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1. Introduction

Assume that a single firm controls the supply of an infinitely durable
good. In a classic [1972] paper, Ronald Coase asked what sales plan this
monopolist would adopt to maximize her profits. Coase provided a partial,
negative answer by observing that the naive policy of forever offering the
good at a static monopoly price is not credible. To paraphrase Martin Hellwig
[1975], the monopolist who announces such a policy cannot "keep a straight
face"—--she has an irresistable temptation to cut the price at future dates, to
generate additional sales and profits. Coase supplemented his answer by
conjecturing that, with rational consumer expectations, "the competitive
outcome may be achieved even if there is but a single supplier.” Several
subsequent authors have supported this conjecture by producing models with
subgame perfect equilibria in which the introductory price approaches marginal
cost.

Nevertheless, Coase's original puzzle concerning the optimal monopoly
pricing rule remains essentially unsolved. In this paper, we propose a
solution: the firm introduces the durable good at approximately the static
monopoly price. She then follows the slowest rate of price descent that
enables her to maintain her credibility. As the time interval between
successive periods of the game approaches zero, the rate of descent can be
made arbitrarily small while preserving subgame perfection. This enables the
supplier to earn nearly static monopoly profits., Thus we argue that, even in
a durable goods market, a monopoly is a monopoly.

The identical reasoning carries over to bargaining games with incomplete
information, since essentially the same mathematical model may depict either a

continuum of actual consumers with different valuations or a single buyer with



a continuum of possible valuations. Thus, in an infinite-horizon bargaining
game where the seller makes repeated offers to a buyer whose valuation she
does not know, we prove that there exist sequential equilibria where the
seller essentially extracts monopoly surplus. The Coase Conjecture, in
contrast, would predict that the buyer obtains almost all the gains from
trade.

The intuition behind Coase's Conjecture is as follows: once an initial
quantity of the good has been sold, the monopolist will find it tempting to
sell some additional output as long as her accumulated sales remain below the
competitive output. If there is virtually no restraint to the rate at which
the monopolist can sell additional units (if the time interval between
successive offerings is very small), the market may be saturated with the
competitive output "in the twinkling of an eye” (Coase [1972]).

Bulow [1982] analyzed Coase's reasoning in a finite-horizon model. In
the last period, the monopolist who lacks commitment power charges the static
monopoly rental price for the residual demand curve. By backward induction,
Bulow calculates the monopolist's best action in each previous period, and
shows that it is always unambiguously lower than the static monopoly price.
Stokey [1981] formalized the Coase Conjecture for infinite-horizon models.
Under an assumption of self-fulfilling expectations (which depend continuously
on the stock of goods), she proved that the unique equilibrium of a continous-
time model is for the monopolist to price at marginal cost. She also
demonstrated that the backward induction equilibrium of an infinite-~horizon
discrete-time model satisfies the Coase Conjecture. Gul, Sonnenschein and
Wilson [1986] discovered a continuum of additional subgame perfect equilibria
in this game. However, for a general class of demand curves, these (weak-

Markov) equilibria behave qualitatively like the backward induction



equilibrium——they satisfy the Coase Conjecture.

Kahn [1986] considered the durable goods monopolist with increasing
marginal cost. Bond and Samuelson [1984] examined monopoly sale of a durable
good which is subject to depreciation. These authors show that, as long as
the interval between successive periods is positive, the inability to commit
does not undermine monopoly power as much as in the standard model.
Nevertheless, as the time interval shrinks, output still approaches the
competitive level.

The noncooperative bargaining literature developed in parallel to the

study of durable goods monopoly.1

To escape from the typical complete
information result (e.g., Rubinstein [1982]) that all bargaining is concluded
in the first round, this literature introduced incomplete information into the
bargaining process. This often added a continuum of sequential equilibria
(e.g., Fudenberg and Tirole [1983]). One modeling technique, however, offered
apparent promise for yielding results with greater predictive value:
restricting the game to one-sided bargaining with one-sided uncertainty. When
the uninformed party makes all the offers (the informed party only responding
with "yes™ or "no"), the complications of strategic communication largely
disappear. The widespread perception in the literature was that the
multiplicity of equilibrium outcomes vanished as well.

The first paper to explore this approach was Sobel and Takahashi
[1983]. They study the bargaining game which is the direct analogue to
durable goods monopoly. Mirroring Bulow [1982] and Stokey [1981], they prove
the existence of a unique sequential equilibrium in the finite-horizon model
and of a backward induction equilibrium in the infinite-horizon model; both
satisfy the Coase Conjecture.

Fudenberg, Levine and Tirole [1985] analyze two distinct cases in the



infinite-horizon bargaining game. 1In the first case, where the buyer's
valuation is known to strictly exceed the seller's, Fudenberg-Levine-Tirole
prove that the model generically has a unique sequential equilibrium.
Moreover, negotiations always end after a finite number of rounds, and so the
Coase Conjecture applies. In the second, and more reasonable case, where
there is no gap between the lowest buyer valuation and the seller's valuation,
sales occur over infinite time. The three authors proved, under reasonably
general assumptions (which we extend in this paper), the existence of a
backward induction equilibrium. This equilibrium is necessarily weak-Markov,
and therefore satisfies the Coase Conjecture.

The main result of our paper is a Folk Theorem for the "no gap” case.?

As the time interval between successive periods approaches zero in durable
goods monopoly (bargaining), the set of monopolist (seller) payoffs associated
with subgame perfect (sequential) equilibria expands to the entire interval
from zero to static monopoly profits.

Let us provide an interpretation of the equilibria constructed in this
paper. Initially, consumers believe they are facing a "strong” monopolist who
will continue to adhere to the main price path specified in the equilibrium.
However, the moment a deviation from the main price path occurs, consumers
decide they are dealing with a "weak” monopolist who has read the [1972] Coase
paper (and believes its message). Since the Coase price path yields profits
barely above the competitive level, the prospect of such a reversal of
expectations deters the monopolist from ever deviating. We refer to these
equilibria as "reputational equilibria.”

Our paper has important implications for the bargaining literature. (We
develop some of these in a sequel, Ausubel and Deneckere [1986].) Much of the

3

impetus for "refinements”~ of the sequential equilibrium concept stems from



the observation that it allows excessive freedom in specifying players'
beliefs (about the type of opponent they are facing) afer a zero probability
event occurs. This freedom in updating beliefs sneaks "incredible threats™ in
through the back door.4 Observe, however, that the vast multiplicity of

sequential equilibria in the current bargaining game is not susceptible to the

usual refinements. “Reputation,” in our equilibria, does not involve the

seller's typeS——buyers have no beliefs to be updated when off-equilibrium
behavior is observed. Meanwhile, the buyer's language is so condensed that
there is no room for the seller to make alternative inferences about the
buyer's type. Hence, a restriction on updating rules has no effect on the set
of equilibrium payoffs. Because the multiplicity of equilibria displayed here
does not rely upon incompleteness of information, the criticism cannot be
advanced that with the right kind of incomplete information, any outcome can
be supported as a sequential equilibrium (Fudenberg and Maskin [1986]).

Gul, Sonnenschein and Wilson [1986] limited the set of outcomes by
restricting attention to weak-Markov equilibria. We reject this approach for
three reasons. First, the restriction is not natural. If a restriction were
natural, it would be to stationary strategies—-but these three authors, as
well as Fudenberg, Levine and Tirole [1985], demonstrated that such strong-
Markov equilibria often do not exist. Furthermore, weak-Markov equilibria are
as bizarre as many others one might exclude——off the equilibrium path, they
often require the monopolist to correct her own mistakes.6 Second, while
stationarity may at once seem appealing and possess cutting power, we should
be warned how this restriction operates in other infinite-horizon games. In
the supergame version of the prisoner's dilemma, stationarity selects a unique
subgame perfect equilibrium: the infinite repetition of the static Nash

outcome, Third, casual empiricism suggests that history does matter.



The ultimate irony of this paper is that we extend and use two types of
results (which seemingly endorse the Coase Conjecture) to prove the Folk
Theorem (which reverses the Coase Conjecture). After describing the model
(Section 2) and presenting a linear example (Section 3), we first prove a
general existence result on weak-Markov equilibria (Section 4 and
Appendix A). We then show that price paths associated with weak—Markov
equilibria are uniformly low compared to the demand curve (Section 5 and
Appendix B). We proceed to establish the main result of our paper: the Folk
Theorem under very general conditions (Section 6). We conclude with

Section 7.

2. The Model

We consider a market for a good which is infinitely durable, and which is
demanded only in quantity zero or one, There is a continuum of infinitely
lived consumers, indexed by q € I = [0,1]. The preferences of these consumers
are completely specified by a monotone nonincreasing function f: [0,1] » IR,
where f(q) denotes the reservation value of customer q, and by a common
discount rate r. More precisely, if individual q purchases the good at time t

for the price p., he derives a net surplus of:

e Tt £(q) - p;]

Consumers seek to maximize their net surplus. The monopolist, meanwhile,
faces a constant marginal cost of production, which we assume (without loss of
generality) to equal zero. Her objective is to maximize the net present value
of profits, using the same discount rate as consumers.

