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Introduction

This paper utilizes the linear programming procedure given by
Denardo [1] for finding a l-optimal policy (by repeated application)
in discrete-time Markov Decisions with an infinite horizon and no discounting,
The problem to be addressed is the efficient solution of the sequence of
linear programming problems,

Consider the following linear program and its dual:

Primal: Min c¢'x Dual: Max b'nm
subject to: subject to:
Ax = b A'm sc
xz0 b=zo0
bzoO

where A' is the transpose of A, A is m by n, b and m are m by 1, and x and
c are m by 1. Let J be a set of column identifications of A and AJ a
submatrix of A consisting of the columns of A listed in J,.

Consider a basis J. Let

such that RJ is non-singular and

. . ; -1 -1
(1) x =y implies that R, QJx z Ry QJy

(2) p(R;lQJ) <1

where p(+) is the spectral radius. If there exists an R and Q for each

feasible basis J then iterative methods may be used to solve linear programs,
Using superscripts on vectors to denote iteration counts and super-

scripts on matrices to denote a power an iterative procedure can be specified,

Let ° be an arbitrary vector, J an initial basis, and parameters X and §



be specified., The iterative procedure is:

Step One;
n+K+1 -1 K+1 n
” = (R (

J

Step Two:

Choose another basis, M, such that:

n+X+1 -1 -1 n+X+1 -1

Ry QM * Ry oy = Ry Q4T T Ryey

Step Three:

-1,  _n+K+1 -1 -1, n+K+l -1
If ||Ry, Q. * Ry ey - RyQm - R; cJ || =8
+K+1
nn + RM M

stop; otherwise set ™ to R

and label M by J. Go to Step One,

where § is a tolerance and K is the number of refinements in Step One,

The advantages of using iterative methods in linear programming stem
primarily from deletion of the need for storing and maintaining a basis
inverse, Storage requirements are reduced, computational effort is reduced,
and arithmetic precision is easily controlled.

The concept of using iterative methods in linear programming is now
applied to the problem of finding a l-optimal policy in discrete-time
Markov decisions with an infinite horizon and no discounting. Since such
problems may be large and, at the very least, require the repetitive
solution of linear programs, the use of iterative methods for solving

linear programs appears desiravle,



Non-Discounted Discrete Time Markov Decisions

At each stage a system is observed to be in one of a finite set of

states S. For any state i € S observed at time t (= 0,1,2,...), & decision

ac Ai is made, Each set Ai is finite. The outcome of the decision is
an immediate expected reward ci(a) and a probability of moving to state j
in the next stage. The conditional probability is denoted by P, J(a). A
stationary nonrandomized policy & is a vector valued function that specifies
a decision for each state. That is, for each i € S, 8(i) ¢ A;. Let F
be the set of all nonrandomized stationary policies. Then each policy 8 € F
has associated with it an N x 1 vector of expected rewards c(8) and an
N x N matrix of transition probabilities P(s) where N is the number of
states in S,

For a discounted infinite horizon problem, the vector, «(§), represented

the present values for each state and is given by:

n(8) = ) a"2(s)%(s)
t=0

where ¢ is the discount factor and 0 € ¢ < 1.

A non-discounted infinite norizon problem may be solved by considering
the limiting process of »(§) as ¢ + 1 . Miller and Veinott [4] have
given a complete characterization for finding the l-optimal (or average
overtaking optimal) policy. They have also demonstrated the existence of
o-optimal policies and have derived a Laurent series expansion [5] .

To find a l-optimal policy, the policies optimizing the first term
of the Laurent series expansion are found. From these, the set of policies
optimizing the second term is determined. This process continues until

the l-optirmel policy ic determined,



In this paper, the linear programming method given by Denardo [1)
for finding bias optimal policies (and l-optimal policies by repeated

applications) is modified to allow efficient iterative methods [2]

in the determination of l-optimal policies.

Throughout this paper only problems possessing irreducible state
spaces for every § £ F are considered.

