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In this paper we discuss generalized games (= abstract economies)

£ = ((zY.‘);'e[, (Ai)iela (Q!’)iél)’

as defined in [10] (see also [1]), and several related topics.

The contents of the paper are divided into six sections. In Section 1 we explain some of the
notations and terminology we use. In Section 2 we gather several definitions and results concering
majorized correspondences. In Section 3 we prove an equilibrium theorem which contains as
particular cases most of the equilibrium theorems for generalized games of the type we discuss
here. In Section 4 we introduce the correspondences Ay and establish several results which are
used later. In Section 5 we introduce the generalized games &y and prove an approximation
theorem. In Section 6 we show how the W. Shafer-H. Sonnenschein equilibrium theorem can be
deduced from the equilibrium theorem in Section 3 and the approximation theorem in Section 5.

Propositions 2 and 3 in Section 2 are essentially due to S. Toussaint [12] (Proposition 3
generalizes a result of D. Gale and A. Mas-Collel {7]). The method of proof is that used in
[12]. The Theorem 3 in Section 3 was suggested by various results and remarks in the literature
concerning generalized games. Again, the method of proof is essentially due to S. Toussaint.

We do not discuss in this paper generalized games with a measure space of agents (for such
games see, for example, [9] and a recent paper by Taesung Kim, Karel Prikry and N.C. Yannelis)
or the social systems with coordination recently introduced by K. Vind.



1. Notations and terminology.

Let E and F be two sets and C' a correspondence between £ and . For every € E and
y € F we write

Cle)={y| (@ eC) and  C(y)={z|(ey) eC)
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The correspondence C has open lower sections if C (y) is open for every y € F (here we

assume that £ is a topological space).

If (X/)ies is a family of sets we denote by X' the cartesian product [ Xi. Ifz e X! we
denote by z; the coordinate of index 7 of z.

For every subset A of a vector space we denote by y({A) the smallest convex set containing A.

For other notations and terminology used here see [3,4,5] (unless other references are explicitly
made).

A generalized game is a triple

5 ((X{)IEI’ (Ai)x'el’ (Qx’)ié[}

where [ is a non-void set and, for every ¢+ € I, X, is a non-void topological space and A,, Q; are
two correspondences between X! and X;.
An equilibrium of £ is an outcome z* € X! satisfying, for every i € I,

Ey) 27 € Ai(z*);
Ea) Afe)nOi(e) = 0.

2. Majorized correspondences.

Let X be a topological space, £ a vector space, Y C E andu: X — Y. We dencte by
Z(X,Y,u) (or £ when there is no ambiguity) the set of all correspondences 9 between X and Y
such that:

h)  ¢¥(z) is convex for every z € X
hh) ¥ has open lower sections;

hhh)  u(z) € ¢(z) for every z € X.

In most applications X = Y and u = ix is the identity mapping of X onto X or X = X/,
V =X, forsomeie€/and u=pri. f X =Y and « = ¢x we write C{X) (or C when there is no
ambiguity) instead of C(X,Y,u).

A correspondence ¢ between X and Y is C-majorized if for every ¢ € X for which ©{t) # 9

there are ¢y € C and V € V(t) such that
ez} C Y1 (a)

for every z € V.



PROPOSITION 1. Let o be a correspondence between X and Y such that:

i) v is C-majorized:
ii) every open set containing [z | ¢ (z) # 8} is paracompact [8, p. 156].
Then ¢ C v for some ¥ € C.

The above result can be proved by the method used in {2, Corollary 3].
Remarks. If X is metrizable, or pseudo-metrizable, or if X is paracompact and ¢(z) # @ for
every € X the condition ii) is satisfied.
THEOREM 1. Let X be a non-void convex guasi-compact subspace of a topological vector space
E and let ¢ € C(X). Then p(2*) = @ for some z* € X.

From Proposition 1 and Theorem 1 one obtains! the:

THEOREM 2. Let X be a non-void convex quasi-compact subspace of a topological vector space
E and let © be a C(X)-majorized correspondence between X and X. Then ¢(z*) = @ for some
' e X.

Theorem 1 is equivalent to a result of F.E. Browder (see [6, Theorem 1]}. Several variants
of Theorem 1 can be found in the more recent mathematical literature. Theorem 2 is essentially
due to A. Borglin and H. Keiding (see [2, Corollary 1]); in the form given here it is stated in [13]
and [12]. That this theorem remains valid without assuming that E is separated was observed by
S. Toussaint in [12]).