The monopolist offers the durable good for sale at discrete moments in

time, spaced equally apart. The symbol z will denote the time interval



between successive offers, and so sales occur at times t = 0,z,2Z,.¢¢,0Z,00¢ &
We will sometimes refer to the "period” n rather than to the "time” t
(= nz). Within each period, the timing of moves is as follows: first, the
monopolist names a price; then, consumers who have not previously purchased
decide whether or not to buy. After a time interval z elapses, play repeats.
A strategy for the monopolist specifies the price she will charge in each
period, as a function of the history of prices charged in previous periods and
the history of purchases by consumers. A strategy for a consumer specifies,
in each period, whether or not to buy in that period, given the current price
charged and the history of past prices and purchases. Formally, let G(z,r)
denote the above game when the time interval between successive sales is z and
payoffs are discounted at the rate r. Let g be a pure strategy for the
monopolist. ¢ is a sequence of functions {O(H)}Z=O' The function g(n) at
date nz determines the monopolist's price in period n as a function of the
prices she charged in previous periods, and the actions chosen by consumers in
the past as summarized by the set Q, = {q: consumer q did not buy at any time
t < nz}. We impose measurability restrictions on joint consumer strategies
below which imply that the set Q, will be a measurable set, i.e., Q, € Q,
where Q@ is the Borel g—algebra on I. Then g(n): Y9 x Q + Y, with
Y = [0, £(0)] and Y? the n-fold Cartesian product of Y. A strategy

. . . . n, o
combination for consumers is a sequence of functions {T }n-O where

oyl o 1, {0,1} is such that for each yn+1 e yotl

and each B € @,
Tn(yn+1,B,-) is measurable. Decision "0" is to be interpreted as a decision
not to buy in the current period; decision "1" indicates that a sale takes
place in the current period.

We will assume that consumers are anonymous, i.e., that neither the

monopolist nor fellow consumers can identify a particular consumer's



reservation price. Furthermore, we will assume that deviations by sets of
measure zero of consumers can change neither the actions of remaining
consumers nor those of the monopolist.7 The above assumptions render all
histories that have identical prices and that lead to the same measure of
consumef acceptances observationally equivalent. Thus, @ and g(n) are
constant on histories that have identical prices and that result in the same
measure, m(Q,), of consumer acceptances (where m(.) denotes Lebesgue measure).

Let ¥ be the pure strategy space for the monopolist, and T be the set of
strategy combinations for consumers. The strategy profile {o,t}, with
T = {Tn}:;O’ generates a path of prices and sales which can be computed
recursively. The pattern of prices and sales over time in turn determines the
payoff to the players. Let w(g,r) be the discounted present value of profits
generated by the strategy profile {¢,t}, and let ud(s,1) be the discounted net
surplus derived by consumer q. The profile {0,1} is a Nash equilibrium if and
only if

\ t
n(o,t) > (o ,1), Yo € I

and

q q
u (c,Tq,T_q) > u (o,rq,r_q), ¥ Ty € Tq, q - a.e.

where Tq is the projection of 1t onto the q—th component (and similarly for

Tq). An n-period history of the game is a sequence of prices in periods
0,0es,{n = 1) and a specification of the set of consumers who did not buy
prior to n. We denote such a history by the symbol H,. Thus, Hj, € " x Q.
The symbol H; refers to H, followed by a price announced by the monopolist in
period n. Thus, H; € Yn+1 x Q. The strategy profile (g,r) induces strategy

|
" ) and (o ), after the histories H, and H,

profiles (ol
n

T 1T '
Hn l Hn | Hn



respectively. (g,t) is a subgame perfect equilibrium if and only if (g,t) is

a Nash equilibrium and (o'H ’T.H ) is a Nash equilibrium in the game remaining
n n
after the history H , for all H  and all n, and similarly after any history

H;. In order to ensure the existence of an equilibrium, we will have to allow
the monopolist to use mixed strategies. § will denote the mixed extension of
t. It should be clear to the reader how to modify the above definitions when
mixed strategies are employed.
Given any price history {pk}E;é’ let q, = m(Q,) be the proportion of

customers who have purchased. Observe that the single number q, summarizes,
along the equilibrium path, the actions chosen by consumers prior to

period n. Indeed, as the next lemma shows, consumer maximization requires

that in any equilibrium in which consumer q has bought prior to period n, all

consumers with valuations v > f(q) should also have bought.

Lemma 2.1: In any equilibrium, in every period n, and after any history H,, a
buyer accepts a price offered by the monopolist if and only if his valuation

exceeds some cutoff valuation g(p,H,).
Proof: See Fudenberg, Levine and Tirole [1985, Lemma 1].

When the indifference valuation B(p,Hn) is independent of the prior
history H,, buyer strategies are referred to as stationary. Statiomary
consumer strategies are important because they lie at the heart of the Coase
Conjecture. Gul, Sonnenschein and Wilson [1986] show that any subgame perfect
equilibrium of the above game in which consumers use stationary strategies
must satisfy the Coase Conjecture. We will refer to this set of equilibria as

the set of weak-Markov equilibria, and denote it by the symbol E¥™(f,z).

In weak—Markov equilibria, the monopolist conditions her strategy on the

state of the game (the measure of consumers sold to) and the previous price.
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In a strong—Markov equilibrium, the monopolist would condition her strategy on

the payoff-relevant part of the history, namely q,, only. Unfortunately,
strong-Markov equilibria do not, in general, exist (see Fudenberg, Levine and
Tirole [1985]). When f is strictly monotone, the state of the system can be
equivalently described by v = f(q). Letting ¢(p-},v) be the monopolist's
(random) pricing rule for the subgame starting at (p_j,q), we see that a weak-

Markov equilibrium must satisfy:

(2.1) 8(p) = p = 6[8(p) = 4(p,8(p))]

i.e., the buyer with valuation g(p) is indifferent between accepting the price
p in the current period and waiting for next period's expected price
6(p,8(p)). Also, the monopolist's pricing rule is optimal given consumer
behavior, i.e., $(p_1,v) € $(v). Here $(v) is the convex hull of ¢(v), the

set of maximizers in:

(2.2) 1(v) = max {p[£ " (8(p)) - £ (W] + sx(a(p)}
P

n(v) denotes the monopolist's present discounted value of profits when the
state is v, and § = e % is the discount factor. The above notation is
convenient when f(q) is strictly monotone; we will use it in Section 3, where
we present the example of a linear demand curve. Furthermore, the notation is
necessary for our existence proof in Section 4, which relies crucially on the
fact that a certain family of functions g(p) is equicontinuous.

Nevertheless, this elegant notation fails when f(q) has flat sections.

In this case, it is easier to think of the monopolist as choosing quantities

rather than prices. The strategies of monopolist and consumers can then
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always be converted back into price strategies, using the trick in Gul,
Sonnenschein and Wilson [1986, Theorem 1]. Since g(p) may be taken to be
monotone, consumer strategies in a weak—Markov equilibrium can be equivalently
described by a monotone acceptance function P(q), where P(q) satisfies

B(P(q)) = f(q). Thus, consumer q accepts a price p if and only if p < P(q).
If the monopolist expects buyers to use the stationary strategy P(.), then
along the equilibrium path her present discounted value of profits when all
buyers in the interval [0,q] have bought, R(q), must satisfy the dynamic

programming equation:

R(q) = max {P(y)(y - @) + §R(q)}
y2q

Furthermore, consumer optimality requires:

f(q) - P(q) = 8[£(q) - S(q)]

where S(q) = P(t(q)) and t(q) is the monopolist's optimal choice when q buyers
have bought.

One final remark: our model above can equally be interpreted as a
bilateral bargaining problem in which a seller with a known valuation offers
an object for sale to a buyer with privately known valuation. In each round
of this infinite—horizon bargaining game, the seller makes a price offer which
the buyer can either accept or reject. The bargaining continues until
acceptance occurs. If F(v) is the (common knowledge) distribution function of
buyer valuations, then F(v) = 1 - y, where y = inf{q: f(q) = v}. For
expositional ease, all of our subsequent definitions, theorems and proofs will

be phrased in the language of durable goods monopoly. However, all of our
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results also hold for the bargaining game, provided one substitutes
"sequential equilibrium” whenever the phrase "subgame perfect equilibrium"”
appears. It should also be understood that m(Q ) corresponds to the seller's

truncation, after history H,, of his prior on the buyer's valuation.

3. A Linear Example

In this section we analyze a linear demand example with unit slope and
unit intercept, and characterize the set of all equilibrium payoffs attainable
by the seller in the game G(z,r) when z is small. We will do this by proving
the existence of reputational equilibria in which the monopolist refrains from
rapid price cutting out of fear of inducing expectations (on the part of
consumers) of even more rapid future price reductions. A particular
stationary equilibrium (which we will refer to as the Coase path), will play a
central role in the construction of these reputational equilibria. It is the
limit of finite horizon equilibria, as first described by Stokey [1981], and
later, in the bargaining context, by Sobel and Takahashi [1983]. This
equilibrium is the unique one in which consumer strategies are analytic (Gul,
Sonnenschein and Wilson [1986]). Furthermore, it is strong-Markov, i.e., it
requires no randomization off the equilibrium path.

In this equilibrium, the monopolist's pricing rule for the subgame
starting at the node v (i.e., after any history in which a measure of (1 - v)
customers have bought), is given by ¢(v) = aqv, yielding a present discounted
value of profits of n(v) = (a/2)v2. Consumer strategies are described by
their indifference valuation 8(p) = p/¥1 - §. An explicit expression for a is

1

given by ¢ = 1 - §  + 5_1/1 - 8. The reader can easily verify that the above

strategies indeed form an equilibrium.

Definition 3.1: A simple reputational strategy is a triple (p,w,u), where p
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denotes the initial price to be charged, @ refers to the price rule p(v) = wv
the monopolist follows if she set an initial price of p and no deviation from
this price rule occurred in the past, and y refers to the price rule p(v) = yv
to be followed otherwise.

We may now state our main result:

Theorem 3.2: For every r > O and every g > O, there exists a z > 0 such that
for every z < z there exist subgame perfect equilibria yielding the monopolist

all payoffs in [g, n* - 9], where n* is the static monopoly profit.

