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Abstract

This paper examines information revelation in infinitely repeated games of
incomplete information. A characterization of information revelation in zero
sum games is given in terms of regions of the simplex of player type
distributions to which the posterior distributions must converge.

In a one stage game at some prior distribution on player types, information is
said to be valuable if a player can get a higher payoff by using information
than by not using information. Information usage is said to be costly at

a prior distribution on player types if a player can make small gains from
information usage only by revealing a 'large amount' of information, or if
'small amounts' of information revelation weaken a players' strategic position
substantially. These terms are defined precisely in the text. The theme of the
paper is that at prior distributions on player types where information is
valuable and usage not costly in the one stage game such information will

be used and hence revealed in the repeated game.



1. Introduction

In situations where different economic agents have differing information,
their actions will generally reflect their private information. In certain
circumstances, this indirect revelation of information may not be an important
issue. For example, in a one stage incomplete information game the
information revealed by actions is irrelevant. An informed player does not
care whether other players have discovered his private information when the
game is over. In other circumstances, the strategic considerations arising
from the use (and hence revelation) of information becomes substantial. If an
informed individual must take an action before others, he will know that
others will make inferences from the action he takes concerning his private
information. Thus the individual may face a tradeoff: use of information
will raise his payoff directly but since the information released may alter
the actions of others the combined effect may be ambiguous. 1In such
circumstances an informed individual must balance the direct gains from the
use of information with the possible disadvantages associated with others
learning the information. How such considerations affect the revelation of
information is the subject of this paper.

This paper focuses on this issue in the context of a repeated incomplete
information game with discounting of the payoff stream. Repeated games of
incomplete information have received substantial attention with limit of means
(essentially averaging) as the payoff criterion (see, for example, Aumann and
Maschler (1967), Hart (1985), Kohlberg (1975a, 1975b), Mertens (1972), Mertens
and Zamir (1971-1972), Zamir (1973)). It might at first appear that any model
with repetition, whatever the payoff criterion, would "capture” the strategic

considerations described above. This is true to the extent that any criterion



giving weight to future payoffs affects initial strategies and their
informational content. However, using limit of means as the payoff criterion
only partly addresses the issue. It certainly overcomes the criticism made of
one stage games——of neglect of the future. However, with limit of means,
since it makes one stage payoffs irrelevant to the overall payoff, it places
the emphasis entirely on the strategic aspects of information use (see
Kohlberg (1975b)). Any gain from the use of information which cannot be
sustained indefinitely is irrelevant.

Two important aspects in the use of information were identified above——
the need to achieve a good payoff in the present and the importance of not
placing oneself in a detrimental position in later periods by revealing one's
information at the outset. Speaking loosely, the one stage model places
entire emphasis on the former and limit of means entire emphasis on the
latter. Discounting, by placing less weight on the distant future, deals with
both of these issues simultaneously. Thus one might expect that the limiting
informational properties obtained with discounting would be different from
those of limit of means. This is in fact the case.

In Section 2 the mathematical basis for the discussion is given.

Sections 3 and 4 give the main results. In Section 5 a discontinuity in the

release of information, when the discount factor tends to 1, is examined.

2. The Structure of Information Revelation

In this section the basic structure in which information revelation
occurs is outlined. A matrix pair is selected from the set

. . . : k r

according to the distribution (p q )

{(Akr,Bkr) Player I is

keK,reR} keK,reR’
informed of the choice k € K and player II is informed of the choice r € R.

The "A" matrices represent payoffs to I and the "B" matrices represent payoffs

to II. In zero sum games BKT = —AKT £or 211 k and r. The game is played



repeatedly, with each player observing the history of the play as it

evolves. Given that the pair (k,r).is chosen by the distribution

r

)

k . . .. .. .
(r ,q keK,reK and given a history h = (11,31,...1t,3t,...), player I receives

am) = (-5 T el el

t=1 Tl
and player II receives
k e .t-1 k
bT(h) = (1 -6) [ &, by
t=1 tJt
where
kr kr kr kr
A7 = {aihiet,5e0 @4 B = {Pii}icr, s

Given the distribution (pk’qr)keK,reR and strategies for each player a
distribution y is determined over player types (i.e., K x R) and
histories h. The expectation determined by y is written E, the expected
payoffs to the players are respectively E(akr) and E(bKT). Strategies in the
game are given by sequences of functions:

For player I,

yose)

g = (xl,xz,x3,...,xt

: H K
XA x R4y

(Without confusion, K will sometimes denote an integer and sometimes the set

K ={1,...,K}.)



And for player 1I,

T = (YI,YZ,---,Yt,---)

y:Hth+A

o
where Ht = (I x J)t_l, H = 1 (I xJ) and R = {1,...R}. Ai,A; are simplexes

t=1
of dimension I — 1 and J - 1, respectively.
P = (pl,...,pK) is the prior distribution over the set of player types of
player I, and q = (ql,...,qR) is the prior distribution over the set of player

types of player 1I.