Let (9,)iesr be a non-void family of correspondences between X and Y. For every z € X let
I(z) = {i | pi(e) # 0}

and let ¢, be the correspondence between X and Y defined by

pol(e)= [ wils) i I(e) #0;

i€](x)

=0 ifl(z)=0.

PROPOSITION 2. If ¢; is C-majorized for every i € I and if
Uiz 1 wi(z) # 8} = | nt{z | pi(2) # 0}
el ierf

then ¢, is C-majorized.

PROOF: Lett € X such that ¢ (t) # 8. Then I(t) # 8. Hence there is 2 € I such that

tent {z|pn(z)#0}

and hence there is V € V(t) such that ¢p(z) # @ for z € V. It follows that I(z) D h and hence
Voo (2) C pr(z) for z € V. Since p,, is C-majorized there are 954 € C and U € V(t) such that
©n(z) C Yhe(2) for 2 € U. Hence

Poo (37) - (‘/}h,t (-’5)
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forz e VNU. Smce t € X was arbitrary we conclude that ¢, is C-majorized.

PROPOSITION 3. Let (X;),cr be a non-void family of non-void quasi-compact convex subsets of a
topological vector space E and, for every i € I, let §; be a ;-majorized® correspondence between

X! and X;. If
Utz 1 8i(z) # 03 = |J Int {= | Bi(2) # 0}

el tel
then there is z* € X! such that 5;(z*) = 0 for every i € I.

PROOF: For every j € I let p; be the correspondence between X! and X7 defined by

wilz) = H Bji(z)

el

for ¢ € X1, where 3;;(z) = X, if i # 7 and 5; ;(2) = #;(2). Then (p;);<s satisfies the hypotheses
of Proposition 2 (with ¥ = X’) and hence po, is C(X’)-majorized. By Theorem 2 @ (z*) = 8
for some z* € X7,

If z € X! and I(z) # 0 then

penls) = TT 812
el
where 3}(z) = Fi(z) if 1 € I(2) and Fi(2) = X; if ¢ ¢ I(2); hence I(z) # @ implies po(2) # 8. It
follows that /(z*) = @ and therefore 3;(z*) = @ for all s € /.

A non-void family (X;);e; of subspaces of a topological vector space E has the property (M)
if for every i € I and every C;-majorized correspondence «; between X’ and X, there is f; € C;
such that o, C 5.

Conditions under which F; exists can be easily deduced from Proposition 1. For example, if
is countable and if X is metrizable, or pseudo-metrizable, for every & € I, 8; exists.

COROLLARY 1. Let (X;)i=s be a non-void family of non-void quasi-compact subspaces of a topo-
logical vector space E having the property (M) and, for every i € I, let o be a C,;-majorized
correspondence between X' and X;. Then there is z* € X! such that o, (2*) = @ for every i € I.

PROOF: Forevery i € I let 3; € C; such that o; C 5;. By hh) (in the definiton of £) §; has open
lower sections, whence

{z | 8i(2) # 8}

is open. We deduce that the family (8;);cs satisfies the conditions of Proposition 3. Hence there
is * € X! such that §;(z*) = @ for every i € I. We conclude ;(z*) = @ for every ¢ € I and hence
the corollary is proved.



3. Equilibrium theorems.

Let
£ = ((.Y,‘),’E[, (Ai)iela (Q!')l'él)

be a generalized game.

THEOREM 3. The game £ has an equilibrium if, for every 1 € I:

3.1} X, is a convex quasi-compact subspace of a topological vector space E;
3.2) A;(z) is a non-void convex subset of X; for every ¢ € X';

3.3) A;(z) = ma for every z € X?;

3.4} A; has open lower sections;

3.5) z; & 7(Q;(z)) for every z € X!;

3.6) A; N Q; is ;-majorized*;

3.7) the set {z | A; N Q;(z) # 8} is open.

PROOF: For every i € I define the correspondence w,; between X! and X; by:

pi(z) =A;NQ;(2) if z; € A;(2);
= Ai(z) if 2; ¢ A, (2).

Then
{3: l wi (:t) 7é 0} = Ux‘ U {:t l Ai N O./I(T) 7é 0}

where U; = {z | z; ¢ A;(z)}. By 3.3) the set U; is open, whence {z | o,(z) # 8} #s open.
We shall show now that o, is {;-majorized for every i € I. Let t € X7 such that ¢, (t) # 0.
Assume that ¢ € I/;. Let % be the correspondence between X! and X; defined by:

v(z) = Ai(z) if z €U
=9 if z ¢ U;.