Proof: We will construct equilibria in which the seller follows a simple
reputational strategy (p,w,a). Let ¢ be the fraction, implicit in the pricing
rule p(v) = @v, by which the monopolist lowers prices along the equilibrium
path. The corresponding price sequence p, = gnp implies a pattern of historic

variables v_ of:

n

v = P17 GPn _(Q -e8) n-1_ _ 1
n (1 -8) (1 -g) & P=E7YPy > 2

Since v, is strictly decreasing in n as long as ¢ < 1, the monopolist will

have positive sales along the equilibrium path provided p < Y—l. . Sales in

period n (n » 1) can then be calculated to be:

- = _ = 1_
vn vn+1 Y(pn—l pn) v( €)pn-l

implying a pattern of profits of

o« «©
- k - = -
T = L8 G ™ Vi P = YU 7 0 kZO 8 Prtic—1Pntkc
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_yell = ¢) 2 (1 -8)e(1l —¢) 2
B 2 Ppn-1 7 2 Y
1 - 8¢ (1 - e8)(1 - ¢78)

for all n » 1. Observe that since the Coase path (represented by the pricing
rule p(v) = qv) is subgame perfect starting at any node v, it will suffice to
show that the seller does not have any incentive to deviate from the path

Pn = ep when such deviations induce expectations that the future pricing rule
will be p(v) = qv. Since optimal deviation from p, in period n will yield
Coase conjecture profits of (a/Z)V%, the seller will not deviate in period n

(n » 1) if and only if:

(1 = 8)e(l - ¢)
(1 - e8)(1 - ¢28)

NIR

~sz 3/2 _1/2

Choosing ¢ = e , where s = r z , and recalling the definition of q, we

see that the above condition can be rewritten as:

—(r+s)z -rz -sz
R(z) = 2 e (1 -e (1 — e ) 51

(1 - e--(r+s)z)(1 B e—(r+Zs)z)(e—rz 14 //l _ e—rz)

Observe that 1lim R(z) = 2, Hence, there exists El > 0 such that for all z
z+0

(0 < z<zp), R(2) > 1.

Now observe that, for all p g Y_l,

a - 2
Tq = [1 —yplp +§ 15—-———§l p
1 - s¢
Note that my is a function of p and z, as § = e '% and ¢ = e75(2)2,  Tpe

simple reputational strategy (p, ey-l, a) will induce a subgame perfect

equilibrium for z < z;, iff
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a(z)
10(p,2) > =5
Let 1(z) = {p: uo(p,z) > Q%El . Since lim "0(p’z) = p(1 - p) and
z+0
lim g(z) = 0, r(z) grows and approaches the unit interval as z » 0. 1In
z+0

particular, the set of equilibrium payoffs supported by reputational
*
strategies, i.e., the image of I under wy, approaches the interval [0, 71

as Z+0.8 []

While other authors (Gul, Sonnenschein and Wilson [1986]) have noted the
presence of multiple equilibria in this type of game, all previously
discovered equilibria yield the seller essentially zero surplus as z » 0. We
showed above that when one considers the set of all subgame perfect equilibria
(rather than just the set of weak—-Markov equilibria) exactly the opposite

result obtains.

4, Existence of Weak-Markov Equilibria

In the previous section, we constructed reputational equilibria for the
linear demand example, and demonstrated that essentially all outcomes were
supported by subgame perfect equilibria as the time interval between periods
approached zero. Our method was to specify two price paths. The main path
was defined by an initial price, p, and a slow but positive (real-time) rate
of descent. This induced most customers who valued the good at greater than p
to purchase in the initial period; only a trickle of customers bought in each
subsequent period.

A deviation from the main path by the monopolist triggered a change in
consumer expectations about future prices——consumers would expect the
secondary path. By the Coase Conjecture, profits along the secondary path

could be made arbitrarily small compared to the number of remaining customers
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by shrinking the time interval between periods. 1In contrast, profits along
the continuation of the main path, while low, were kept bounded away from zero
by a constant related to the rate of descent of prices. Hence, for any rate
of descent, there was a sufficiently small time interval between periods such
that the monopolist was deterred from deviating off the main path.

In order to extend this reasoning to general demand curves, we need to
demonstrate two facts which we proved by formula for the linear case. We lay
this groundwork here and in the next section. First, we show the existence of
weak-Markov equilibria for the general demand curve (see also Appendix A).
This gives us well-defined secondary paths. Then, in Section 5, we will
demonstrate that these secondary paths become uniformly low as z approaches
zero, enabling them to deter deviation from the main path.

We begin by defining general demand curves. Let ¢ be a real-valued
correspondence on the real numbers. We will say that ¢ is monotone

nonincreasing if:

(4.1) p, € ¢(v1) and p, € ¢(v2) => (p2 - pl)(v2 - vl) <0

and monotone nondecreasing if the inequality in (4.1) is reversed. We will

call 4 upper semicontinuous (u.s.c.) if:

(4.2) pn € ¢(vn), pn + p and v e v > pe ¢(v).

Definition 4.1: A demand curve f is a nonnegative-valued, monotone

nonincreasing correspondence on [0,1]. Without loss of generality, we also

assume:
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(a) £(q) > 0 whenever 0 < q < 1.9

(b £0) = 1.10

(c¢) f is left-continuous.!!

D) f—l denotes the inverse correspondence of %, where f is the monotone
nonincreasing, u.s.c., convex—-valued correspondence which agrees

with f except on its points of discontinuity.12

In Appendix A, we prove the following theorem:

Theorem 4,2 (Existence of Weak-Markov Equilibria): Let f be any demand curve
which is monotone decreasing in an interval [q,l1], for some O ¢ q < 1. Then

for any r > 0 and any z > 0O, there exists a weak-Markov equilibrium.

This theorem strengthens results by Fudenberg-Levine-Tirole [1985], who
prove existence for differentiable demand functions with derivative bounded
below and above, and Gul-Sonnenschein-Wilson [1986], who prove existence for
demand curves with f(1) > O that satisfy a Lipschitz condition at 1. For
example, Theorem 4,2 extends existence to nondifferentiable and possibly
discontinuous demand curves with f(1) = 0. It also contains the case where
f(1) > 0 but f'(l) is infinite. Observe that we do not prove any existence
result for demand curves which have "flat sections” in all neighborhoods of

1. We also establish:

Corollary 4.3: Under the hypothesis of Theorem 4.2, there exists a weak-

Markov equilibrium in which, along the equilibrium path, the monopolist plays

only pure strategies.

Proof: See Appendix A.
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5. The Uniform Coase Conjecture

In this section, we strengthen the "Coase Conjecture™ by presenting a
theorem that guarantees uniformly low prices for all weak-Markov equilibria of
families of demand curves.13 The proof of our theorem is relegated to
Appendix B.

While the Uniform Coase Conjecture is of independent interest, we require
it here as an intermediate step for use in the main result of the paper: the
Folk Theorem of Section 6., It should be observed that there is a
straightforward reason why we did not need to examine families of demand
curves to treat the linear case in Section 3: given any linear demand curve,

every derived residual demand curve is linear as well.14

For generic demand
curves, however, the residual demand curves are no longer rescaled versions of
the original one. Thus, considerations of subgame perfection lead us
naturally to study families of demand curves. We will demonstrate, for all
residual demand curves arising from a demand curve f, that all price paths
derived from weak-Markov equilibria are uniformly low compared to the highest
remaining consumer valuation. This establishes that weak-Markov price paths
may be used to deter deviation from the main price paths of reputational
equilibria.

Define JL,M to be the family of demand curves which are bounded above and

below by straight lines with negative slope. We will sometimes refer to this

condition as "Lipschitz above and below at 1." To be precise:

Definition 5.1: For 0 < Mg 1 ¢ L € =, LM is the set of all

f: [0,1] » [0,1] such that:

(a) f is monotone nonincreasing, f(0) =1, and £(1) = 0,

and
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(b) M(1 - x) < £(x) < L(1 - x), for all x e [0,1].

Let us also define a rescaled residual demand curve as a normalized version of

the demand that remains after any proportion of customers have purchased:

Definition 5.2: Let f be any demand curve. We define fq to be the rescaled

residual demand curve of f at q (0 < q < 1) by:

flg + (1 ~ g)x]
f(q)

fq(x) = , for all x e [0,1]

Lemma 5.3: If f e JL,M’ then for every q (0 < q < 1), fq € 7L/M,M/L'

Proof: Observe that f(q + (1 — q@)x) = £(1 - (1 = @)(1 = %)) < L(1 - q)(1 - x)
and f(q + (1 - q)x) » M(1 - q)(1 - x). Meanwhile, M(1 - q) < £f(q) < L(1 - q),

SO

Mo - gy ¢ flat U = q)x]

L
L < £(Q) <l -

proving the desired result. 1]

L 1 L t
let L=L /M and M=M /L . Lemma 5.3 demonstrates that if f e L RTE
51
then all residual demand curves arising from f are elements of % y. Hence,
b

if we can show that the initial price is uniformly low for all demand curves

in the family ¥; y, then we will also have established that all price paths
b
arising from weak-Markov equilibria are uniformly low (compared to residual

demand). We prove this fact in the following theorem:

Theorem 5.4 (The Uniform Coase Conjecture): For every L > 1, M (0 < M < 1)

and ¢ > 0, there exists z(L,M,e) such that for every f € % y, for every z
b
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satisfying 0 < z < z(L,M,e), and for every weak-Markov equilibrium
(s,P) € E¥™(f,z), the monopolist charges an initial price less than or equal
to ¢ (and earns profits less than ¢).

Our notation will be S(0) < e.
Proof: See Appendix B.

