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1. Introduction.

Nash [18] argued that bargaining and cooperation in games should be
studied using the methodology of noncooperative game theory, by modelling the
bargaining process itself as a noncooperative game and analyzing its
equilibria. Although this research program has generated a number of
remarkable results and insights, there has been a growing sense that its power
is limited by the fact that many natural bargaining-game models have very large
sets of Nash equilibria.

The advantage of Nash's program is that the derivation of behavior from
rational decision-making by individuals has traditionally been much clearer
in noncooperative game theory than in cooperative game theory. However, what
seems to be missing from noncooperative models is the essential assumption
that people listen and understand each other when they communicate to
coordinate their decisions.

The goal of this paper is to try to provide new foundations for
cooperative game theory by developing a theory of coherent decision-making
by individual negotiators. To clarify the individualistic foundations of the
analysis, most of the paper focuses on the determination of a single
negotiation statement by one individual. We assume that this individual
negotiator has an ability to make himself understood by other individuals which
goes beyond what is assumed in noncooperative game theory and which gives the
model its "cooperative" nature.

In general, negotiation may be defined as any communication process in
which individuals try to determine or influence the effective equilibrium that
they will play thereafter in some game. 1In many economic situations, it seems

reasonable to believe that individuals will be able to coordinate effectively



with each other and implement an equilibrium that is (at least)
Pareto-undominated within the set of equilibria (given some appropriate
refinement of the equilibrium concept). Such a belief may be derived from an
assumption that they can negotiate, in this sense.

However, the theory of noncooperative games with signalling and

communication (based largely Aumann's [1] concept of correlated equilibrium

and Kreps and Wilson's [10] concept of seqguential equilibrium) derives the

meaning of all statements and signals from the equilibrium in which they are
used. Thus, noncooperative game theory does not permit us to suppose that
communication can determine the effective equilibrium that is actually played,
because the meanings of all statements are supposed to be determined by the
effective equilibrium itself. 1In fact, if the mere act of saying something
does not directly affect any payoffs then there is always a "babbling"
equilibrium, in which every player randomizes over the set of his possible
statements indépendently of his information and his payoff-relevant actions,
and in which all other players ignore his meaningless statements. Such
analysis suggests that communication can only increase the set of equilibria
{(as, indeed, the correlated equilibria include all Nash equilibria), and cannot
provide a way to select among equilibria.

To escape from this conclusion, we must drop the assumption that
statements have no absolute meanings beyond what is endogenously determined
by the equilibrium in which they are used. Instead, we must introduce an
assumption that negotiation statements have literal meanings that are
exogenously defined, at least under certain circumstances, as statements in
a rich language like English which every player understands. For example,

the message "let's meet at the train station tomorrow at noon" has a given



literal meaning in any conversation between two English-speaking individuals
who are residents of a town with one train station and who both want to meet
again soon. We may suppose that negotiations to determine equilibrium behavior
in the game are conducted in such a language in which statements have exogenous
literal meanings. Then, using the assumption that such literal meanings are
understood by the players in negotiatioms, a negotiation structure may indeed
determine a set of "coherent” equilibria that is narrower than the set of
equilibria of the corresponding game without negotiations, instead of enlarging
the set of equilibria as a general communication system does.

Rigorously describing the role of literal meanings in such negotiations
can be a subtle problem, however, because rational individuals cannot be
expected to believe every possible statement. That is, some statements have
literal meanings that simply are not credible. For example, if a stranger
approached you on the street and said "let me hold your wallet for a minute
and I will give it back to you with twice as much money," you would understand
what he is trying to say, but you would probably not believe him or do as he
asks. In a society where many people would accept and believe such a
statement, others would have an incentive to abuse their trust by using this
statement with a different effective meaning, so that it would become
effectively synonymous with "give me your wallet and watch how fast I can run
away with it."