It is obvious that 9 (z) is convex for every x € X7, that 2; ¢ v (z) for every z € X! and that 4 has
open lower sections; hence 9 € ;. Moreover U; € V(t) and p;(z) = ¥(z) for z € U,.
Assume now that t ¢ U;. Let V € V(t) and o € (; such that 4, N Q;(z) C a(z) for z € V;
hence
AiNnQi(z) CanA;(z)

for £ € V. Let 3 be the correspondence between X and X, defined by:

B(z) = anAi(z) ifz ¢ U

04
A:(2) ifzeU,.

Then (z) C A(z) for z €V and F € C;.

Hence ¢, is C;~-majorized.

It follows that (;)ics satisfies the hypotheses of Proposition 3; hence there is 2* € X’ such
that o, (2*) = @ for every ¢ € I. From 3.2) we deduce 2! € 4;(z*) and 4; N Q,(¢*) = §. Hence z*

is an equilibriumn of £ and hence the theorem is proved.

Remark. It is easy to see (under our hypotheses) that the hypothesis 3.3) is equivalent with: The
correspondence O; between X! and X; defined by C;(z) = A;(z) (the adherence is taken in X;) is
upper semi-continuous.



Consider now the following properties:
The property (M), introduced in Section 2 after the proof of Proposition 3.

3.4') A; and Q; have open lower sections.

3.4") A; is open.

3.6') Q, is lower semi-continuous and C;-majorized.
3.6") Q; is C;-majorized.

Observe that 3.5) is satisfied if Q; is majorized.

COROLLARY 2. The game £ has an equilibrium if it has, for every ¢ € I, the properties 3.1), 3.2)
3.3}, 3.4) and 3.5).

PROOF: Since @; has open lower sections, 7(Q;) has open lower sections (see [13], Lemnma 5.1
or [12], Remark 2.3(b)) and hence A; N v(Q;) has open lower setions. Since, for every z € X7,
A; N v(Qi)(z) is convex and z; ¢ A; N y(Q:)(z) it follows that A, N v(Q;) € ;. Since 4, N Q; C
A; N ~y(Q;) we deduce that A; N @, is ;-majorized.

Since A; N @; has open lower sections {z | A; N Q,(z) # @} is open.

Hence £ has the properties 3.1)-3.7), for every : € I, and hence £ has an equilibrium.

COROLLARY 3. The game ¢ has an equilibrium if it has, for every = € X!, the properties 3.1),
3.2}, 3.3), 3.4") and 3.6').

PROOF: Since A4, is open and ¢J; is lower semi-continuous, 4; N ¢; is lower semi-continuous and
hence {z | A; N Q;(z) # 0} is open. Since Q; is {;-majorized 3.5) is satisfied and A; N Q; is
Ci-majorized.

Hence £ has the properties 3.1)-3.7), for every ¢ € I, and hence ¢ has an equilibrium.

COROLLARY 4. The game £ has an equilibrium if it has, for every i € I, the properties 3.1}, 3.2},
3.3), 3.4) and 3.6") and if (X;)ics has the property (M).

PROOF: For every ¢ € I let o, € C; such that @; C ¢;. Then the game

3 = ((Xi)ier, (Ad)ier, (di)ier))

satisfies the hypotheses of Corollary 2. Hence § has an equilibrium. Since every equilibrium of §
is an equilibrium of £, the corollary is proved.

The Corollary 2 is Theorem 2.5 of S. Toussaint ([12]) (observe that we use the definition of
equilibrium given in [2]). The method of proof of Theorem 3 is essentially the same as that used
by S. Toussaint in the proof of Theorem 2.5.

Corollary 2 was also obtained by N.C. Yannelis and N.D. Prabhakar in an earlier paper ([13})
under certain additional hypotheses (for example, if £ is locally convex and separated, if [ is
countable and if X; is metrizable for every : € I). We observe that the method of proof of these
authors combined with an approximation procedure gives the result in Corollary 2 in locally convex
and separated spaces.

That Corollary 3 is true was stated by S. Toussaint in [12, Remark 2.6(b)] (this remark
suggested the formulation of Theorem 1).

Corollary 4 generalizes a result of A. Borglin and H. Keiding (see [2], Corollary 3).5

In the Section 6 of this paper we shall show how the equilibrium theorem of W. Shafer and
H. Sonnenschein (see [10, 11]) can be deduced from Theorem 3 (in fact from Corollary 2) and an
approximation theorem.



4. The correspondences 4.

In the remaining sections we assume that all the topological spaces we use are separated.