Theorem 5.4, as stated here and as used in establishing the existence of
reputational equlibria, assumes f(1) = 0. But the Uniform Coase Conjecture
still holds when £(1) > O, Define 3f M to be the family of demand curves

b

which satisfy f(1) < ¢ and are “"Lipschitz above and below at 1," i.e.,

M(1 - x) ¢ f(x) - £(1) ¢ L{1 - x}, for all x e [0,1]

Then the following can also be proved:

Corollary 5.5: For every L » 1, Mg 1, ¢ > 0 and ¢ < 1, there exists

z(L,M,e,c) such that for every f e gf M» for every z satisfying
b

0 < z < z(L,M,e,c), and for every weak-Markov equilibrium (S,P) € EV™(f,z),
S(0) < f(1) + ¢

Finally, let us define ¥1, .M to be the set of demand curves which jointly
b

satisfy the hypotheses of Theorems 4,2 and 5.4.

Definition 5.6: #1, M is the set of all f such that:
bl

(a) fe L w and

(b) f is monotone decreasing in an interval [q,l1], for some 0 < q < 1.
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6. The Folk Theorem for Bargaining and Durable Goods Monopoly

In this section, we prove the main result of the paper.

Theorem 6.1 (The Folk Theorem): Let f be any demand curve which has the

*
Uniform Coase Property, and let 7 denote the static monopoly profits. Then
for every real interest rate r and for every ¢ > 0, there exists a z > 0 such

that whenever the time interval between successive offers satisfies 0 < z < z:

(6.1) le, n -el ¢ SE(f,r,2)

In particular, the above result holds for all f e L M and for
b

£(q) = (1 - q)®, where 0 < n < =,

SE(f,r,z) denotes, for the durable goods monopoly model, the set of all
monopolist payoffs arising from subgame perfect equilibria when the demand
curve is f, the interest rate is r, and the time interval between periods is
z. For the bargaining game with one—-sided incomplete information, it denotes
the set of all seller payoffs arising from sequential equilibria. Theorem 6.1
proves that SE(f,r,z) expands to the entire interval from zero to static
monopoly profits, as the time interval z approaches zero. The theorem only

requires that f have the Uniform Coase Property, which we now define:

Definition 6.2: We will say that f has the Uniform Coase Property if, for

some zj > O:

(6.2a) There exists a subgame perfect equilibrium (JZ,TZ) for all games

with time interval z between periods, where 0 < z < zy, and,



(6.2b) For every ¢ > 0, there exists z(e) (0 < z(¢) < zj) such that

5 (a)/£(a) < e, for all z (0 < z < z(e))

for all q (0 ¢ g < 1)

where Sz(q) denotes the supremum of all prices that the monopolist charges

using strategy o, when the current state equals q (the supremum is taken over

all possible price histories).

The next lemma proves that the hypothesis of Theorem 6.1 is far from
vacuous. If the demand curve has f(1) = 0, is monotone decreasing in a
neighborhood of 1, and is "Lipschitz above and below” at 1, then Theorem 6.1
applies. Also, if f belongs to the family of demand curves studied by Sobel-

Takahashi [1983], the Folk Theorem holds.

Lemma 6.3: If fe ¥ y, or if £(q) = (1 - q)® with 0 < n < w, then f has the

Uniform Coase Property.

Proof: Suppose f ¢ ;L,M‘ Then f is monotone decreasing in a neighborhood of
1 (by Definition 5.6), and so there exists (oz,rz) € EY™(f,z) for all z > 0
(by Theorem 4.2). We wish to show that {o,,7,},59 satisfies (6.2b). Observe,
for any z, that (¢,,t,) induces a weak-Markov equilibrium for any residual
demand curve arising from f. Define (cz,q’Tz,q) by multiplying all prices in
(GZ,TZ) by f(q); observe that (cz,q’Tz,q) is a weak—-Markov equilibrium for the
rescaled residual demand curve fq, for all 0 ¢ q < 1. (See Definition 5.2.)
Using the notation in Definition 6.2, observe that:

s,(q) = £(q) - S, ,(0)

Z2,q
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1]
Further observe, by Lemma 5.3, that fq € 31',M" where L. = L/M and
M = M/L. By the Uniform Coase Conjecture (Theorem 5.4), for every ¢ > O,
there exists z(g) such that the initial price in any weak-Markov equilibrium

is less than ¢, for any z (0 < z < z) and any demand curve in ILr M We

conclude:
Sz(q) < £f(q)e, for all q (0 < q < 1)

Suppose f(q) = (1 = q)¥, where 0 < n < ». Then for every z > 0, a weak~
Markov equilibrium can explicitly be calculated which also satisfies (6.2)

(see Sobel-Takahashi [1983]). i

Let pi denote the price actually charged in period i and let qi denote
the actual proportion of customers who have purchased before period i. Let ¢

denote a pure (or mixed) strategy for the monopolist, which gives price(s) as

a function of previous prices (po,...,pnﬁl) and the state (q™).

Definition 6.4: For any p = {pn}z=0’ any q = {qn}z=1’ and any monopolist

strategy o, define the reputational price strategy ($,§,5) by:

P> if p1 = p; for all i (0 ¢ i ¢ n — 1) and if qn = q
n
p = {

o , otherwise

n

We will further call ($,§,0) a reputational equilibrium if this reputational

price strategy, in conjunction with optimal consumer behavior, forms a subgame

perfect equilibrium.

Observe that Definition 6.4 requires that strategy o, by itself, be

associated with a subgame perfect equilibrium.
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A reputational equilibrium is defined analogously for our bargaining
game. ($,0) is required to give a sequential equilibrium. ¢ can be omitted
from the definition of the reputational price strategy because it is never
actually observed by the seller. Rather, the seller only observes a decision
to purchase, which concludes the game. We now prove Theorem 6.1, in the

language of durable goods monopoly.

be the family of subgame perfect

6.1l: Let
Proof of Theorem e {oz’Tz}0<Z<Zl

equilibria guaranteed by (6.2a), and let {S }0< < be defined as in
z10<z<z
1

Definition 6.2. Define the function g by:

s (@)
(6.3) g(z) = sup {??ES— : 0<xgzand 0< q<1}

Observe that g(z) is well defined for 0 < z < z;, since S, is defined and
S,(q)/f(q) is uniformly bounded above by 1. Further observe, by (6.2b), that
lim g(z) = O,
z+0

By definition, q3 = 0. Choose arbitrary sales q; in period zero
(0 < q < 1). Let us define a sequence of subsequent quantities, in a fashion
analogous to our treatment of the linear case in Section 3.

- e—naz(rz+g(z))(1

(6.4) - ql), for any a > 0 and all n » O

1 - 1
Equation (6.4) states that there is a constant ¢ (0 < ¢ < 1) such that, in all
periods after period zero, the monopolist sells to proportion c of all
remaining customers.

Our first step is to construct a price sequence {pn} which yields

n=0

sales of (q,4; — q,) in period n (all n > 0). Observe that if 0 < q; < 1,

then (6.4) implies sales in all periods, so consumer q,;; is indifferent
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between purchasing at price p, in period n and at price p,,; one period later,
for all n » 0. Hence:

(6.5) f(qn+l) ~p = 5[f(qn+l) -p .1, for all n > O

n+1

e TZ, Therefore:

where §

o
1l

(1 - 5)f(qn+l) + 8P ) = 1 - s)f(qn+l) + §[(1 - 5)f(qn+2) + 6pn+2]

Telescoping this summation gives:

(6.6) P, = a1-s) 3 akf(q
k=0

n+l+k)’ n>0

2 - >
Furthermore, the price sequence p

1

{p }o_, implied by (6.4) and (6.6)
satisfies f(q,4;) » p, (for all n > 0) and satisfies equation (6.5), proving

that consumers optimize along the sales path g = {qn}w=l'

Claim l: For any q; (0 < q; < 1), there exists a > 0 and z > 0 such that
(ﬁ,ﬁ,oz) defined by (6.4) and (6.6) is a reputational equilibrium for all z

satisfying 0 < z < z < zy.

Proof of Claim 1: Let n, denote profits starting from period n if the price

path p is followed in all periods. Define m to be the least integer greater

than 1/z. Certainly:

mrl[ _ 1
"n > 8 qn+m qn pn+m

Observe that 5m_1 = e-(mfl)rz > ¢ © and, by (6.4), Qtm ~ 9n =
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(1 = qp) = (1 = qpup) > (0~ q( - e-a(rz+g(z)))’ for all n » 1. Meanwhile,

by (6.6), p pp > (1 = ¢8) zi;é ka(qn+m+l+k) > £q ) = 8) zi;é 8" >
(1 - e—r)f(qn+2m). Hence:
(6.7) > e T(1 - q (1 - omalrzre(z))y e—r)f(qn+2m), n s 1

and by similar reasoning,
6.8 -e "
(6.8) Ty > 4Py > ql(l e )f(qm)

Meanwhile, let ng denote profits starting from period n if (cz,rz) is
followed. Let q (0 ¢ q < 1) denote a customer and let Pq denote the price at
which customer q purchases, according to (cz,rz). Let pé denote the next
(expected) price charged after Pq> following o,e Observe by the definition of
g(z) that pé < g(z)f(q). By consumer optimality, f(q) - pq > §[f(q) - p;].

