuously. This means that a market can be effectively complete, in the
sense of being equivalent to a market with a complete set of contingent claims
contracts, even though it contains far fewer securities than would an Arrow
(1964) securities version of the market —— in fact a finite rather than
infinite number. One implication of this phenomenon, that with which Black
and Scholes dealt, is the uniqueness of rational contingent claim prices. Of
course the occurrence of this phenomenon is dependent on thé security price
processes being of particular forms: in general, rational contingent claim
prices will not be unique nor will be the entire space of contingent claims be

spanned by the securities.l

Nevertheless it is a general principle that, when
trading occurs continuously rather than only at discrete intervals, the class
of rational prices for each contingent claim is reduced and the set of spanned
contingent claims is enlarged. Uniqueness and full spanning is a special
case.

It is natural to inquire: might the class of rational contingent claim
prices be reduced to the null set?2 If so, then one may not be justified in
treating the secufity prices as parameters when computing the value of a

contingent claim not previously marketed, because the marketing of some sets

of claims must induce arbitraging that leads to a change in the security

prices. Harrison and Kreps (1979) show that the answer to this question is

no"” -—— i.e., rational contingent claim prices exist — if the security price

w3

system is "viable. The viability assumption means that in a "frictionless

market” setting some trader would have an optimal trading strategy.



The purpose of this paper is to reconsider this question under a
different assumption. We consider a market in which traders are constrained
to have nonnegative net worth at each date. This assumption is certainly
extreme; it might even be considered the polar case to that of frictionless
markets, in which there are no solvency constraints of any form.4 Since any
realistic model probably lies between this and the frictionless markets model,
the analysis of this model may be a useful complement to the Harrison-Kreps
analysis.,

There is also another reason for considering this type of model. To
obtain the negative answer to the question posed above, Harrison and Kreps
assume that only "simple” trading strategies are allowed in the securities

5

market., This is to exclude the "doubling"” strategies. They suggest that the

same role might be served by the constraint on net worth. If so, this would
provide more of an economic basis for the exclusion of doubling strategies, an
exclusion which is necessary for a theory of continuous trading.6

Our results for pricing bounded contingent claims are as follows. If
some trader has an optimal trading strategy subject to the constraint that his
net worth be always nonnegative (we call this version of viability “Condition
V") and there are only finitely many trading détes, then all bounded
contingent claims have rational prices7 (we call this “"Condition E", since it
means that the pricing scheme for marketed claims can be extended). However
Condition V does not imply Condition E when trading occurs continuously.
Thus, in the presence of a nonnegative net worth constraint, the answer to the
question posed above is "yes" — the class of rational contingent claim prices
can be reduced to the null set.

The proofs of these results contain facts of independent interest. To

show that Condition V implies Condition E when trading is in discrete time, we



first show that Condition V implies the absence of arbitrage opportunities8
(which we call "Condition A"). The proof is completed by observing that
Condition A implies Condition E (this is proven by Back (1986) and is a
generalization of a result due to Ross (1978)). To show that Condition V does
not imply Condition E when trading is in continuous time, we give an example
in which Condition V holds but neither Condition A nor Condition E does.

Since it seems difficult to take seriously a m;del in which security prices
may not satisfy Condition A, we conclude that the nonnegative net worth
constraint is not suitable for a model of continuous trading.

For pricing more general contingent claims (e.g.,‘all those with finite
variance) our results are only indicative of a difference between the
continuous and discrete models. A necessary condition for the existence of
rational prices for all finite-variance contingent claims is, as shown by
Harrison—-Kreps (1979), that there exist a probability measure which is
mutually absolutely continuous with the probability measure of the traders and
under which the security price processes are martingales (we term the
existence of such a measure "Condition M"). A necessary and sufficient
condition is that this measure exist and have a square—integrable Radon-
Nikodym derivative.? TIn our example for continuous trading Condition M does
not hold. However we show in a setting similar to that of the example
(namely, one in which there is only one risky asset) that Condition M is
implied by Condition A when trading is in discrete time. Of course it then
follows from the result previously mentioned that Condition M is implied by

Condition V.