Let X be a topological space, F a topological vector space and Y C E.
For every correspondence 4 between X and F and every set U C F we denote by Ay the
correspondence between X and Y defined by

Ay(z) = (A() +U)NY

for every z € X.

1) If A is lower semi-continuous and U is open Ay is open.
Let (8,t) € Ay. Thent = a+ u with (s,a) € A and v € U. Let W € V(0) equilibriated and
such that u + W + W C U. Since A is lower semi-continuous there is V € V(s) such that

A@)N(a+W)#8

forall z€ V. Let
(z,y) eV x((a+uv+W)nY)

and let b € A(z). Then b = a+ v’ with w' € W and
(z,9) = (2,0 + u+ w")
with w” € W. Hence

(z,y) = (zya+w' +u—w +w")
= (2,6 +u—w' +w")
= (z,6) + (0,u — w' + w")
e A+ ({0} xU)

since v — w’ + w" € U. Hence
ye (A4 ({0} xU))(z) = A(x) + U
and hence (z,y) € Ay (remember that y €Y). Since
Vx(latu+W)nY)

is a neighborhood of (s,t) in X X Y and since (8,t) € Ay was arbitrary it follows that Ay is open.

Remarks. 1. In the applications below it is enough to know that Ay has open lower sections.
Since this i3 somewhat easier to establish we present the proof here: Let y € Y and let

X(y)={z|Av(z)3y}={z|A(z) + U3y}

If t € X(y) then A(t) + U 2 y and hence A(t) N (y — U) # 9. Since y — U is open and A is lower
serni-continuous there is V € V (t) such that A(z)N(y —U) # @ for z € V. Hence A(z) +U 3 y for
z € V and hence V C X(y). We deduce that ¢ € Int X(y}. Since ¢ € X(y) was arbitrary it foilows
that X (y) is open. Since y € Y was arbitrary we conclude that Ay has open lower sections.

"
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2. The correspondence Ay does not have necessarily open lower sections if A is upper semi-
continuous or even if A is compact and has convex values.

We assume In the rest of this section that:

i} Y is closed and convex.
i} U is a convex open neighborhood of 0 € E.

Then®, for every compact set L C Y

(L+U)nY =([L+U)nY.

2) Assume that A is a compact correspondence between X and Y (that is A is a compact
subset of X x Y }. Then:

2.1) Ay is closed;

2.2) A(z) = Ay(2) for every z € X;

2.3) Ay = Ay.
PROOF: Let ((z:,y:))ics be afiltering family of elements of Az converging to (z,y). Then (&;)ics
converges to z and (y)ic; converges to y.

For every 1 € [

Yi = a; + uy

with a; € A(z;) and u; € U.
Let ¥ be an ultrafilter on I finer than the filter of sections of 7. Then

lim (z;,a;) = (z,a) € A.
Jim (z:.,) = (2,0)

We deduce that (u;);=; has a limit « with respect to ¥. It follows that
(2,9) = (2,0 + u)

with a € A(z) and « € U, whence

=a+u€ (Az)+0U)NY

(since ¥ € V). We conclude that (¢,y) € A7 and hence that Az is closed.
To prove 2.2) we observe that

Ay(@) = (A(z) + U)NY = (A(z) + U)nY = Az(=)

for every z € X.

To prove 2.3) let (z,y) € Ay By 2.2), y € Ay(z). Hence there is a filtering family (&;);¢s
of elements of Ay (z) which converges to y. Since (z,b;) € Ay for every j € J it follows that
(2,y) € Ay. Hence Az C Ay. To prove the converse inclusion we observe that Ay C A and that
Az is closed.

3) If A is a correspondence between X and Y lower semi-continuous and compact and 'Y is
compact then A Is continuous.



PROOF: By 1) Ay is lower semi-continuous (since it is open). By 2.3) the correspondence Az
is lower semi-continuous. Since by 2.1) Az is closed and since Y is compact, Az is upper semi-
continuous. Hence A is continuous.

5. The generalized games ;..

Let E be a separated topological vector space and let

£ = ((X,');’EI, (Ax')iéls (Qx’)f'EI)

be a generalized game such that X; C E for every t € 1.
For every set U C E we denote by £y the generalized game

((Xi)ier, (Av,i)ier (@i)ier)

where, for every i € I, Ay, is the correspondence between X and X; defined by
Avile) = (Ai(2) +U)NX;

for every z € X! (hence, with the notations of Section 4, Ay; = (A;)y with ¥ = X;).