Together these inequalities imply:

Pq < [1 -8 + 8g(2)]1f(q), for all q (0 ¢ q < 1)

and so:

(6.9) ﬂi < [1 -6 + §g(2)] fé f(q)dg, for all n 3 O
n
Observe that the bound of (6.9) is a consequence of the Uniform Coase
Property, but does not follow from the ordinary Coase Conjecture.
Let a = 8[e”T(1 - e )7L 1o prove subgame perfection, we must show

that n, > ng, for all n » 0. Observe that there exists z9 such that for all z
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(0 <z < z9):

- e—a[g(z)+rz] > ; [g(z) + rz]

Hence, (6.7) implies that w, > 4(g(z) + rz)(1 - qn)f(qn+2m) for all n » 1 and

0 <z<zy. Since q, < qp4o, <1 and f is monotone nonincreasing:

YE(q )

qn+2m

1
fq f(a)dq < (qn+2m - qn)f(qn) - n+2m

n

Furthermore, qp4op = dn € qy42y — 97 for all n > 1, and iig Aoy = 9p» SO
. 1 T
there exists zq > 0 such that fqnf(q)dq < 2(1 - qn)f(qn+2m) for all n » 1 and
for all z (0 < z < z3). Finally, there exists z, > 0 such that
[1 -6 +68(2)] ¢ 2[g(2z) + rz] for all z (0 < z < z;). Hence, for all z

satisfying 0 < z < min{zl,z and for all n » 1, we have by (6.9) that

227327}
Ty > Moy 0> 1
It can easily be shown that we may set z so that g > n§ for all z (0 < z < 2)

as well.

Claim 2: For any q (0 < q < 1) and any A < 1, there exists z > O such that
for every z (0 < z < z), there is a reputational equilibrium with profits at

least Aqf(q).

Proof of Claim 2: Set q1 = /X q. Define m to be the least integer greater

than ~log (1 - /A)/rz. (Observe that e

z e . o
= 1 - /\x.) Now define {qn}n=2 by
(6.4). Then for arbitrary a > 0, there exists zg such that for every z

(0 < z<z5), q; < q. By (6.6), py (which induces sales of q;) satisfies:
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m~1 K o
pg > (1 = 8) kzo § £q,, ) » (1 = §)E(q ) >

> [1 -1 =-y01f) = vy £()
whenever 0 < z < z5. Hence, mg > ppq; > rAaf(q). Using Claim 1, there exists

z > 0 such that (ﬁ,ﬁ,gz) defined using q = YA q, (6.4) and (6.6) is a

reputational equilibrium, for all z (0 < z < z), proving Claim 2.

Remainder of Proof of Theorem 6.1: Given any 4y, let the quantity path g be

defined by (6.4), let the price path P be defined by (6.6), and let n(qq,2)

denote the profits associated with § and $. Then:

_ - -krz _ _ ® k _
(6.10) mlay,2) = kzo e (A T I = 9y 7 kzl SIS

Suppose qi > qq, and define ﬁ' and ﬁ' analogously. Observe, by (6.4), that
qL+l - qL < gg4p ~ 9y for all k > 1, and by (6.6), that PL < py for all

k > 0. Hence, using (6.10):

1] 1]
(6.11)  x(q;,2) < nlq;,2) + [q; = q|
Define ;(ql,z) by:

m(ay,2) = sup  w(q,2)
O<q<ql
Observe that 7 is monotone nondecreasing in q) and also satisfies (6.11).
Hence, ; is continuous in q)» and so the image of any interval of ql's is an

interval, for any z > O.
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Let n* = sup qf(q) and let x = q*f(q*). Given ¢ (0 < ¢ < n*), define
* O<qgl

A =I[r" -el/nm+ By Claim 2, there exists zg > 0 such that there exists a
reputational equilibrium with profits at least An* = n* - ¢ whenever
0 < z < zg. Also observe that lig n(0,z) = 0, and so there exists z7 > 0 such
that 7(0,z) < ¢ whenever 0 < z z+z7. Finally, by Claim 1, there exists zg > 0
such that (%,a,oz) defined from q; = O is a reputational equilibrium whenever
0 <z < zg.

Define z = min{zg,z7,2zg}. Then for any z satisfying 0 < z < z,
7(0,z) < ¢ and n(xq*,z) > n* - ¢. Furthermore, we have already shown that
T, 2 ng for 0 < z<zand n3 1, so (ﬁ,ﬁ,oz) is a reputational equilibrium for
all q that yield mg » 7(0,z). Finally, we have shown that the image of

n(qy,z) when q; € [0, Aq*] is an interval. Since ¢ and 7" - ¢ are both

contained in that interval, we have proved (6.1). a

7. Conclusion

Consider the outcome of durable goods momopoly (or bargaining) when the
time interval between successive periods approaches infinity. In this
situation, the monopolist (seller) has close to unlimited commitment power,
and thus her maximum equilibrium payoff approaches static monopoly profits.
Meanwhile, as we demonstrated in the Folk Theorem, the same outcome is
attainable in the limit as the time interval approaches zero. We conclude
that the graph of the time interval between periods versus maximum attainable
profits is U-shaped.15 Hence, the graph attains a minimum at some

intermediate level--let us call this the time interval of least commitment.

We explain this phenomenon as the result of two countervailing forces.
When the time interval between periods is short, reputational effects may be
devastatingly effective in preserving monopoly power. When the time interval

between periods is long, reputational effects are superfluous. The most
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adverse circumstance for the monopolist may be when the time interval is just
long enough to preclude reputational equilibria (but still sufficiently short
that the inability to commit is a problem).

We would also like to draw a comparison between the present monopoly
model and the analogous oligopoly model. In "One is Almost Enough for
Monopoly" (Ausubel and Deneckere [1985]), we prove Folk Theorems for durable
goods oligopoly and for monopoly with potential entry. As the time interval
between successive periods approaches zero, all joint payoffs between zero and
static monopoly profits are possible. (Gul [1985] simultaneously and
independently established a similar result for the case of oligopoly.) Recall
our observation in the Introduction that there are actually two distinct cases
to consider: those where there is a gap between seller and buyer valuations
and those where there is none. Surprisingly, in the case of the "gap,”
durable goods oligopolists potentially earn much greater profits than the
monopolist. The (generically) unique monopoly equilibrium has price rapidly
dropping to the lowest consumer valuation, while for a sufficiently short time
interval between periods, the oligopolists can support a price near the static
monopoly price. However, when the time interval between periods becomes
sufficiently long, the monopolist's profits outstrip the oligopolists', as the
monopolist gains commitment power while the oligopolists collapse to the
Bertrand outcome.

In the more reasonablel® case of "no gap," there is a Folk Theorem for
any number of firms, so the limiting sets of joint payoffs coincide. For
short but nonzero time intervals between periods, the oligopolists could earn
somewhat greater joint profits than does the monopolist, since the punishment
following deviation can be more severe. O0ligopolists may expect a zero price

next period, while the consequence for the monopolist is a Coase Conjecture
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price, which is always greater than zero. For sufficiently long time
intervals between periods, the monopolist does better, by the same reasoning
as in the case of the "gap.”

The dichotomy between the two cases, while surprising, is supported by
the following intuition. Fudenberg, Levine and Tirole [1985] demonstrated
that in the case of the "gap,™ sales occur in finitely many periods. 1In
contrast, sales necessarily occur over infinite time in the case of "no
gap.” Hence, the paradox presented here is precisely the dichotomy between
the finitely— and infinitely-repeated prisoner's dilemma.

While we have only explicitly examined bargaining models where one party
makes all the offers, our analysis has implications for alternating-offer
models. Following Fudenberg, Levine and Tirole [1985], we have embedded our
reputational equilibria in the analogous alternating—offer model. 1In these
equilibria, buyers make only nonserious counteroffers, which the seller
rejects. Thus, the embedded equilibria are payoff equivalent to those of a
one-sided bargaining model in which the seller makes all the offers and in
which the time interval between offers is twice as long. This establishes a

Folk Theorem for bargaining games with more general extensive forms.
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Appendix A

Existence of Weak—-Markov Equilibria

The theorems in both appendices make substantial use of the ideas and
analysis contained in Fudenberg, Levine and Tirole [1985] and in Gul,
Sonnenschein and Wilson [1986]. We learned a great deal from these authors,

and we owe them a substantial intellectual debt.

Definition A.l: Let 4 be a correspondence. If a solution exists to:

(A.1) pe (1 -8)g(p) + 6¢(8(p))

we will call this solution the "g implied by 4.”"

Lemma A.2: Let ¢q be a monotone decreasing upper semicontinuous
correspondence defined on domain [£f(1),f(q)], where q ¢ 1. Then there exists

a "g implied by the convex hull of ¢q' on the domain:
(A.2) Iq = [£Q1), (1 - §)E(q) + § sup ¢q(f(q))]

Furthermore, B is uniquely defined, and it is a monotone nondecreasing,

Lipschitz—continuous function on Iq (with Lipschitz constant 1/(1 - §)).

Proof: Without loss of generality, let ¢ be convex valued (as its convex hull
is uniquely defined). Since ¢ is monotone and u.s.c., and § < 1,

(1 - §)v + 5¢(v) is a monotone decreasing, u.s.c. and convex—valued
correspondence of v. Hence, its inverse is a uniquely—-defined, monotone

nondecreasing function g(p) which satisfies relationship (A.1l) on Ige
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Suppose py > p;. Then by (A.1):

p, = b, € (1= 8)I8(p)) = 8(p D] + s14(8(p,)) = $(8(p, )]

The second term of the right side is nonnegative, implying

P, P 3 1 - 5)[B(p2) - B(pl)] >0

2

proving Lipschitz continuity. 0

Notation A.3: Suppose bq satisfies the hypothesis of Lemma A.2. Let Bg

]
denote the "g implied by the convex hull of ¢q.' Now let Bq(p,v) denote a

function defined on [0,1] x [£(1), 1] by:

: Bq(p), if pe Iq and Bq(p) < v
(A.3) Bq(p,v) = {

v , otherwise

]
gq(p,v) represents the new state which arises if the historic state is v, the
monopolist charges a price p, and consumers use the acceptance function Bq.
1f p e Iq (the domain of Bq), we choose the new state to be the minimum of
Bq(p) and v, since the monopolist cannot induce negative sales by charging a
high price. Meanwhile, if p ¢ Iq, we adopt the convention that the new state

is v.