2. Discrete Trading

In the first part of this section the discrete-trading model will be



defined. Then formal definitions will be given of the conditions mentioned in
the introduction. Finally it will be shown that Condition V implies Condition
A and that Condition A implies Condition M.

Let Q@ denote the set of states of the world. This set may be either
finite or infinite. Let F denote a o-field on @, and let P denote the
subjective probability measure held by the traders.

The trading dates will be indexed as t = 0,1,...,T and the securities as
k=20,l,...,K. We will take security zero as the numeraire; therefore its
price at each date is one. Denote the price of security k at date t by Zi;
this is assumed to be an Ft—measurable nonnegative random variable, where
(F)tIO is an increasing family of sub o-fields of F.

A trading strategy is a finite sequence 8 = (61,...,6T) where each et is
an Ft_l—measurable10 BX-valued random variable, representing the portfolio

purchased at date t-1 and held until date t. The capital gains generated by a

trading strategy 6 is the random variable Gg defined by
T

G, = ) 0 *AZ
=tt

where the "*" denotes the inner product and AZt is the vector

1 K

t—l""’zt—l)' A random variable x which is of the form x = I

1 K
(Zt,...,Zt) - (Z
+ Gg for some constant I and trading strategy © is said to be a marketed

contingent claim (the constant I is the investment of the trader at date 0).

The absence of arbitrage opportunities is formalized as:

Condition A. There does not exist a trading strategy 6 such that

P[Ge > 0] =1 and P[G9 > 0] > o.



Let L_ denote the class of essentially bounded random variables on
(?,F,P). We will say that a linear functional ¢ on L, is positive if

$(x) > 0 for each x € L satisfying P[x > 0] = 1.11 The statement that

rational prices exist for all the bounded contingent claims is formalized as:

Condition E. There exists a positive linear functional ¢ on I, such

that, for each constant I and trading strategy 0 satisfying I + Ge €L,

¢(I + Gy) = I.

The existence of an "equivalent martingale measure” (without the
"requirement that the Radon-Nikodym derivative be square-integrable) is

expressed as follows.

Condition M. There exists a probability measure Q on (Q,F) such that

{8 € F|p(B) =0} ={B € F|QB) = 0} and
k k
fB(Zt+1 - Z,)dQ =0
for each k € {0,...,K}, t € {0,...,T-1} and B € Ft.

Finally we must formalize the notion of viability to be studied. The
interpretation is to be that a viable price system could be an equilibrium
price system for an economy in which traders are constrained to always have
nonnegative net worth. 1If a trader's initial investment is I and he follows

the strategy 8', then his net worth at date t will be

t
I+ ) 0'eAZ
S S

s=1



If 6 is a strategy such that z§=les.AZs > 0 a.s. for each t, then the trader's
net worth will not be lessened at any date if he follows the strategy 6 + ©°'
instead of 6'. If it is also the case that P[Ge > 0] > 0 and preferences are
monotone, then 6 + 8' will be preferred to 6'. 1In fact such a situation there
could not be a best trading strategy, so the price system could not be an
equilibrium price system. This leads us to the following (very weak) notion
of viability. The use of a weak notion will ensure that the results of this
section are quite strong; a much stronger notion'of viability will be seen to
be insufficient to imply Conditions A, E or M in the context of continuous

trading.

Condition V. There does not exist a trading strategy 9 such that
P[Zt © eAZ > 0] = 1 for each t and P[G, > O] > O.
s=l"s ] S
THEOREM 1. Condition V implies Condition A which, in turn, implies

Condition E.

Proof. It is shown in Back (1986) that Condition A implies Condition E;

therefore it suffices to show here that Condition V implies Condition A.
Assume that Condition V is satisfied but Condition A is not. Let 6 be a

trading strategy such that P[Ge > 0] =1 and P[Ge > 0] > 0. For each t let

Bt = [XZ=IOS~AZS < 0]. We will use induction to show for each t

that P(Bt) = 0. Since this is a contradiction of Condition V, the proof will

be complete.

For the induction argument, note that we have P(BT) = 0. Suppose now,

for an arbitrary t < T, that P(Bt) = 0.