On H_  define a sequence of (finite) fields 7. generated by Hi. Let

o]

= V 3. Finally, define on H, x K x R the sigma field 7, ® ok x R,

t=1
A pair of strategies (o,t) and prior distributions (p,q) over K x R
determine a probability measure Up.q,5,1 OO H, x K x R. Thus for fixed
b b b
(p,q,0,t) one has a probability space,
R

Kx
H K R, F ®2
( © x x ? T ® ’ up,q,o,r)

. . . . h A
The expectation operator determined by Mpqor 18 written E or qucr when it is
necessary to make explicit the player type distributions and strategies
- * % , q s tas .
determining E. Let (¢ ,t ) be a pair of equilibrium strategies. These
*
determine a me r = .
e asure y Mp,q,0%,T*

The interest is in the behavior of the sequence of posterior

. . %
distributions on (H, x K x R, %, ® 2R ®),

From now on all statements refer to this probability space.

* . . . .
For fixed y~ one may compute the sequence of posterior distributions on



K x R that evolve as the history develops. The random variables (p%,qg) are

defined as:
k * T *
P, = U k|70, q = u (r|3t)

a particular realization h € H, yields (p%(h))keK and,1

* K r 1ok
H (ht) = sz P q SI_—I]_ Xis(ll ’Jl’...’IS"].’JS—].)yjs(ll’Jl’...’15‘1’38—1)
reR

where h, = (il,jl,...,it_l,jt_l).

It is easy to check that p% and qg are martingales:

k k-

r
t = E(Pt+ |yt)’ q

P t

r
B E(qt;+1|;’rt)

From the martingale convergence theorem, since p% e [0,1] and qf € [0,1],

k k r r *
P, > P, and 9, * 4, a.8.n ¥ k,r.
k R . k
and E(pm|3;) = lim E(pi'!t) = lim P, = pz
troo tro
k . r . r r
E(qmlJ;) = lim E(qtlyt) = lim 9, = 4,
T+o tro

Our interest lies in {p ,q }, what can be said about it?
Lo - B - - ]

3. Zero Sum Games with One Sided Incomplete Information

In one sided incomplete information games either K or R equals one. Take

R =1, so that the informed player is the maximizer. Let



u(p) = max min X():pkAk)Y
X y

v(p) = max min ZpkxkAky, X = (xl,...,xK)
X

vw(p) = max {min (1 - G)ZPkaAky + § z;ivw(p(x,e))}
X y

where ;i = Epkxg and P(f’i) is the posterior distribution determined by X and
the outcome i.

Thus, u(p) is the value of the one stage game in which the informed
player is not allowed to use his private information? and v(p) the value of
the one stage game where he is allowed to use his information. If
v(p) > u(p), then the informed player can benefit by use of private
information (i.e., using type dependent strategies) in the one stage game. If
v(p) = u(p) then the informed player can guaranteee v(p) in the one stage game
by a type independent strategy.

The value of the infinitely repeated game is v_(p). In general, it is
very difficult to solve for the function v, (see, for example, Mayberry
(1967)), whereas v and u are relatively easy to compute. It is therefore
desirable to provide a characterization of information revelation in terms of
the functions u and v. That is the approach adopted here. Let
A= {plv(p) = u(p)}. Intuitively, A is the set of prior distributions over
player types for which the private information (knowledge of his player type)
is not valuable to the informed player. 1In the repeated game with prior p, if
v(p) > u(p) then the informed player has an incentive to use type dependent
strategy in the first period (to raise his immediate payoff). However, there

is a cost associated with such a strategy: a first period type dependent

strategy which raises the informed players' expected payoff above u(p)



involves the revelation of information and this in turn weakens the informed
players' strategic position in the following periods. Clearly, the magnitude
of immediate gain from information usage relative to the cost from (possibly)
lower expected payoffs in future periods will be critical in determining the
extent to which information is used by the informed player. To formalize

these comments, define the set B as follows:

B=]|pe Akl(i) u is differentiable3 at p
and

(ii) v(p) > u(p) and 3 X" e (AI)K, " s x
where x is a type independent strategy such that
. k k k +
(a) minzpx Ay -u(p) >0 ax™ - xi)
y

(d)  oGuix" - x1) = 0Cup" - D)

where p = (p,...,p) and p" = {pn(xn,i)}
0

ieI}'

(Here 0(x) means

iX)I <m<{w, i.e., a term of order x and O+(x) means a
strictly positive term of order x.)

Intuitively (in the definition of B), condition (i) means that, at p,
small variations in the player type distribution lead to small order
variations in the expected payoff that can be sustained by a type independent
strategy. Condition (ii) means that, if the expected payoff can be raised
above that achievable by a type independent strategy, then the expected payoff

can be raised a small amount with a small amount of information revelation.

(If there exists an optimal type independent strategy X guaranteeing the



informed player u(p) at p and satisfying x; > O ¥ i € I, then condition (ii)
is satisfied). Information usage will be said to be costly at p if p ¢ B.
Information will be said to be valuable at p if p e A® = {plv(p) > u(p)}.
Finally, let C = {p|v,(p) = u(p)}.

It will be shown (in Proposition 2) that C c A u B®. However, the set C
is, in general, virtually impossible to compute due to the difficulty in
computing v (p). The only circumstance (in general) in which the set C can
partially be identified is when on some convex region of the simplex of player
type distributions the function u is not concave. For such a region, since v
is a concave function, it must be true that v_(p) > u(p) on that region. Fof
these reasons Theorem 1 is stated in terms of the sets A, B and C. Theorenm 1
asserts that information will be used (and hence revealed) to the point where

it is no longer valuable or further use is costly.