Definition A.4: Let f be monotone decreasing on [q,1], where q < 1. Let ¢q
be a correspondence defined on the domain [f(1), f(q)], and let Tq be a
function defined on the same domain. We will say that (¢q’"q) supports a

weak—Markov equilibrium on [q,l] if:

(a) bq satisfies (4.1), i.e., ¢q is monotone nondecreasing;
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(b) q satisfies (4.2), i.e., ¢q is u.s.C.;

(c) For every ve [£f(1),f(q)]:

__1 \ _1 L}
(A.4) 7 (v) = max {[f (g _(p,v)) - £ "(WM)Ip + &n_(8_ (p,v))}
O<pgl 4 44
\
where Bq> Iq, and Bq are defined by (A.1), (A.2), and (A.3), respectively; and

(d) For every v e [£f(1),f(q)], inf ¢q(v) and sup ¢q(v) are both

contained in the argmax correspondence of (A.4).

Lemma A.S:17 Suppose q < q < 1, and let f be a monotone decreasing demand
curve on [q,l]. Furthermore, let (¢q’"q) support a weak-Markov equilibrium on
[q,1]. Then there exist ¢ and 7 such that ¢(v) = ¢q(v) and g(v) = nq(v)
whenever f(1) < v < f(q) and (¢,n) supports a weak-Markov equilibrium on

[q,17.

Proof: We proceed constructively. Suppose that 0 < q < 1. Let

|

q = max{0, q - %(1 - G)nq(f(q))}. Observe that q < 1 implies nq(q) >0
1
(since we are in a subgame perfect equilibrium), so q < q. Let us extend

\
(¢q’"q) to (¢q""q') defined on [q ,1] by:

- t _1 )
(A.5) p () = max [[£1(8 (p,v)) - £ 1(W)Ip + &1 (8 (p,v))]}
q 0<p<l q qQ g
1
for all v satisfying f(l1) < v ¢ f(q ). Let uq'(v) be the convex hull of the

argmax correspondence of (A.5), and define:

¢q(v) , if f(1) < v < £(q)
(A.6) ¢q,(v) = {

[peu (v): p> sup (g .(v'))}, if £(q) < v < f(q')
q Jiey 4
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Observe that ¢q'(V) = ¢q(v) whenever f(1) ¢ v < £(q), by the definition of
oq'> and nq'(v) = nq(v) whenever f(1) ¢ v < f(q), by part (c) of Definition

A4, We will now show that (¢q' 1) supports a weak-Markov equilibrium on

,Tl'q

[q',l]. This will effectively complete the proof, since we may define

q = max{0, q' - %(1 - G)Wq(f(q))}, q"' = max{0, q" - %(1 - G)Wq(f(q))},
etc. With a finite number of repetitions of this argument, the extension to
the interval [q,l] will be complete.

First, let us show that ¢q' is monotone, nondecreasing and u.s.c.
Suppose (1) < vy < vy ¢ f(q'), P; € ¢q'(v1), and p, € ¢q'(v2). Without loss
of generality, assume v| > f(q) (otherwise, monotonicity and u.s.c. follow
from the fact that ¢q' coincides with ¢q). Then Py € uq.(vl) and
py € ”q'(v2)’ the convex hull of the argmax correspondence of (A.5). Clearly,
s0:

also, ppel and py € I

q qQ’

-1 -1
mr ) = IE (8 (p) = £ (v Ip) + 6n (B (p))) >

> [£1(8 (3,)) = £ (v)lp, + 6m (8 (py))
and

-1 -1

)

-1 -1
< [f (Bq(pz)) - f (VZ)]p2 + Gnq(Bq(pz)) = wq.(v2

Subtracting the first inequality from the second:

(£ vy - £ oIy < L)) - £ v,
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If f—l(vl) - f_l(vz) > 0, we conclude p; < pj, proving monotonicity. If
f_l(Vl) - f_l(Vz) = 0, monotonicity immediately follows from (A.6), since
then, “q'(vl) = Uq'(VZ)' Meanwhile, since f is monotone decreasing, £l ig
continuous. Since the domain of f—l is compact, £7! is also uniformly
continuous. Consequently, if v » v, the maximands of (A.5) corresponding to
vi uniformly converge to the maximand corresponding to v. By the Theorem of
the Maximum, if p% ¢ uq.(vn) for every n and p, » p, then p ¢ uq-(v). By
(A.6), ¢q' is also u.s.c.

1
Second, let us show that x_+ and the Bq" implied by the convex hull of

q
oq satisfy (A.4). Observe, by Lemma A.2, that Bq' is uniquely defined from

¢q" and coincides with Bq for all pe I,. Define T by:

q

(A.7) 7 = max [[£ 8., (p,v)) - £ L(W)Ip + 81,8 (p,v))]
O<pel q ° 9

We will now demonstrate that (A.7) has its argmax in Iq for all v satisfying
4 ~

£f(1) ¢ v< £(q ), and so n(v) of (A.7) coincides with qu(V) of (A.5).

Suppose not. Let p' be an element of the argmax for v', such that p' ¢ Iq.

Observe that f_l(B;,(p',v')) < q, £l s q', and 7, (+) < 7(+). Hence:
R = 1 v ) = £+ sm (el v D) <
<la-alp +om (v ¢ 5= & (£@)) + 6m (v <
< ﬂq.(v') < )

a contradiction.

We have thus that (A.7) has its argmax in Iq, and so g coincides with g
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(for all v satisfying f(1) < v < f(q')). This proves that L satisfies
(A.4). We conclude that (¢qn,qu) supports a weak-Markov equilibrium on

q ,11. 10

Lemma A.6: Let f be a monotone decreasing demand curve on [q,l], where
q < 1. Suppose that ($,7) supports a weak-Markov equilibrium on [q,1]. Then
w is monotone nondecreasing and continuous, satisfying:

1

0 < alv,) ~nlv) < £ (v) - £ (v <v

), if vy 9

2

Proof: Let 8 be implied by ¢. By definition, = satisfies:

-1 -1
w(v) =max {[f (8(p)) - £ (v)]p + &x(g(p))}
P
Let vy < vy, p; € ¢(v]) and py € ¢(vy). Observe that the monopolist, starting
from state Vo, can charge a price of p; and follow her equilibrium strategy ir

the subgame which ensues. Hence:
nvy) > £ (8(p))) = £ ' (v))1p, + 6n(a(p,))
whereas:
(v,) = £} -l
n(v)) = £ (8(p)) - £ (v)Ip, + sn(8(p,))

Since p; is nonnegative and f_l(vl) > f_l(vz), we have shown w(vy) > "(Vl)'

l,pz,... is an equilibrium sequence of prices

Meanwhile, suppose that p
that the monopolist charges when she starts from state vp. Let pk be the

first price in this sequence such that B(pk) €< Vi. Observe that the
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monopolist, starting from state vy, can charge prices pl,...,pk in the first k
periods and follow her equilibrium strategy in the subgame which ensues.
Hence:

k-1

r) > 8 THE RGN - £ P+ sk )

whereas:

U EE™) - £ 1) + 656

-1 -1
1(vy)) < [f "(v)) - f (v,)] +8
Since each pi must be less than or equal to one to generate positive sales we
conclude:

1(v,) = wv) < £ ) = £ ()

as desired. ]

Lemma A.7: Suppose {“n}z=l is a sequence of monotone functions, each mapping
an interval Iy of the reals into a compact interval IR of the reals. Further
suppose there exists a continuous function 7: ID > IR, such

that {“n}z=1 converges pointwise, at all the rationals in Iy, to 7.

Then {“n}w

=1 T uniformly in the supremum norm.

Proof: A standard exercise in real analysis, omitted here for brevity.
We are now ready to prove:

Theorem 4.2 (Existence of Weak-Markov Equilibria): Let f be any demand curve

which is monotome decreasing in an interval [q,1], for some O < q < 1. Then
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for any r > 0 and any z > 0 there exists a weak—-Markov equilibrium.

Proof: Consider the sequence of demand curves:

£(q) , if 0 ¢ q<2
f (@) = {

n-1 .. n~1
o ) + (1 = n + nq)f(l), if =

(n - nq)f( <qxgl

Observe, for future use, that:

n-1
n

-1 -1
sup fn (v) - £ (v)l <1 - »0

£(0)gvgl

-1 uniformly. Also observe that, for every n, fn is linear in the

so fil 5 £
interval [(n - 1)/n, 1]. Hence, one can readily calculate, explicitly, a
linear—quadratic pair (gn’;n) which supports a weak-Markov equlibrium on

[(n - 1)/n, 1] for fn' (See Section 3.) By Lemma A.5, this pair can be
extended, if necessary, to (¢,,m,) which supports a weak-Markov equilibrium on
[q,1] for f . Let 8, be the g8 implied by the convex hull of ¢,.

By Lemma A.2, the sequence {Bn}z=1 is an equicontinuous family in the
supremum norm. By the Ascoli Theorem, it has a convergent subsequence which
uniformly converges to 8. Now let rj,ry,..., be an enumeration of the
rationals in [f(1), f(q)], and take further subsequences so that
{"n(ri)}z=1 converges for every i » 1. For notational simplicity, let
{Bn’“n}:;l denote the result of this construction, and for every rational r in
[£(1), £f(g)], let 1 be defined as the pointwise limit 7(r) = lim nn(r).