Since P(Bt) = 0 we have Gt'AZt > 0 for almost all w in Bt— . Consider

1
the trading strategy 6' defined by

. - €
et(w) if 1 t and w Bt—l
6 (w) =
0 otherwise.
: . . . t g,
Since Bt—l € Ft—l’ this strategy is predictable. We have Zs=les AZS 2 0 a.s.
for each t, Ge, = et-AZt on By .y, and Ge, = 0 on the complement of By If

Condition V is satisfied it must be that P(Bt_l) = 0. []
THEOREM 2. Assume K = 1. Then Condition A implies Condition M.

Proof. For t = 0,...,T-1, take @ to be a fixed version of the

conditional expectation

E[Az I |7 ],
t+1 [Azt+l>0] t

where "I" denotes as usual the indicator function. Take Bt to be a version of

E[AZ 1T IF ],
e+l 8z, <011t

and take Yt to be a version of

E[ I _F 1.
[Azt+1—0] t

We will use the following lemma, the proof of which will be deferred.



LEMMA. There exists Nt € Ft such that P(Nt) = 0 and such that for each

w ¢ N either (a) Yt(w) > 1, or (b) Bt(w) 0K at(w)-

We can choose the version Yt so that Ye = 1 on Nt. Therefore we can and
will assume that either (a) or (b) holds for each w € Q. Let Ap denote the
set of w for which (a) holds, and let AE denote the complement of A.

Now fix versions

o =[1 .1,
t [Azt+1>0] t

= [1 IF ]
t [Azt+1<0] t

such that ¢t(w) > 0, gt(w) > 0 and ¢t(w) + gt(w) = 1 for each w. Define
Cc
B /(@& ~B6) on A°n [AZ . > 0]

c
o = at/(atgt - Bt¢t) on At n [AZ < 0] (2.1)

t+1 t+1

- ; 4aQ _
Set p plpz...pT and let Q be the measure defined by P - P

Since either ¢t or gt must be positive and Bt < 0L a_on Ai, it is clear
that p(w) > 0 for each w. To complete the proof we must show that E[p] =1
and that the process Z is a martingale under Q.

First note that LA Bt’ ¢t and gt are Fy-measurable and At € Ft- Hence12
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as desired. Moreover we have, for any t and B € Ft,

E[pAZ  I.] = E{p ...p

I
t+1 B P

AZ e e o
17" Pes17%e41 B pT—lE[pTIFt-l]}

t+2

= E{p vup AZ I
CIERRC TP,

= E{pl...ptIBE[pt+ IF 1}.

t+l

The condition that Z is a martingale under Q is equivalent to having

E[pAZ I.] =0 for each t and B € Ft, so it suffices now to show that

t+1 B

Efp IFt] = 0 a.s. for each t.

t+1 t+1

B, o
___._—————)E[I[AZ 011 Fe ]+ 7557—3575_)E[I[Azt+1<0]|Ft]} +1

Ay
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In the expression for p obtained from (2.1) consider first the

e+18% 041

term

—B
t
51 1 AZ . (2.2)
& B o, AE [Az,  ,>0]""t+1
Its conditional expectation is
EE g (2.3)

LTS A(t:

There is a second term identical to (2.2) except that the factor I[AZ 0] is

t+1l

replaced by I[AZ . This term equals zero for each w, however, so its

=0
t+1 ]
conditional expectation is zero a.s. The next term is

o4

L1 1

(_____—__
%5 Bed, AE [Az

AZ s
t+l<0] t+1

and its conditional expectation is the negative of (2.3). We therefore have

that

E[pt+lAZt+l|Ft] = E[IAtAZt+l|Ft] a.s.
Since Yt > 1 on At and At € Ft,
< = = P(A N[AZ  _=0]).
P(At) E[IAth] E[IAtI[AZt+l=O]] ( t [a t+1 o)

Hence P(Atn[AZt+l¢0]) = 0. This implies that, for any B € F ,

IBIA A2 = an{Az _0)%a B2y T 05
t ¢ t+1- t
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i.e., E[I, AZ
At

t+1iFt] =0 a.s.