Using extensions given by Denardo [1]
and Koehler, Whinston, and Wright [2], more complicated structures can

be considered in a natural manner,

Gain Optimality
When only policies optimizing the gain or average expected reward

(the first term of the Laurent series expansion) are desired, Manne's [3)

linear prograrming formulation may be used. The formulation is:

(1) MinE z ci(a)xi
ies aEAi

Subject to

YOV ox

Z_ L ia 1
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i€s afA
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where
0 if i #
”ij={1 if i=j
Ignoring the last constraint equation (which is redundant and will
be associated with state s), the formulation given in (1) can be expressed

in matrix notation as:

(2) Min ci X * cé X,

Subject to

[} [} A
e:L e2 xl ) (1 )
A A22 X 0

21

X5 X, 20

where e is a vector of ones and e' its transpose, xl and c, are vectors

1

containing, respectively, the X:ia and ci(a) corresponding to all a € Ai’

i €S except 1 = s. x2 and 5 are correspondingly associated with xsa

s Similarly, 2 and €5 and A2

to the constraints of the original problem.

and cs(a) for a € A and A,, correspond

1

The above partitioning is such that A is non-positive and A

22 21
contains exactly one positive element per column. Furthermore, by the
nature of the constraint coefficients, the rows of A2l are non-trivial.
Hence A,, is a Leontief matrix [63.

The constraint set of equation (2) does not permit the ready applica-

tion of iterative solution procedures. Although such is the case, if a

nonsingular transforration T can be found such that



and

is Leontief. Thus, iterative procedurey for
solving the linear program in equation (2) may be used.

Consider

=3
[

where I is an identity matrix and y is a vector satisfying
' z
Aoy v ze

Such a vector can be found by solving

(3) Min y'e
Subject to
L}

A21 Yy = el

This problem is readily solved using iterative procedures outlined in
an earlier paper [2) since A21 is Leontief.
Since S is irreducible for all & € F and A2l is Leontief, then y = O.

Hence, an equivelent representation of equation (2) is:



(4) Min ci x + cé X,
Subject to
e V'Ayy &Y 'Ry, *y .
Aoy Ao X5 o
xl, X5 =0

The compelling attribute of the above formulation is that the constraint
set is Leontief and efficient iterative procedures [2] may be used to
solve the problem, The optimal dual values to equation (2) are found by

pre-multiplying the optimal dual values to equation (&) by T'.

Bias Optimal Policies

Denardo [1] has demonstrated that a bias optimal (the second term
of the Laurent series expansion) rolicy mey be found by restricting the
policy space and altering the cos* structure of the gain optimal policies.,
After such changes, another linear program is solved to determine the

" blas optimal policies,

Consider the linear program given in equation (4#). In compact form,

equation (4) may be written as;

(5) Min c'X
Subject to
Bx =b

XxXz0



Let J be a set of column identifications and B_ a submatrix of B consisting

J
of the columns labelled in J. Let

N = {(a,i):aeAi1
ies

Then By, J € N is a feasible basis to the problem in equation (5).

Actually, BJ may be expressed as

By =1 - P'(s)

where J and some policy § correspond in a natural manner,

Let the set K be a subset of N constructed using the ideas of
Denardo's Problem II [1]. Furthermore, let ¢ be the vector of altered
costs according‘fo Denardo's Problem II. Then equation (5) may be modified
to:

MIN c'x
Subject to

Bx =b

X

v

and only basis B_, J € K€ N are considered. Since the constraint set

J?
has not been changed, the problem is still a Leontief structured linear
program and may be solved using iterative methods [2]. The restricted
basis entry is the only imposition on the algorithm (which, incidentally,
simplifies the computational procedure). Hence, a bias optimal policy
may be found by changing the cost structure and basis entry rules while

leaving the constraint set unchanged. Furthermore, iterative methods

may be used for the determination of the bias optimal policy.



1 - Optimal Policy

As Denardo [1] has pointed out, by repeated application of the
above procedure, a l-optimal policy may be determined.

It is important to note that the constraint set remains Leontief
once Manne's original problem has been converted to a Leontief structured
linear Program. In all cases, iterative procedures for solving linear

programs may be employed.