We now prove the:

THEOREM 4. Let £ be the generalized game introduced above and let 8 be a fundamental system
of o € E. Assume that, for every U € 8 andi € 1:

4.1} X; is compact;

4.2) A;(z) = A;(z) for every z € X/;

4.3) A; N Q; is lower semi-continuous at every = € X’ such that A; N Q;(z) # ¥;
4.4} £y has an equilibrium.

Then £ has an equilibrium.

PROOF: For every U € 8 let z7, be an equilibrium of {y. Let ¥ be an ultrafilter on 8 finer than
the filter of sections of 8 (when B is endowed with the order relation “>”) and let

* . *
¥ = lim a7
wu) U’

then
* . *
@, = lim xp,
AT

for every 1 € I (z} and 2y, are the coordinates of index 7 of z* and zy;, respectively).
Since Ay,; O A; we have
Ai(ey) N Qifzy) =9

for every i € I and U € 8. From 4.3) we deduce
Aie®) N Qi(e") = 8
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for every ¢ € I.
For every U € 3 and i € /

2y € Au,ilzy) = (Ai(eh) + U)NX; € (Ai(ay) +U) N X,

(since A;(z}) is compact) whence
= I
Ty, = QU + U,

with ap; € A,;(2f;) and by € U. For every ¢ € I the family (aU,,')Ueg }E'S a limit a; with respect
to U; hence (by,)ireg also has a limit & with respect to U. Since by, € V,if V € V(0) and U C V
we deduce & = 0 and therefore

*
e

§ = G

for every 1 € I. By 4.2) —_
ay,; € Ai(2y) = A;(2})

forevery t € f and U € B. We deduce

that is

for every 1 € [.
Hence z* is an equilibrium of ¢£.

Remarks. 1. The condition 4.2) is satisfied if A, is closed.
2. The condition 4.3) is satisfied if one of the correspondences A;, @Q; is lower semi-continuous
and the other open.

6. The theorem of W. Shafer and H. Sonnenschein.

Let £ be a separated locally convex space and let 3 be a fundamental system of 0 € £
consisting of open convex sets. Let

£ = ((X,')ie[, (Ai)iEI’ (Q:’)iez)

be a generalized game such that X; C E for every ¢ € I.
THEOREM 5. The game £ has an equilibrium if, for every 1 € I:

5.1) X; is a convex compact subspace of E;

5.2) A;(z) is a non-void convex closed subset of X; for every z € X!;
5.3) A; is continuous;

5.4) Q; is open;

5.5) z; & v(Q;) for every z € X'.

PROOF: From 5.2) and 5.3) we deduce that A; is closed and hence compact. Since A; is closed
obviously A;(z) = A;(z) for every z € X!. Since A; is continuous and @, open we deduce that

10



A; N Q; is lower semi-continuous on X’. Hence £ satisfies the conditions 4.1), 4.2) and 4.3) of

Theorem 4.
Let U € B and consider the game (see Section 5)

fy = ((Xi)l'EIa (AU,l')iEI’ (Ql')l'EI)'

Obviously Ap,i(z) is non-void and convex for every ¢ € I and z € X!. By 1) and 2) of Section
4, for every 1 € I, Ay is open and

ZU,,' (.’b) = ‘45,1' (.’b) = AU,,'(:U)

for every z € X!. 1t follows that & satisfies the hypotheses 3.1), 3.2), 3.3), 3.4') and 3.5) of
Corollary 2, Section 3 and hence it has an equilibrium. Since U € B was arbitrary it follows that
the condition 4.4) of Theorem 4§ is satisfied.

We conclude, using Theorem 4, that £ has an equilibriuzn and hence Theorem 5 is proved.

Theorem 5 is the W. Shafer-H. Sonnenschein equilibrium theorem for “abstract economies”
(see [11, 12]). It was proved by these authors under the hypothesis £ = R™. In [12] S. Toussaint
mentions that R. Murphy (in a paper presented at the European meeting of the Econometric society,
Amsterdam, 1981) has shown that the W. Shafer-H. Sonnenschein theorem can be generalized to
locally convex spaces.
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Footnotes
If o(z) # @ for all z € X then the only open set containing {z | v(z) # 8} is X and lience it
is paracompact. Then Proposition 1 implies ¢ C ¥ for some ¥ € Z(.X).
Here £; = C(X', X;,pr;) for every i € I.
The adherences A; and m are taken in X/ x X; and X, respectively.
Here C; = C (X7, X:, pri)-

> If ! is K F-majorized (see [2], Corollary 3) then one can show that P; is £;-majorized.
> To prove the relation below notice that tu € U if u € U and ¢ € [0, 1).
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