It now remains only to prove the lemma. Let N = [yt<1] n [at<0] and

1t

= n 20]. im i P(N U N = 0. i i
N,, [yt<l] [Bt 0}. The claim is that P( 1t ) First we will

2t
show that P(N;.) = O.

Consider the trading strategy 6 defined by 61 =0 if v # t+l and

9t+1 = —INlt. Since Nlt € Ft this strategy is predictable. We have

G, = -1 AZt+

i N c
e Since at < 0 on Nyt and 1t Ft we have

1‘

= < 0.
>O]Azt+1] E[IN at] 0

E[ 1
n
Nlt [AZt+ 1t

1

But I >0].

AZ
Nltﬂ[AZt+1>O] t+1 1

it must be that P( n [AZt+1>O]) = 0. This means that Ge > 0 a.s.

> f iti n
0 for each w and positive on Nlt [AZt+

Nie

If P(Nlt) > 0 we have, since Ye <1 on Nlt’

P(Nlt) > E[IN v. ]

1t ©
=E1_ I ]
Nlt [Azt+1-0]
= B(x,, 0 [8z,=01)

Hence

Given the conclusion of the preceding paragraph, this is possible only if

P(Nlt n [AZt+1<O]) > 0. This means that P[Ge > 0] > 0. Thus if P(N1¢) > O,

there exists an arbitrage opportunity. We conclude from Condition A that

P(Nlt) = 0.

A symmetric argument shows that P(NZt) = 0, and this completes the
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proof. []

3. Continuous Trading

In this section it will be assumed that trading may occur at each date t
in the interval [0,T]. The capital gains Gy is now defined as the stochastic

integral
T

In order for this integral to be defined, one assumes that each of the

processes (zk)

is a semimartingale and that each process (ek) is
t”0<t<T t

predictable —— with respect to the family of o-fields (Ft) - and

0<t<T

satisfies some condition such as boundedness. The details are given by

Harrison—-Pliska (1981).
Having defined the capital gains Gg for each trading strategy in the

class from which traders are allowed to choose, Conditions A and E are defined

exactly as before. The only modification needed in Condition M is to require
k k

that fB(ZS—zt)dQ = 0 for each k, t, B € F. and s > t. One could also extend

Condition V in a straightforward manner, but instead we are going to use a

stronger condition, the one which was mentioned in the introduction: we will

assume that some trader has an optimal trading strategy when he faces for each

t the net worth constraint
t
+ 6 «dZ > 0.
I fO s s

Our purpose here is to present an example, so rather than stating a

general version of Condition V (or discussing in detail the general definition
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of Ge) we will now turn to specifics. Consider a trader who has wealth W > O

and utility function
U(r,x) = r + E[x]

where r (respectively x) is date O (resp. T) consumption. In other words, the
trader is risk-neutral and does not discount the future.l3 We will define a
market in which there is only one risky asset. The price of this asset will
be a (jump) process of integrable variation, so the stochastic integral will
be simply a Lebesgue-Stieltjes integral. This is a special case of the model_
of Harrison-Pliska (1981). We will show that there is a simple strategy which
is optimal among the class of all strategies — simple or otherwise —- when
the net worth constraint is imposed. Nevertheless, this price system will not
satisfy Condition A, Condition E, or Condition M.

The remainder of this section will be devoted to the details of the
example. We will write Zt for the price of the risky security at date t and
0 for the amount held. The jumps of Z; will occur only at (a finite number

of) deterministic times tys t2""’ where 0 = tO < t, <uouoelT. Let

1

(o]

(gn)n=l be a sequence of independent {0,l}-valued random variables with

P[E_=0] = P[£n=l] = 1/2 for each n. Let v = min{n|£n=1}. We have v < ®

a.s. The price process of the risky security will be assumed to satisfy
Z =12 for all > .
t tV t tv