N+

Observe, by Lemma A.6, that for every pair (rl,rz) of rationals such that

£(1) <r; <19 < f(q), and for every n:

0 < nn(rz) - "n(rl) < f;I(rl) - f;I(rZ)
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implying, since f;l > 7L uniformly, that:
0 < m(r) = w(r)) < £ (r) = £ (r,)
€T r2 m r1 < rl r2
Extend 5 to all values in [f(l), £(q)] in the unique way which gives
continuity for that entire interval. Observe, by Lemma A.7, that {“n};=1

uniformly converges to w. So we have that {Bn’“n}z=l uniformly converges to

(B ,TT)O

Define 3_1 by B—l(V) = {p: 8(p) v}. Finally, define the ¢

correspondence ¢ by:
1, -1
(A.8) $p(v) = 5[3 (v) = (1 - §)v]

Claim: (¢,n) supports a weak-Markov equilibrium on (q,1] for the (limit)

demand curve f.

Proof of Claim: First let us show that "g is implied by 4¢." Let g(p) = v.

Then by (A.8), ¢(v) = (1/5)[3_1(v) - (1 - §)v]. Rearranging,
B_l(V) = (1 - §)v+ 8p(v). But pe g~ 1(v), by assumption, so (A.1) is
satisfied.

Second, we will show that ¢, 7 and g jointly satisfy all the requirements
of Definition A.l. Observe that g is monotone and Lipschitz-continuous (with
Lipschitz constant 1/(1 - §)), since it is defined as the uniform limit of the
Bp» each of which is monotone and Lipschitz-continuous (by Lemma A.2). Hence,
3_1 is monotone and u.s.c., and 3_1(v1) - s_l(vz) > (1 - 6)(V1 - VZ) if
vy » vp. So by equation (A.8), ¢ is also monotone and u.s.c., as required.

Define:



- 4] -

8. (p,v) = minfg_(p), v}; & (p,v) = min{g(p), v}

and:
3 (e = I£1 (8 (p,v)) = £ (Wb + 61_(8_ (p,))

3p,v) = [£08 (p,v)) = £ 5 (W)1p + 8108 (p,v))

What remains to be shown is that:

(A.9) 7(v) = max J(p,v), for all v e [£(1),£(q)]
O¢<pgl

and that $™7P(v) = inf ¢(v) and ¢$™@X(v) = sup ¢(v) are both contained in the
argmax correspondence of (A.9). This will follow from the Theorem of the
Maximum.

Each £, and f is strictly monotone on [q,1]; hence f;l and £1 are well-
defined and continuous functions on the compact interval [f(1), f(gq)]. Thus,
f_1 is also uniformly continuous on that interval; given ¢ > 0, there exists

e' < ¢/5 such that:
N | e
£ - £ | <E,

whenever £(1) < vy € vy < f(q) and Ivl - v2| < g'.

By Lemma A.6, we also have:

70D = ma ] < o - £y
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for all n. Since we have shown that 7, » 7 uniformly and f;l s £71 uniformly,

this implies:
lnv) = )] < £y - £ )| < §
LRS! w2 1 2 5
1 -
whenever lvl - VZ' <{e . Also g, » B uniformly, so there exists n such that
for every n > n, we have If;l(v) - f_l(v)l < ¢e/5, |"n(V) - "(V)l < ¢/5, and

lg;(p,v) - 3'(p,v)| < e'- Hence for all v, (£f(1) < v < £f(q)), for all p,

(£f(1) < p< 1), and for all n » n:
19.(p,v) = 3o, | < €218 (p,w)) = £ (B (p,v))| +
+ 1 v - £ | + £ ) - £ | +

+ Jn_(8.(p,v)) = (8 (0w | + |n(8_(p,v)) - n(g (p,v))]

)
)
CT)
)
WM
1
™

So we have established that J, converges uniformly to J in the supremum

norm. First, consider any v where ¢(v) is single-valued. Then for every n,

_ 1
select p, € gnl(v) and p, € ¢,(v) such that
1
p, = (1 -(S)v+5pn

(This is possible by the definition of B, in (A.1)JD)
\

-] \
n’pn}n=1 and let (p,p ) be the limit. Then:

Choose a convergent
subsequence of {p
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)
p=(1-8)v+sp

Observe that since p, + p and Bh * B uniformly, we have:

v =g, (p,) » B(P)

implying p € B_l(V). Then by the definition of the ¢ correspondence:

]

() = o - (1 - v =2 - &)v+ep - (-6l =p

But p; € argmax J, (p,v) for all n and p; > p'; by the Theorem of the Maximum,
p' € argmax J(p,v) and g7(v) = J(p',v), as desired.

Now consider any v where ¢(v) is multiple-valued. Since ¢ is monotone,
there are only countably many such points; hence, there exists v y v such
that ¢(vn) is single valued for all n. By the above argument,
¢ (v?") € argmax J(p,v™); by the fact that ¢ is u.s.c. and monotone,

lim ¢(v™) = sup ¢(v). By the Theorem of the Maximum,
sup 4¢(v) € argmax J(p,v), as desired; and by a symmetric argument, we also
obtain inf ¢(v) € argmax J(p,v).

This completes the proof of the claim.

We have shown that there exists a weak-Markov equilibrium on [q,l], the
monotone decreasing part of the demand curve. We complete the proof of the
theorem by observing that we can extend this equilibrium to the entire
interval [0,1]. This involves a change in the notation to that of Appendix B,
and so the details are omitted here. (We need to change notation because f is
not longer necessarily strictly decreasing, so more than one q may be

associated with a single v. The "state” is thus no longer uniquely described
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by v.)

We define P(q) to be the left-continuous selection from B_l(f(q)) and
define R (q) = 1,(£(q)), for all q< q< l. The analogue to Lemma A.5 still
holds in the new notation, by an almost identical proof; hence (P,R) can be

extended to the entire interval [0,1], yielding the desired result. 1]
Finally, we obtain:

Corollary 4.3: Under the hypothesis of Theorem 4.2, there exists a weak—

Markov equilibrium in which, along the equilibrium path, the monopolist plays

only pure strategies.

Proof: Let us construct the monopolist's strategy ¢*(p,v) for the case q = 0
so that the demand curve is everywhere monotone decreasing. (A somewhat more
intricate argument demonstrates the corollary when q > 0.)

In the proof of Theorem 4.2, we constructed ($,r) which supports a weak-
Markov equilibrium on [q,1]. ¢*(p,v) will give the actual price (or prices)

to charge if the previous price was p and the current state is v. Suppose we

are in the initial period (i.e., v = f(q)). The monopolist sets:
* - - . . r
¢ (+,£(q)) = sup ¢(£(q)), with probability one.

Suppose we are in any later period, and p was the previous price charged.

Observe, by equation (A.8), that:

(4.10)  p = §[p - (1 - 8)(P)] = 6 sup ¢((p)) + (1 - 8) inf ¢(8(p))

has a solution 8, where 0 ¢ 8 ¢ 1. Define:



- 45 -

% sup ¢(v), with probability 9
6 (o) = |
inf ¢(v), with probability (1 - §)

Observe that this gives optimal behavior for the monopolist, since

sup ¢(v) € argmax J(p,v) and inf ¢(v) € argmax J(p,v). It also gives optimal

behavior for consumers, since (A.10) implies:
|
B(p) — p =¢6[8(p) - p ]

so the consumer with valuation R(p) is indifferent between purchasing this

]
period at price p and next period at expected price p .

Observation: g(p) contains a flat section if and only if ¢(v) is multivalued.

Proof of the Observation: Rewriting (A.8), p(v) = %[s_l(v) - (1 - §)v]. If
${(v) is multivalued, B_l(v) must be multivalued, implying that g{(p) has a flat
section. Conversely, if g(p) has a flat section, 8~ 1(v) is multivalued,
implying that ¢(v) is multivalued.

Now suppose that, at some point in time, randomization is called for,
implying p' = é[p - (1 - 8)8(p)] < sup ¢(B(p)). Then ¢ is multivalued at
v = g(p), implying g is flat at p. Moreover, p < p; = sup B—l(v), or else p'
would equal sup ¢(B8(p)). But then, in the previous period, the monopolist
charged p when she could have charged p; > p such that g(p;) = g(p). Since
along every weak-Markov equilibrium path, there are positive sales in every
period, the monopolist suboptimized in the previous period.

We conclude that, if randomization is called for, we are off the

equilibrium path. {1
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Appendix B

The Uniform Coase Conjecture

Proof of Theorem 5.4: Suppose not. Then there exist real numbers L » 1,

o]

n=1 7,

M (0 <M< 1) and ¢ > 0, a sequence {fn} L,M’

a sequence of positive
numbers {zn}z=l > 0, and a sequence of weak-Markov equilibria {Sn’Pn}:=l such
that S (0) > ¢ for all n > 1. (S, ,P,) denotes a weak-Markov equilibrium
associated with demand curve f, and interval between periods zn.18 Sp gives
the firm's price strategy as a function of q along the equilibrium path (or,
possibly a mixed strategy, depending on q and the previous price, off the
equilibrium path). So S (0) denotes the initial price the monopolist
charges. Meanwhile, P, denotes the consumer's reservation price strategy,
also as a function of gq——consumer q accepts any price less than or equal to
P,(q) and rejects any price greater than P,(q), in the equilibrium (S,,P,).

P, may be assumed to be left—continuous.

Let R, denote the monopolist's value function as a function of q,

associated with (Sn,Pn).19 Observe, by reasoning identical to that of the

proof of Lemma A.6, that:
0 < Ry(qy) - R (qp) € a5 = q3

whenever q; < q2.2 Hence, each R, is Lipschitz-continuous in q with a

Lipschitz constant of l. Therefore, {Rn} is an equicontinuous family.

n=1

Let {Rn }: denote a uniformly convergent subsequence in the supremum norm,

=1
and let R denote the limit.