Theorem 1: P_ € [AuU B¢] n cC.

The theorem will be proved in two propositions.

Proposition 1: P_ € C.
Proof: The proof is given in the following lemmas.

Lemma 1: Let (g,7) € ES(p), where ES is the equilibrium correspondence from

type distributions to players' strategies. Then

v.() > up) =>E_ (|p, - p|) > 0.

P

(Here lpl = ilpkl and note that py is a function of (p,0,1).)

Proof: Suppose that v (p) > u(p) and Epo (|p2 - p’) = 0., Let
— o T

0 = (X1,X),000,Xp,000) and T = (¥],¥9,000,Fgs000)e



k k

This gives g;li'pz(xl,i) - p| = 0 where ;li = Ip X .. If x;4 = 0, then
i
k k k_k k- -
IP X = 0, sop Xy =P X5 ¥ k. If x;5 > 0, then

k

glilpg(xl’i) - pk| = pklei - ;lil’ V k. Thus, EPOT(|P2 - pl) = 0 implies

kaﬁi = Pkgli’ ¥ i,k. Since (0,7) € ES(p) and v_(p) satisfies

. k k. k - . 1 K
v_(p) = max {min(1 - §)zp x Ay + 6invw(p2(§,1))}, X = (X ,e00,X )
X y
Thus
. k k. k - .
vm(p) = min (1 §)Tp xlA y + leivm(PZ(xl’l))'
y
Since pkxllci = pkgli ¥ i,k, ZpkxTAky = zpkEIAky, ¥ y. Therefore

k k. k k-~
min ¥ p xlA y = min Ip xlAky < u(p)
y k y

If %x;; > 0, then py(x;,i) = p so that v (p) < (1 - §)u(p) + §v,(p) or

v,(p) < u(p). This gives a contradiction.

Lemma 2: Let m(p) = inf{EpoT(|p2 - pl)l(c,r) € ES(p)}. Then, if
v.(p) > u(p), there is a closed neighborhood N(p) of p with nonempty interior

satisfying inf{m(p')lp' € N(p)} = m> 0.

Proof: Since v, and u are continuous functions, if vm(p) > u(p) then
there is a closed neighborhood of p denoted N(p), with nonempty
\ \i \
interior and v_(p ) > u(p ), ¥ p € N(p). Observe that Epor(’pZ - p') is a
continuous function of g. (If o = (X7,X9,e00,X¢,000)

.= k . k k iy s . .
then Ech (lp2 - pI) = ? X4 ilp (Xl,l) -p I and p (xl,l) is continuous in x;
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on the region where x,; > 0). Since ES is a closed value correspondence, m(p)
-— 1] ]
is a lower semicontinuous function. Let m = inf{m(p )Ip € N(p)}. Since m is

lower semicontinuous it attains its infimum--there exists p e N(p) and

m(p*) =m. If m = 0, then there exists (0*,T*) € ES(p*) and
Ep*o*T*(lpZ - P*l) = 0. Since vm(P*) > u(p*), this contradicts Lemma 1.
Hence, m > O.

For the following discussion, note that the set of histories,

H o= x (I x J) may be written
tz1

t t-1
Hm=HtxH=(IxJ) x ( x (I x J))
s>t
Thus, h ¢ H, may be written h = (ht,ht) with h, € H, ht ¢ #t and cylinders

determined by finite histories written as {h.} x ut H_.

Lemma 3: Let y be a measure on H_ . There exists a set H(w) « H, such that

u(H(»)) = 1 and for any h € H(») (h = (h¢,h®)), u({h.} x HY) > 0 for all t.

Proof: Let H(t) = {(ht,ht) € H&lu({ht} x Ht) > 0}. Clearly p(H(t)) = L.

Note that H(t + 1) ¢ H(t). Define H(w) = n H(t). Since the measure y is
t>1

p(H(=)) = 1.

continuous from above, lim pu(H(t))
troo
Pick any t and suppose that h

(hy,h') € H(»). Since H(») < H(t),
h e H(t) so u({h} x HY) > 0.

The next lemma completes the proof of Proposition 1.

Lemma 4: Given a prior distribution p over player types, let (og,t) € ES(p)

and y = the measure determined on H_, x K by (p,o,7). Then there is a set

Upot
H*, B ¢ H_, with y(8") = 1 and p_(h) € C¥ he H".



..]_1_

Proof: The posterior p, converges to p, a.s. u. Let Hc H_, u(#) =1, and

¥ he H, pe(h) » p(h). Let H(w) be defined from y as in Lemma 3. Set

H* = H(o) n H and observe that u(H*) = 1.

*
Suppose that for some he H , v_(p,(h)) > u(p,(h)). Then there is a

compact neighborhood of p,(h), N(p,(h)), with nonempty interior and

Vo(p) > u(p), ¥ p € N(po(h))

Using Lemma 2, this implies that for all p € N(p_(h)) there exists m > O such

that

Epcr(lpz - pl) >m >0, ¥ (0,71) € ES(p)

Since p.(h) » P, (h)

* *
Pt(h) € N(p_(h)), t > t , for some t

Pick t > t*, let h = (ht,ht) and observe that since nu({h} x Ht) > 0, the
equilibrium strategy pair which determines y, induces equilibrium strategies
on the subform reached by h.. Thus the induced strategies are equilibrium

strategies of a game with prior pt(h) so that by Lemma 2

E(|ppyy — Pel |.yt)(h) >m > 0.
However, since t is arbitrary this contradicts the fact that

E(‘pt+1 - pt' l?t)(h) + 0
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Consequently, ¥ h ¢ H*, v (po(h)) = u(p,(h)). Thus, p, € C a.s.