Thus, we need to develop general criteria to determine which statements
cannot be credibly used according to their literal meanings. To be true to
our assumption that literal meanings of statements are understood by all
players in negotiations, we should make such criteria as narrow as possible

and assume that individuals will accept the literal meaning of each others’



statements unless there is a strong logical reason to distrust them.

The literal meaning of any negotiator's statement may be analyzed into
three components: an allegation that describes some private information which
may be known by the negotiator; a promise that describes how the negotiator
may plan to choose his own future actions and messages; and a request (or
suggestion) that describes strategies for the other players which the
- negotiator may want or expect them to use hereafter. After hearing a statement
by some negotiator, the other players may ask themselves whether the following

three conditions are satisfied.

(1.1) If all other players believe the negotiator's allegations and
promises, then it should be rational for them all to obey his

requests.

(1.2) If the negotiator expects all other plavers to obey his requests,

then it should be rational for him to fulfill his promises.

(1.3) The information that the negotiator alleges should be consistent
with the information that could be inferred about him from the fact
that he wants other players to use the strategies that he has
requested, rather than some other strategies‘that they might have

otherwise been willing to use.

If (1.1) is satisfied, then we say that the statement (or the request in it)
is tenable. If (1.2} is satisfied, then we say that the statement (or the
promise in it) is reliable. If (1.3) is satisfied, then we say that the
statement (or the allegation in it) is plausible. If a statement is tenable,

reliable, and plausible, then we say that is credible.



Our key assumption is that, if a statement is credible in this sense,
so that conditions (1.1) - (1.3) are all satisfied, then the other players
will believe what the negotiator alleges and promises about his own information
and strategy, and they will all obey his requests. On the other hand, if any
of these conditions are not satisfied, then the literal meaning of the
statement is not credible, and so the inferences and responses that the other

players make to this statement (that is, the effective meaning of the

statement) can be arbitrarily determined in any way permitted by Kreps and
Wilson's [10] concept of sequential equilibrium, without further regard for
the literal meaning of the statement.

Of these three conditions, plausibility (1.3) has been the hardest to
formulate in a rigorous mathematical model, because it implicitly relies on
some notion of what the negotiator could have achieved by making some other
negotiation statement. Following common game-theoretic terminology, we may
refer to the private information that a player has at the time that he makes
a negotiation statement as his type. Then the formal definition of plausibility

requires us to determine reference payoffs that represent a conjecture about

what each type of the negotiator could have gotten "otherwise.” Once such
reference payoffs are specified, one might infer from a request that the
negotiator's actual type is unlikely to be in the set of types that would get
less than their reference payoffs if this request were obeyed.

As we seek to develop a solution concept to predict the outcome of
negotiations, we can assume without loss of generality that all statements
that are actually used with positive probability in our solution are used
consistently with their literal meanings. If this assumption were violated

then we could make it true by simply redefining the way that literal meanings



are assigned to statements in the language that negotiators use.

The assumption that literal meanings are understood by all players has
analytical force only when it is applied to a rich language of statements that
are supposed to get zero probability in our solutions. Farrell [5] calls such
statements that are not used in the predicted solution neologisms. The
assumption that the literal meaning of these neologisms would be understood
by all players may constrain the response that such neologisms would elicit
if they were used, so that they might become profitable alternatives that tempt
negotiators away from the predicted solution. Thus, as Farrell has argued,
our solutions must be defined so that there are no neologisms that a negotiator
could more profitably use. That is, we want our analysis ultimately to predict
the negotiation statements and equilibrium strategies that would be used by
the each player in a given game with a negotiation structure; but to make such
predictions, we must be able to show that no player would be able to find any
other credible negotiation statements that would be more profitable for him
than the predicted outcome. To guarantee this, most neologisms should not
be credible in our solutions.

This observation is the key to determining the reference payoffs that
are required to formalize the concept of credibility. A negotiator's reference
payoffs must be determined in a way that narrows his range of credible
statements down sufficiently so that a specific coherent plan can be
predicted. This idea is used in Section 5 to derive our fundamental definition
of coherent plans. That is, a coherent plan is defined to be a plan that is
credible with respect to a standard of credibility that admits essentially
no other credible statements.