Given these conditions the capital gains process corresponding to a

trading strategy 6 will be of the form

t
fedz = ) 6 (z_ -z )e
0's"s {nltn<t} tn tah o1
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In particular we have

t

t _ (n
Jo8sdzg = I

6 dz
s s

ift st<t . Hence the net worth constraints need only be checked at the

n n+1
dates tpe To simplify the notation we will write Sn = Ztn, ASn = Sn - Sn—l
and ¢ = Ot « The net worth constraints can now be written as:
n n
n
I+ 2 o AS » 0 a.s., ¥ n. (3.1)
m m
m=1
The value of the trader's portfolio at period T is
© v
I+G, =TI+ ) 6AS =T+ ) ¢6AS . (3.2)
0 2.'m m m m
m=1 m=1

Given that the trader does not discount the future and that the larger is
I the greater is the number of trading strategies satisfying (3.1), it is
evident that it will be optimal to choose date zero consumption r = 0 and
I = Wo The problem is therefore to choose a trading strategy ¢ to maximize
E[G¢] subject to the constraint (3.1) where I = W.

We are now ready to specify the distributions of the random variables ASn

and to define the filtration (F. )

£’ o<t<T" Define a tramsition probability m on

the state space (0,2) by setting

-k, k-1
n(y,A) = k2 jA t dt

where k is the smallest integer such that k -= 1 > y/(2-y). Let (Y )oo 0 be a
n’n=

0. 0 0
Markov process on a probability space (Q ,F ,P ) having ® as its transition
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kernel and YO = l. Let the 5n be as described above and defined on a

1 1 1
probability space (Q ,F ,P ). Now take (R,F,P) to be the completion of the

product space (Qoxgl, Fq®Fl, quPl). Set

Y if n < v

Let (Gn)n=0 be the filtration generated by the process (Sn):=0’ completed with
respect to the null events of F. Set Fy = G, for tn € t < tn+1' Then the
probability space (Q,F,P) and the filtration (Ft) satisfy the "usual
conditions” assumed in Harrison~Pliska (1981). We note also that v is a
stopping time of the filtration (Gn) and that a trading strategy 0 is

predictable only if ¢n = Gt is Gp-j—measurable. Furthermore each én is

n
independent of the sequence (Y

(o]
n’n=0"

It is evident that Condition M is not satisfied by this price system,
since ZO = 1 but Zp = 2 a.s. There is also an arbitrage opportunity: setting

8, = 1 for all t gives G

¢ = l(ZT—ZO) = 1 a.s. (consequently one can short the

S
bond at date zero to construct a portfolio of zero value which is certain to
have positive value at date T). This implies not only the failure of
Condition A but also the failure of Condition E, since the strategy named
above in conjunction with I = 0 yields the same contingent claim (x=1) as
8 =0 and I =1, but one cannot have ¢(x) = I for each.

We will show that the simple trading strategy defined by
¢l = ¢2 = +ss = W is optimal in the class of all trading strategies. Given

n
any trading strategy ¢, define Wy = W and Wn =W + Zm=1¢mAYm for n > 1.

We will write the trader's optimization problem as a dynamic programming
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problem with state variables (W,, Y,). The decision variable will be ¢py].

The states evolve according to

wn+1 = Wn + ¢n+1(Yn+1—Yn)

and according to the already specified transition law of Yn+1‘

Note that
\% v—-1
G = = + —
¢ 2 ¢nASm 2 ¢nAYn ¢v(z Yv—l)
n=1 n=1
= + - .
wv—l ¢v(2 Yv—l)

We therefore have

¢ n=1
_ 7 Ll _
- n£1(2) E[W ) + o (Y D]
-1 E GE[w + o (2-Y )]
2 n=0 2 n +1 n

1
Thus the probabilities 7 can be treated as discount factors for this dynamic
programming problem. The reward at date n is Wn + ¢n+1(2—Yn).

The states W, can be assumed to be nonnegative and the decisions ¢n+1 can

be constrained to satisfy

—Wn/(Z-Yn) < ¢ < Wn/Yn. (3.3)

n+1
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To see this, note that if the W, are nonnegative then it is no restriction to

assume (3.3) for n > v, since ¢ does not enter into (3.1) or (3.2) and

n+1
since (3.3) is satisfied by some ¢n+1' On the other hand we must assume (3.3)

for n < v because there will be positive probability that n + 1 < v, in which

case the trader's net worth at date n + 1 would be

wn+1 - wn + ¢n+1(Yn+1—Yn)' (3.4)

Since the support of Y . 1s {0,2], the expression (3.4) is nonnegative a.s.