Proposition 2: p_ € Ay B¢ a.s.

Proof: Consider the game with prior distribution p and suppose that

pd Au B®., Then pd A and p € B. Therefore, v(p) > u(p) and since p € B,
there is a type dependent strategy x" in the one stage game guaranteeing a
slightly higher payoff that u(p) to the informed player, without incurring
large cost due to information revelation.

For the infinitely repeated game, consider the following strategy for the
informed player. 1In the first period play a type dependent strategy x
guaranteeing u(p) + O+(u; - E“) where X is a type independent strategy
guaranteeing u(p) in the one stage game with prior distribution p. Since
p € B, X can be chosen so that 0(Ix - E“) = 0()1p - plI), where p is the
posterior under x. In the second and successive periods play an optimal type
independent strategy in the game with posterior 5. Thus, if i occurs
following the first period play, the informed player plays a type independent
strategy guaranteeing u(i(i,i)) in the following periods.

This strategy guarantees an expected payoff of at least
+, o~ ~ e~
(1 = 8)ulp) + 0 Gix - x1)] + 8 I x;u(p(x,1))
i
Since p ¢ B, u is differentiable at p so that for ﬁ(ﬁ,i) close to p,

u(p(x,1)) = ulp) + vu(p)(p(X,1) - p) + o(Np(X,1i) - pit)

Thus



_.13_

E{u(p(x,1))} = u(p) + oCup(x,1i) - pi)

since E(B(;,i) - p) = 0. (Here o(x) means o(x)/x + o, X » 0.) Therefore,

this strategy guarantees
+, o~ ~
u(p) + (1 - 8)0 (ux - =) + soCp - pi)

Since X can be chosen so that

o(ip - pf)

+ o~
0 (1x xI)
is arbitrarily small, there is a first period strategy x* close to x such that

olip = pi) 4
(1 -8)+68 7 10 (x -x1) >0
0 (1x - x1)

Therefore, if pd A v BS, then the informed player has a strategy which
guarantees strictly more than u(p). Therefore, v_(p) > u(p) so that p ¢ C.
Thus, C < A u BS.

From Proposition 1, p, € C a.s. and therefore p, € A u BE a.s.

Example 1: In this example, the informed player is one of two possible
types. The game is described by a pair of matrices A1 and A2 and a prior

distribution p. Let

For this game
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v(p) = min(p, 1 - p)

u(p) = p(1 - p)
(see Figure 1).
Thus, A = {0,1} and it is easy to check that B = (0,1). Thus,
Au B® = {O,l} so that p, € {O,l} a.s., The discussion in Proposition 2 may be
illustrated with this example, as follows.
To guarantee u(p), the optimal type independent strategy of the informed

player is

Taking p € (0,1) and ¢ > O such that p + ¢ € (0,1), consider the following
strategy for the informed player. 1In period 1, play type dependent strategies

xl, x2 where

Afterwards, play optimally subject to not using information any further. It
may be shown that this strategy guarantees a payoff in the infinitely repeated

game of

(2p - )2 - 1

a(p,0)8(p,0) Jcle

p(l = p) + [(1 - &8)p - &¢(

where

a(p,e) = pt + e(2p - 1)
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B(p,e) = p —e(2p - 1)

For ¢ sufficiently small, this is strictly greater than u(p) = p(l - p). This
argument holds for all p in (0,1) so that v_(p) > u(p), p € (0,1) and so

C = {0,1}. In example 1, each player type of the informed player had a
different weakly dominating strategy in the one stage game. In any
equilibrium of the repeated game, the informed player uses this information
and hence reveals it. 1In the next example, neither player type of the
informed player has a weakly dominating strategy; however, the same

information revelation occurs.

Example 2: In this example player 1 is again one of two possible types:

It may be checked that

vip) = (p, 1 - p)

u(p)

p(1l - p)

Thus the one period value functions are exactly as before. Here A = {0,1} and
it may be shown that B = (0,1), so again p, € {0,1} a.s. Full information

revelation does not necessarily occur, as Example 3 illustrates.



=

v(p)

u(p)
Figure 1
v(p)
1
1
2/3 »
1/2 u(p)
1/3 1/2

Figure 2
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Example 3:
2 0 0 1
Al =1 1, A% = ]
2 1 0 0
For this game
v(p) = min(2p, 1)

u(p) = 2p, p < 1/3

1 -p, 1/3< pxg 1/2

p, P> 1/2.

In this example, p_ e [0, 1/3] u {1} a.s. (see Figure 2).

4. Zero Sum Games with Two—Sided Incomplete Information

Characterizing the information revealed in games with incomplete
information on both sides requires a different approach to that adopted in
Theorem 1. The reasons for this are made clear in the following discussion.
However, the intuition given in Theorem 1 is still appropriate.