Now let r),ry,r3,.+. be an enumeration of the rationals in {0,1].

Let {Pn. }§=1 denote a convergent subsequence of {Pn.(rl)}:=1' Continue this
i i

3
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construction of successive convergent subsequences for all n and r and (for

n,
notational simplicity) let {Pn}z—l denote the result of the construction. For

every rational r ¢ [0,1], let P(r) be defined by

P(r) = lim Pn(r)
3-co
and extend the function ; to all reals in [0,1] by imposing left—continuity.
Let y denote inf{r: E(r) < e}- Observe that each P, is left-continuous, so
;(y) > g, but E(r) { g for every r > y. Furthermore, any weak—Markov
equilibrium has sales in every period; hence Sn(O) > ¢ implies Pn(O) > ¢ for
all n., But P, is monotone nonincreasing and (by the Lipschitz constant L

at 1):
PUA-)<f(1-5)<Lll-1-291=¢2

for all n > 1, so we have that 0 < y < 1,

Case I. Suppose R(y) > 0.
Since R, + R uniformly, there exists a rational q (y < q < 1) and an

integer n; such that:

1 - -
Rn(q) > 3 R(y), for all n 3 n,

Since q > y, P(q) < g, so there exists g > O and integer 52 such that:

P (q) <e -a, for all n > n,.
n 2
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We will establish a lower bound on the real time t before which the price can
drop by a, in equilibrium, and hence before which consumer q purchases. In
particular, consumer O prefers to purchase at the initial equilibrium price,

which is at least ¢, than to purchase at a price below ¢ - ¢ at time t, so:

1-¢e»e ™1 - (- a)l

-rt 1 - o
€ < 1l -eg+a

This gives an upper bound on the profits attainable by the monopolist:

q -rt -
(B.1) Rh(O) < foPn(x)dx + e Rn(q), for all n 3 n,

But choose any integer m and let z < l/mz. Then for any consumer reservation

m-1 m-2 1
m  ? m ° °*°"° > m

price function P,, the monopolist may charge prices
respectively, in the first (m — 1) periods. This earns the monopolist within
1/m of all “available surplus,” within a factor e (m=2)z ¢ discounting.

Hence:

(m-2)z 1

R (0) > & {fep. (Oax - 1}

Since z, + 0, there exists ns(m) such that z_ < 1/m? for all n > n3(m), and

SO:

-1/m

(3.2) R (0) > e /™[0 ()dx - 3}, for all n > ny(m).

Since Rn(q) is bounded away from zero for all n > ﬁl, there exists an integer



- 49 -

m such that (B.1) and (B.2) are contradictory for n > max{n;,nj,n3(m)}.

Case II. Suppose i(y) = 0.

By hypothesis, (Sn,Pn) is a subgame perfect equilibrium for all n.
Suppose that, in the initial period, the monopolist chooses to deviate by
charging a price of ¢/2. This defines a subgame. We will show that, for

sufficiently large n, the posited behavior under (S ) in this subgame

n*Fn
cannot be optimal for both the monopolist and consumers.

Observe that any weak-Markov equilibrium has sales in every period; hence
Pn(O) > ¢ for all n. Customer O is optimizing when he purchases at price ¢/2,
so he must believe that the price will not drop rapidly thereafter. In

particular, let t, be the first (real) time in which the price will drop below

¢/4. Since customer O is willing to purchase at price ¢/2:

n

Define t by e It

= (1 - ¢/2)/(1 - ¢/4). Then for all n, t, > t; i.e., a price
less than or equal to ¢/4 is not charged until at least time t.

Recall that y has been defined so that E(y) > €. Therefore, there exists
a sequence of rationals Yo 4 ¥ such that Pn(yn) > ¢/2 for all n. (If y = O,
let y, = 0 for all n.) For arbitrarily chosen z > 0, there exists El such
that z, < z for all n » n;. Since i(y) = 0, R, + R uniformly, and y, + v,

there also exists 52 such that Rn(yn) < 1/4 ge—rt

z for all n 3 ny. Write n
for max{nj,ny}. Meanwhile, let m be the greatest even integer less than

t/z. Let P1se+++spy denote the first m prices charged by the monopolist along
a subgame arising after the monopolist charges an initial price py = e/2. (In

the event that a mixed strategy is called for in period 1, let p; be the

largest price which the monopolist randomizes over.) Observe, by our
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definitions, that pj > ¢/4. Following Gul-Sonnenschein-Wilson [1986], define

a,mel2 -2 e/2-p 1 (0<i<m/2)

\ ] \
and define the sequence PgseeesPp/2 by p; = ap, (for 0 < i ¢ m/2), where:
i

inf{r > ki— + 1: 3 pj € [ar, ar—l]}’ if over a nonempty set

1
k- |

m/2 , otherwise
Observe that, by following pé,-..,p;/z, the monopolist "does not lose time™ on
any sale and loses at most 2(pg — pp)/m on each sale. Furthermore, since
Rn(yn) < 1/4 €e"Ttz and since each sale before time t is at a price greater
than ¢/4, the total number of customers sold to at PlsesesPy is less than z.

Let V, denote the net present value of profits from following the

equilibrium price path py,py,p3,... after a price py = ¢/2 was charged. Let
V; denote the value from following PpseeesPp/2 in the first m/2 periods and
then continuing optimally. Let V; denote the value to the monopolist of
playing optimally, beginning in the period after a price p, is charged.
Observe:

! -rt/2 "

-rt 2
Vn Vn > [e e v - El(p0 - pm)z

We now place a lower bound on V,. Observe that, in the period after p, is

charged, customer 1 — ¢/4L remains in the market since

€ € € = £
PA=-7p) < fA=-79)<Lll-0-3] =7
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by the Lipschitz constant L at l. Meanwhile, customer 1 - ¢/8L prefers to
purchase at a price of [1 — e_rz]fn(l - ¢/8L) this period to purchasing at a

price of zero next period. By our "Lipschitz below at 1" assumption:
- £ (1 -8y =Y ¢
fA-g)>Ml-A-gD]=7.3

Hence, a price of M/L « ¢/8 « (1 — e '2) induces all customers in the interval

[1 = ¢/4L, 1 - ¢/8L] to purchase, so:

2
" _ ~rz; M I
Vpor [l -e 7] 2" 6

Recall that (py - p,) < ¢/4 and m ~ t/z. Hence, for sufficiently small z (and

the implied n):

2
' -rt/2 _ -rt _ —rzy M e _ e 2
Vn Vn > (e e )(1 e ) Lz “ % "3t 2
rz rt/2 rt, M 2 z2
C o - _TTty M e e 2z
> (1 —e"D(e © D3 er T o3t

Observe that (1 - e Y%) is always positive, and the first term in brackets is
positive and independent of z. Meanwhile, lim(zz/(l - e ™)) =0, so for
z>0

sufficiently small choice of z, V; - V, > 0. This contradicts our hypothesis

that, for all n, (S,,P ) is a subgame perfect equilibrium. 0
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Notes

leor a thorough review of this literature, see Rubinstein [1985a].

2For further discussion of the case with a gap between seller and buyer

valuations, see Ausubel and Deneckere [1985] and Section 7.

3See, for example, Rubinstein [1985b], Grossman and Perry [1986], and Cho

and Kreps [1985].

4Subgame perfection eliminates "incredible threats" efficiently in

complete information games.

S0ne can also introduce reputation effects by adding consumer uncertainty
about the monopolist's marginal cost (seller's valuation). See Ausubel and

Deneckere [1986].

Even with a linear demand curve, there exist weak—-Markov equilibria
which require the monopolist to randomize off the equilibrium path. See Gul,

Sonnenschein and Wilson [1986].
7This restriction may affect the equilibrium set, as demonstrated in Gul,
Sonnenschein and Wilson [1986]. Nevertheless, it seems like an eminently

natural regularity requirement.

8A more rigorous argument can be found in the proof of Theorem 6.1.
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9 can be normalized to satisfy (a), unless f(q) = O.

10The definition already assumes 0 < f(0) < w. We normalize so that

£(0) = 1.

llThe definition requires the demand curve to be continuous except,
possibly, at a countable set of points. Our anonymity assumption permits us
to replace the actual demand curve with a left-continuous function f which

agrees with it except on a set of measure zero.

12Reasoning analogous to the previous footnote.

13For a survey of related literature, see the Introduction.

l41dentical reasoning applies to the case where f(q) = (1 - q)0,
considered by Sobel and Takahashi [1983]. Furthermore, this is the only
demand curve that is closed under the joint operation of truncation and

rescaling (see Definition 5.2).

15%e do not mean this literally. The graph may display discontinuities

and certainly contains inflection points.

16The case of the "gap” translates into consumer demand which is

perfectly inelastic at the monopolist's marginal cost.

17This lemma builds on Fudenberg, Levine and Tirole [1985], Lemma 3, and

Gul, Sonnenschein and Wilson [1986], Lemma 5.
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18We adopt this notation, in lieu of the notation of Appendix A, in order

to be able to fully describe equilibrium strategies in cases where f, is not
necessarily monotone decreasing, and so more than one q may be associated with

a single v.

1914 fact, whenever fn is monotone decreasing, 7, is well-defined and so

R (q) = n,(£(q)) for all q € [0,1]. Hence, by Lemma A.6:

i

0< R (a) - R (a) = 7 (£q)) - n_(£(a,)) < £ (£(a)) - £ (£a)) = q, - q
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