1
iff (3.3) holds. Note that (3.3) also ensures the nonnegativity of net worth
for the casen + 1 = v. Finally it is evident that the Wh must be nonnegative
for n < v, since then wn is precisely the trader's net worth. We must also
have Wn 2 0 when n = Vv, because, as reasoned above, at date n — 1 there was
positive probability that n would be greater than v. Given this, there is no
loss of generality in assuming wn 2 0 for n > v, because we can take ¢n =0
for n > v.

The upshot is that the trader should maximize Zzzo(%JnE[wh + ¢n+1(2-Yn)]
subject to (3.3) and ¢n+] being G,—measurable and of course subject to the
initial conditions and evolution equations of the state variables. Given that
Wn > 0 and that (3.3) is imposed, the rewards Wn + ¢n+1(2—Yn) are
nonnegative. Thus this is a positive dynamic programming problem. In such a
problem the value function, which we will denote by v*, is the termwise

smallest of the solutions of the optimality equation (Blackwell (1967),

Theorem 2). The optimality equation here is

- _ 1
V(wn’Yn) - sup{Wn * <bn+1(2 Yn) * 2 E[V(wn+l’Yn+1)lGn]
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where the supremum is taken subject to (3.3). We claim that this is satisfied
by the function v(W,Y) = 4W/Y. Substituting this function into the right-hand

side gives

bW 44 (Y .. -Y )
1 +1 " “n+l
sup{W_ + o, (2-v ) + 3 p[—2—Rlml 2= |4 )
n+l
1 Yn
= wn(l + 2E[3 | Gn]) + sup{¢n+l(2 =Y+ 2 - 2E[g | Gn])}. (3.5)
n+l n+l

Given the density that we have specified for the distribution of Y, 4;, we have

k+1

Yl | 6] = 5%
n+1

E[

where k > Y /(2-Y ). Hence
n n

o kil
2k

(Yn) < 1.

Since Y, < 2, this implies that the supremum in the above is reached when ¢n+l
equals its upper limit, namely Wn/Yn. Substituting this into (3.5) gives
4Wn/Yn, so the function v we have selected does satisfy the optimality

equation. By the aforementioned theorem of Blackwell this implies that
%
vV,

Now consider the policy of setting ¢m+1 = Wm/Ym for each m. If one

begins this policy at date n, then the total expected rewards from date n on,

discounted to date n, will be

ot 1.m—n wm . 1. m—-n 2wm Wn
I P Elw + g2~y )6 ] = I Q" EgE 6] = &,
m=n m m=n m n
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since W, = men/Yn when this policy is followed. It follows that

We conclude that v* = v and that the policy 9n+1 = Wn/Yn is optimal. Under
this policy we have wn/Yn = WO/YO = WO for each n, so this completes the
argument.

It seems worthwhile to summarize by discussing in less formal terms why
this policy is optimal. It is desirable in this market to invest in the
security, since its price doubles with certainty and the future is not
discounted. The trader would like to sell the bond short and invest the funds
in the security. At date T he would certainly be able to pay back the funds
borrowed. However there would be positive probability that at some date t < T
his portfolio would have a negative value. This is a consequence of the fact
that zero is in the support of the price distribution at each jump time.
Therefore he is prohibited from undertaking such a strategy (the right-~hand
inequality in (3.3) prohibits short sales of the bond) and the best that he

can do is to invest his wealth in the security (he chooses ¢n+ equal to the

1

upper limit in (3.3)).