In equilibrium, the amount of information revealed depends upon the
strategies of both players regardless of whether the game has one or two sided
incomplete information. However, in the two sided information case small
variations in a player's strategy (giving small variations in the posterior
over the players' types) may cause a large change in the information released
by the other player, since the other player's actions depend upon the history
as it evolves. In zero sum games, the posteriors serve as state variables and
in one sided information games the informed player can control the state. In
two sided information games neither player can control the state. Along an

equilibrium path (any history that occurs with positive probability) the
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posteriors will converge, but out—-of-equilibrium moves by either player may
cause substantial variation in the posteriors over both players' types.
However, this out—of-equilibrium information usage is not essential to each
player's ability to guarantee the value of the game. There is a slightly
perturbed game with a value arbitrarily close to the value of the game in
question, but where the behavior of the posteriors on unreached histories is

not an issue. This perturbed game is defined as follows. Let:

1

P4
I

{(x ,...,xK)Ixk € Ap, xi > e, ¥ice I}

<
n

1 R .
{37 ,eeesy )Iyr € 4y, y§ > e, ¥3jelJ}

Xe, Y€ are taken to be the one period strategy sets. Except for this change,
the game is exactly as before.

Define value functions v®(p,q), u®(p,q) and v&€(p,q) as follows:

krkkrr

ve(p,q) =max min JpqxA vy, xe€X,ye¥.

x v € £

k r kr
us(p,q) = max min x(Xp q A )y, X; 2 e, Y5 2 ¢
]
X y
and
krkkrr - -

Vz(p,q) = max min {(1 - 8)fpqx Ay + 5zxiiji(p2(i), qz(j)),

x ¥

where x; = zpkx

k

£ vy = zqryE and py(i), q5(j) are the posteriors under X,Y,

given the outcome (i,j). Denote the corresponding value functions for the

unrestricted games (where ¢ = 0) by v(p,q), u(p,q) and v_(p,q),
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respectively. It may be shown that

sup|v(p,a) - v(p,q)| ——=> 0
e+0
€
sup|u®(p,q) - u(p,q)| —=> 0
e+0
€
sup|ve(p,@) = v_(p,a)| —> 0
, e+0

Therefore, these g-restricted games may be viewed as close approximations to
the unrestricted games, for ¢ small. In particular, given n > 0, for ¢
sufficiently small, equilibrium strategy pairs of the perturbed games are
n—equilibrium strategies of the unperturbed games.

Proceeding, let A = {(p,q)(ve(p,q) = ue(p,q)},

3

B = {(p,q)lve(p,q) # u®(p,q) and uf is differentiable® on an open neighborhood

of (p,q)} and let C = {(P,Q)Ive(p,q) = ue(p’q)}. With this notation the

theorem may be stated.
Theorem 2: (p,,q,) € [A v B¢] n C a.s.
Proof: The proof will be given in two propositions.

Proposition 3: (p,,q,) € C a.s.

The proof of the proposition is given in three lemmas.

Lemma 5: Let ES be the equilibrium correspondence from player type

distributions to equilibrium strategies. Then v&(p,q) # u®(p,q) implies that,
o0

if (O',T) € ES(P,Q), quo'-r(lpz - P| + |q2 - ql) > 0.

Proof: Suppose that vi(p,q) # u”(p,q) and 3 (o,7) € ES(p,q) and

quor(lpZ - pl + |q2 - ql) = 0. Let 0 = (X],Xp,00eXp,004),
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T = (yl,yz,...,yt,...). Note that vE(p,q) satisfies

Ve(p,q) = max min {(1 - G)Zp q x kAk yr + §IX. y v (p2(1) qz(J))}
X ¥

where pz(i) (qz(j)) is the posterior under x(y) given i (j). Observe that

EPqUT(lpZ - pl + qu - ql) =0 implies that ¥ i,j, pz(i) = p, qz(j) = q.

Therefore, vi(pz(i), qz(j)) = vi(p,q), ¥ i,j. Note that if in (o,7), (x1,y])
are replaced by a different pair of type independent first period strategies
(;1,91), the expected payoff from the remainder of the game, given history
(1,3), is still vE(p,(1), qp(i))- |

Take vi(p,q) > u®(p,q). Since p X11 = kx

k r kkrr k r— kr r 1 R
I PAxAy = I paxA Yy, ¥y=(y,.0,5)
k,r k,r
Thus,
k r- kr r - - P . .
vo(p,@) = (1= &)Ipq x A y; + 683 x,5,; v (p(1), a(3))
with

r— .
b q yij =1I q Yij, ¥ Je

Let y solve min (zp q XTA r)y min ZpquglAkry < u¥(p,q). Given ¢, if

y y .

T = (yl’,...,yt,...) is replaced by T* = (y ,yz,...,yt,...), then the expected
payoff, conditional on history (i,j), in the remainder of the game is
ve(pz(i),qz(j)) = vE(p,q) and the expected payoff in the first period is

k r Akr

* *
Ip q ¥ ATy < u®(p,q). Thus the strategy pair (g,t ) give an expected payoff
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no greater than (1 - §)u®(p,q) + §vE(p,q). By assumption, v®(p,q) > u®(p,q)
so that (1 - §)u®(p,q) + §vE€(p,q) < vE(p,q). This contradicts the fact that

(0,7) € ES(p,q). Taking vE(p,q) < uf(p,q) yields a similar contradiction.

Lemma 6: Let m(p,q) = inf{(quor(IPZ - p| + |q2 - ql)l(o,r) € ES(p,q)}. If
vE(p,q) # u®(p,q) then there is a closed neighborhood of (p,q), N(p,q) with

nonempty interior satisfying inf{m(p,q)'(p,q) € N(p,q)} = m > O.
Proof: The proof is similar to the proof of Lemma 2 and is therefore omitted.

Lemma 7: Given prior distributions p and q over player types, let

(0,1) € ES(p,q) and y = Hpqgr De the measure determined on H_ x K x R by
* *

(p,q,0,7). Then there is a set H < H_ with y(H ) = 1 and

(p,(h),q (h)) e C¥ he H.

Proof: The proof is similar to the proof of Lemma 4 and is therefore omitted.

This completes the proof of Proposition 3.

Proposition 4: p_ e [Au B®] a.s.

The proposition is proved in the following lemmas.
Lemma 8: If (p,q) € B, then* for all (6,1) € ES(p,q),

[+ ]

EPQor{tzl (1/2)%(|p, - p| + |a, -~ a])} >0

Proof: Let (p,q) € B. Take v€(p,q) > uf(p,q) and suppose that there exists

(o,1) € ES(p,q) such that

quor{tZ1 /2)%py - »| + |a, - a2} =0
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Thus E(Iqt - ql) O ¥ t and since h, has positive probability for each
he € Hy, qe(h) = q ¥ h. Therefore, with h = (hg,h%),
qr(h)yr (h ) = qr(h)§ (h. ) where ; (h) =% qr(h)yr (h ). (As before,
t ti t t ti t ti t ti t
t t t r t
0 = (X],X9,000,X¢,000) and T = (yl,yz,...,yt,---)-)
Next let il be any first period strategy and E(i) the posterior
distribution under ;l if 1 occurs. Let x(i) be an optimal type independent

strategy in the one stage game where neither player may use his information

and the player type distributions are (p(i), g). Thus
Nk_ . k— ~ .
£ P (1)q"x(i)A ryt(ht) > v (p(1), q).

Therefore, given ¢, if the maximizing player plays il in the first period and

th

x(1i) in the second to n periods if i occurs, this strategy yields the payoff

-1

kk_ ~n ~, .,

lA-ryl +8 (1 -¢8)zxl} s5ut(3(1), @] + ann(p,q,c,r)
i t=0

(1 - 8)zp<q"*

when f, is the expected payoff from period n + 1 on. Letting n + « gives

(1 - $)rpq ATy + 5 1 iiu€<5<i), 9)
i
Next, in the one stage game with prior distribution (p,q), let x* be an
. optimal strategy guaranteeing v®(p,q) when players are allowed to use their
information and x' an optimal type independent strategy guaranteeing u€(p,q)
when players are not allowed to use their information. Let
Xy = Ax* + (1 - A)X' = {Xk}kEK = {Ax*k + (1 - A)x'}keK and

observe that
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k r k kr- . k r k kr
Ir q XAA Y, > min Ip q XAA y
y
k r *k kr kr'kr
> xminipqx A y+ (1 -A)mingpgxAy
y y
€ € € € €
> aw (p,@) + (1 = Nu (p,q) = u (p,q) + Alv (p,q) ~ u (p,]
' * '
Note that Ix, — X1 =X - x 1. It may be checked that up(xx) - pl = 0(\).

Thus, in the repeated game, given t, if the maximizer players x, in the first
period and an optimal type independent strategy thereafter, he achieves a
payoff of
k r k kr- =
(1 -38)pq XAy, +81Ix
i

xiue(px(i)’ Q)

> (1 - §)[u (p,a) + A (p,a) = v¥(p,a))] + 6 1 x

S (p, (3), @)
1

A

(px(i) is the posterior under x,, given i.) Since (p,q) € B
€
W, (1), @) = o5 (p,q) + BBy (1) - p) + olap, (1) - pD).
Thus the payoff achieved by the maximizer is no less than

(1 - () + 2G5 (p,0) = v¥(p,a))] + s[u®(p,a) + olip, = p1)]

o(p, = pi)

= v¥(p,q) + [(1 - §)(+v(p,q) ~ vS(p,q)) + §(—2A———

X )1

(Since E(py - p) = 0.) Since O(HPA - pI) = o(x), this expression is strictly

greater than uf(p,q) for ) sufficiently small.
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This contradicts the assumption that (o,t) € ES(p,q). (A similar
contraction is obtained when it is assumed that v&€(p,q) < u®(p,q) and

(p,q) € B). Thus, (p,q) € B implies that

oo

EPQUT{ E

(1/2)t(|pt - p| + Iqt -qh} >0
t=1 |

Lemma 9: Let
g(p,q) = inf{quOT[tZ1 (1/2)t(|pt - p| + |qt - q) | (o,7) € ESCp,)}-

Then if (p,q) € B there is a closed neighborhood N(p,q) of (p,q), with

nonempty interior such that

inf{g(p,a) |(p,q) € N(p,q)} » g> 0.

Proof: Note that if (p,q) € B, there is an open neighborhood of (p,q) in B.
Let N(p,q) be a closed subset of such a neighborhood, having nonempty

. i , s t . .

interior. Since quor{ 2 (1/2) (|pt - pl + lqt - ql)} is a continuous
function of (g,7) and ES(p,q) is a upper hemicontinuous correspondence, an
argument similar to that in Lemma 2 gives the result.