4. Remarks

We have focused on net worth constraints in this paper, but one of our
results indicates that the difference between discrete and continuous trading
may be more general, at least with regard to the existence of equivalent
martingale measures. Theorem 2 shows that there is an equivalent martingale
measure in any discrete t;ading market in which arbitrage opportunities are

absent (and in which there is only one risky asset). The same is not true in
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continuous trading markets. An example is given in Back (1986) of a
continuous trading market in which arbitrage opportunities are absent but in
which there is no equivalent martingale measure.14

The essential difference between the example in Back (1986) and the
example in this paper is that here the market admits an arbitrage opportunity
(a "simple free lunch"” in the terminology of Harrison-Kreps (1979)).
Therefore there do not exist rational prices for all bounded contingent claims
(or even for contingent claims which can be obtained by trading the
securities). In Back (1986) it is only the case that there is no rational
pricing scheme for all the finite-variance contingent claims. This weaker
conclusion is a result of the market friction being weaker: the nonnegativity
of net worth is required only at the final date. In a market subject to only
this type of friction, viability implies the absence of arbitrage
opportunities and therefore the existence of a rational pricing scheme for
bounded contingent claims.

In closing we note that Theorems 1 and 2 were proven by Harrison—-Pliska
(1981) for the case of finite @ (and for any finite number of securities).
Our results indicate that it is not the finiteness of @ which is important but

rather the finiteness of the set of trading dates. Anomalies arise only when

trading occurs at infinitely many dates.
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Footnotes
1 particular processes considered in the literature include the
geometric Brownian motion (Black—Scholes (1973), Merton (1973)), various jump
processes (Cox-Ross (1976)) and diffusion processes of various types more
general than geometric Brownian motion (Cox-Ross (1976), Harrison-Kreps
(1979)). The general nonuniqueness of rational option prices is emphasized by

Merton (1973).

2 We will follow Ross (1978) and Harrison-Kreps (1979) in seeking a
method of pricing all contingent claims simultaneously; thus the precise
meaning which we will attach to this question is: 1is it possible that there
may be no linear functional on the space of contingent claims which assigns
the market value (the value of the initial portfolio) to each claim which can
be realized by trading in the securities? 1In terms of spanning, an
affirmative answer to this question may mean that two similar contingent
claims (or even a single contingent claim) can be attained by trading

strategies involving significantly different initial investments.

Harrison and Kreps also assume that the securities market permits only
"simple” trading strategies. Unless some such restriction is added, it will |
be the case, even under the geometric Brownian motion hypothesis of Black-
Scholes, that the answer to the question is "yes,” because continuous trading

opens the door to "doubling” strategies. This is discussed in Harrison-Kreps.

4 0f course penalties for insolvency may be implicit in the utility

functions, but traders are never denied credit (at the risk-free rate of
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interest) nor prohibited from selling securities short, no matter what their
financial situations may be (for a criticism of this as an element of an
equilibrium model, see Back (1986)). The nonnegativity constraint imposed
here could be replaced by any fixed lower bound without affecting the results.

S See footnote 3 above.

6 The constraint on net worth was actually imposed by Harrison and

Pliska (1981), who first formalized much of the continuous trading model, as
an alternative to the restriction to simple trading strategies. However the
existence of rational contingent claim prices was simply assumed in that
paper. Our results here will indicate that such an assumption is unwarranted.
7 .. . . .
This is true even if the underlying sample space is uncountable. The

finite sample space case is treated by Harrison and Pliska (1981).

8 By this we mean that there is no trading strategy which would be
permitted in a frictionless market, which involves zero initial investment,

and which yields a final portfolio that has positive value with positive

probability and negative value with zero probability.

9 In this case the measure is called by Harrison and Kreps an

"equivalent martingale measure.”

10 This measurability requirement is succinctly expressed by the

statement that 6 is predictable.
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11 ope might also want to require that ¢ be strictly positive, in the

sense that ¢(x) > 0 if P[x>0] = 1 and P[x>0] > 0. We do not know whether it
is possible to deduce this from Condition V or Condition A when Q is an

infinite set.

12 We will use repeatedly the fact that conditional expectation commutes
with measurable factors. This applies even though we have not established the

integrability of the factors, because all of the factors are nonnegative.

13 This trader is as well-behaved as one could want. In particular he
satisfies the hypotheses of Harrison-Kreps (1979).

14In that example there are two risky securities, but a market including.
only one of them would also have this property. Clearly if no arbitrage
opportunities are present in the market with two securities, then there would
also be none present in the market with one. Furthermore only one of the
securities was used to establish the nonexistence of an equivalent martingale
measure (the price process of the other was actually a martingale under the

original measure).
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