Let quor = E and observe that

E{[p, - p|} = E{|ECp,, - P |7, ][} < E{El|p,, - ol|7,1} = E{[p,, - 2]

where the inequality follows from Jensen's inequality. Thus, for the

neighborhood N(p,q) given above
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Eoocl 1P =Pl * o, - al} >8>0
Lemma 10: Given a pair of prior distributions (p,q), let (o,7) € ES(p,q) and
M= Upqgr the measure determined by (p,q,0,t) on H, x K x R. Then there is a

set H' < H, with u(H*) =1 and (p,(h),q,(h) € B ¥ h e m.

Proof: Define a set H(w) exactly as in Lemma 3. Let (pt,qt) converge
pointwise on H and let H* = H(») n H. Suppose that for some h ¢ H*,
(p,(h),q,(h)) € B. Then for t > t*, (pe(h),q¢(h)) € N(p,(h),q,(h)), where
N(py(h),q.(h)) is chosen as in Lemma 9. Writing h = (ht,ht), for any t,
u({ht} x HY) > 0, so that the equilibrium strategy pair induces an equilibrium
on the subform reached by h.. Thus the induced strategies are equilibrium

strategies of a game with prior distributions (pt(h),qt(h)). By Lemma 9,
oy - nl + lag - 0] |7 > 750

However, this contradicts the fact that the term on the left converges to
zero. Consequently, (p,(h),q,(h)) e B® a.s.

Combining Propositions 3 and 4 proves Theorem 2.

Example 4: The following example was originally given by Mertens and Zamir
(1971-1972) as an example of a game without a value, when the payoff criterion
is the limit of the means criterion. Here each player has two types and thus

there are four payoff matrices:
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o o0 0 0 1 -1 1 -1
11 12
AT = 1, AT = ]
-1 1 1 -1 o 0 0 0
-1 1 -1 1 o 0 0 0
21 22
AT = | 1, AT = [ ]
o o0 0 0 1 -1 -1 1

With ¢ set to zero in the definitions given at the beginning of this section,
the functions u®(p,q) and v°(p,q) are given in Figures 3 and 4. Some

calculation yields that

W (p,q) = (1 - 4e)u’(p,q)

a - 4s)v°(p,q)

v*(p,q)

The sets given in the statement of Theorem 2 will now be calculated
(approximately).

Observe that A = {(p,q)lp e {0, 1/2, 1}, q € [0,1]}. On the interior of
each of the triangles given in Figure 3, v&€(p,q) # u®(p,q) and uf is
differentiable; consequently B is the interior of the set of eight triangles
given in the box in Figure 3. Next, since v&(p,q) is concave in p for fixed q

and vz(0,0) = vz(l,o) = vi(O,l)

vi(l,l) =0, Vi(p,l) > 0, vi(p,l) >0,

pe [0,1]. Therefore:
€ €
v_(p,0) > u(p,0), p e (0,1)

Vz(P,]-) > ue(P,l), P € (0!1)
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Thus, C n {(p,q)lp € (0,1), q € {0,1}} = {d}.

Next, for any (p,q) € (0,1)2 consider the following strategy for the
minimizer, 1In the first period play a strategy guaranteeing
ve(p,q) = =(1 - 4¢) min (q, 1 - q), thereafter play the type independent
strategy (1/4, 1/4, 1/4, 1/4) following every history. This guarantees
(1 - 8)v&(p,q) < 0. Thus vE€(p,q) < 0, ¥ (p,q) € (0,1)2. Consequently, on the
two diagonal lines p = q and p =1 - q with q € (0,1), v&(p,q) < u®(p,q).
Hence {(p,q)|q € (0,1), p=qorp=1-gq} nC= {8}.

Observe next that at p = 0, the type independent strategy
(es €, 1 = 3¢, ¢) in the first period and following any history, is an optimal
strategy for the minimizer in the infinitely repeated game and guarantees
~(1 - 4¢) Min(q, 1 -~ q). At p =1, the strategy (¢, ¢, €, 1 ~ 3¢g) also
guarantees -(1 - 4¢) Min(q, 1 - q) and is an optimal strategy for the first
and successive periods, regardless of the history. Thus,

vz(O,q) = vz(l,q) = —(1 - 4¢) min (q, 1 -~ q). Since v€ is concave in p
Vi(l/z, qQ) » =(1 = 4¢) min (q, 1 = q)

Consider any point in {(p,q)lp =1/2, q e [0, 1/4]}

ut(1/2, q@) = -(1 - 4¢)(1/2 - q). If q < 1/4,
vE(1/2, @) > ~(1 - 4¢) 1/4 and v®(1/2, @) < =(1 = 4¢) 1/4.
Similarly, if q > 3/4

vE(1/2, @) > ~(1 = 4¢) 1/4 and uS(1/2, q) < =(1 - 4¢) 1/4.
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0 3 1 0 3 1
1] % q >
p—q P-q
q-p q'=p
1
2 -q -(1-q)
q-p' q'-p’
p'—q p'-q’

1 1

N y

P Figure 3 : u(p,q)  [p'=1-p] P Figure 4 : v°(p,q)

[q'=1-q]
0 3 1 0 3 L
3 $q . 2 >
d
.é c
b

. .

v

P Figure 5 Figure 6

0 + a 3 c 7 1 q
/
£
u (3,9)

=
Yo

[N

Figure 7
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Therefore, C n {(p,q)'p =1/2, qe [0, 1/4) v (3/4, 1]} = {@#}. Thus, Figure 5
gives the set of lines which contain [A u B®] n C. The elimination of points
can be taken slightly further. A cross section of the functions v&(p,q) and
u®(p,q) is given in Figure 7 for p = 1/2. These functions are equal at
exactly two values of q, q € [1/2, 3/4], using the convexity of v&(1/2, q) in
q. Thus the set of limit points is contained in a set such as that depicted

in Figure 6, where the points a, b, ¢ and d are unknown.

5. A Discontinuity in the Release of Information, for Varying Discount Rates

As the discount factor is increased towards 1, so that the payoffs in
each period are equally weighted, there may be a discontinuity in the
information revealed. Here the nature of the discontinuity is examined in
more detail.

Denote by vg(p) the value of the infinitely repeated game with discount
factor §, denote by u(p) the value of the one stage game when no information
usage is allowed and by Cav u(p) the smallest concave function greater than or

equal to u(p) for all p. Recall that vg(p) satisfies the recursion
. k k k -
vi(p) = Max Min {(l -8)Ipx Ay + 8§32 xivi(p(i))}
X vy i

The following proposition places bounds on the function Vg(p).

Proposition:

2 2
Cav u(p) < vg(p) < Cav u(p) + C[Sl—:—élii—]l/z b (pk(l - p)k))l/z
k

(1-35

C = max a?.
ijk
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The first inequality follows from the fact that a nonrevealing strategy of
player I guarantees u(p) and from the fact that vg(p) is concave. The second

inequality follows by rearranging the payoffs in each period as follows

k kk k, k - k k- k
T ptxtA Y, = I pt(xt - xt)A Ve + 3 ptxtA A

now,
k, k - k k k
T pt(xt - xt)A Y, € C E{'pt+1 - pt’ |ht}
k k
and
k- k
L p XAy, < u(pt) < Cav u(pt)
so that

-]

vi(p) < (1 -8E{ ] st(Cav u(pt) +C¢s E{lpt+1 - ptl 'ht})}'
t=1 k

Finally, E (Cav u(pg)) < Cav u(E(py)) = Cav u(p), ¥ t and

/ /

52/(1 - 52) TV
k

T .t i K
E{C ] & Ipt+1 - Pt|} < CV p (1 -p)

t=1

The value of the game with averaging of payoffs is Cav u(p). From the
proposition it can be seen that Vg(p) converges uniformly in § to this. Using

this fact and the recursion give

lim vs(p) = Cav u(p) = Max {Z x, Cav u(p(i))}
6+1 o x i 1
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With these points in mind, consider the following game, discussed in

section 3, which illustrates the type of discontinuity that may arise.

Ga (Prob = p) Gb (Prob =1 - p)
1 0 0 0
0 0 0 1

Denote the almost sure limit of the posterior sequence by pg for discount rate

§. For § <1 it was shown that
8
p_ € {0,1} a.s.

The random variable pg may be taken to be in {0,1} pointwise, since pg is

equal a.s. to a random variable which is pointwise in {0,1}. Denote the limit

S by p,. (pS may be viewed as a point in X {0,1} and p, the
heH

as § » 1 of p‘S
limit in some convergent subnet.)

Thus,

p_e {0,1}, ¥heH.

Turning to the recursion, observe that u(p) = p(l - p) is strictly concave, so

that

lim vi(p) = Max {I ;i u(p(i))}
§+1 X i

u(p)

k k
Max { = p xiu(p(i))}
x k,i=1,2
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< u(z x;p(1)) = u(p)

with strict inequality unless p(i) = p, i = 1,2. Since

p(i) = p, 1 = 1,2, implies xi = xi, i=1,2

the informed player's move is type independent in the first stage. The same
argument can be applied to each successive stage. Thus, looking at the
posterior sequence generated by the limiting strategies, the sequence is

constant and equal to the prior so that

Thus, for this example, the following statements hold:

(1)  1lim lim pd € {0,1} (pointwise)
§+1 the

(1) lim lim p} = p ¢ {0,1} (a.s.)
tio §41

In the introduction it was stated that the limiting informational
properties with discounting differ from those with limit of means. This
example clearly illustrates the difference. The value of the game with the
limit of means criterion is Cav u(p) and, for any prior p, p € (0,1), any
strategy that guarantees Cav u(p) must be type independent. Thus, in any
equilibrium with the 1limit of means criterion p, = p a.s. while in any

equilibrium with discounting p, € {0,1} a.s. (see Kohlberg (1975b) for a
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discussion of information revelation with the limit of means criterion).
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Notes
*
Here y (ht) means u* (the cylinder determined by ht)’

It is sometimes necessary to make a distinction between type independent
strategies and nonrevealing strategies (where an informed player's
strategy leads to a posterior on that player's “types” equal almost

surely to the prior). This distinction serves no purpose here.

At points on the boundary of the simplex, this is understood to mean that

the appropriate "one sided” derivatives exist.

Note that in two sided incomplete information games it is generally not
the case that v®(p,q) > vE(p,q) > u®(p,q) so that an argument similar to

that given in the proof of Proposition 2 may not be used.
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