This paper may be viewed as a part of the growing literature on ways of



selecting among equilibria of games with signalling or communication. (See
also Kalai and Samet [7], Kohlberg and Mertens [8], McLennan [13], Kreps [9],
Banks and Sobel [2], and Cho and Kreps [3], for other recent contributions

in this area.) Kumar's [11] investigation of sequential selection of
mechanisms is also closely related to the subject of this paper. This paper
builds most directly on the papers of Farrell [5], Grossman and Perry (6},
and Myerson [16]. 1In each of these three papers, credible statements and
signals can play a role in selecting among equilibria, because of the
constraint that they should be interpreted according to their literal or
natural meanings. Farrell [5] has most clearly articulated the focal role of
credible literal meanings in such analysis. The dynamic models studied in
this paper are adapted from the work of Grossman and Perry [6]. (See also
Okuno-Fujiwara and Postlewaite [19] for other interesting modifications of
Grossman and Perry's solution concept.} The fundamental solution concept used
in this paper is a generalization of the solution concept developed by
Myerson [16].

The plan of this paper is as follows. A basic model of the negotiation
problem faced by one player in one stage of a game is developed in Sections 2
and 3. 1In Section 4, we define a generalization of this negotiation model
which contains all the mathematical structures needed in Section 5. Section 5
develops the formal definition of a coherent plan and the general existence
theorem, and also introduces a related but weaker concept of semicoherent
plans. Section 6 contains two simple examples that illustrate the properties
of coherent plans. 1In Section 7, we show how the model of Sections 2 and 3
may be embedded in a multistage game in which players move one at a time, to

define the sequentially coherent plans of such a game. Section 8 discusses



some other negotiation structures, and, using the general negotiation model
of Section 4, shows that the concept of coherent plans generalizes the concept
of neutral optima that was defined by Myerson [16] for the problem of mechanism
design by an informed principal. Section 9 contains the proofs of all
theorems.

Readers in need of illustrative examples may find it helpful to skip ahead
and look at Section 6 before reading the more technical Sections 2 - 5 in

detail.

2. A basic model of negotiation statements.

In this and the next two sections, we develop a series of models of
negotiation statements and of the environment confronting a negotiator. Before
developing our first model of a negotiation move, however, a brief digression
on mathematical notation is necessary. In general, for any finite set X, we
will let A(X) denote the set of all probability distributions over X, so that

A(X) = {p:X >Rl I p(x) =1, and p(y) 2 0 VyeX}.
xXeX

For any finite set X, we let A(X) denote the set of subprobability

distributions on X, where a subprobability distribution differs from a

probability distribution in that the sum of the weights may be less than or
equal to one, instead of only equal to one. That is,

AX) = {p:X-R| I p(x) £1, and p(y) 2 0 VyeX}.
xe€X

As usual, [0,1] denotes the interval from 0 to 1, including both endpoints;
and (0,1] denotes the half-open interval from 0 to 1, including 1 but

excluding 0. For any set Y and any finite set Z, we let YZ denote the set



of all functions from Z into Y.
Let us now consider the problem faced by one player, whom we may refer

to as the negotiator, when he has an opportunity to make a negotiation

statement to the other players in a game. When the negotiator makes his
statement, he may have some private information, which we refer to as his type,
and he may have a range of payoff-relevant actions available to him. We let

T denote the set of possible types for the negotiator, and we let C denote

the set of possible actions that the negotiator must choose among. We let S
denote the set of all possible combinations of pure strategies which will be
available to the other players jointly in the game after the negotiator makes
his negotiation statement. For any (c,s,t) in C xS x T, we let U(c,s,t)
denote the expected utility payoff to the negotiator if his type is t, he
chooses action c, and the other players subsequently choose s. We assume that
T, C, and S are nonempty finite sets.

Let us now assume that the negotiator is selecting a statement that will
be his final statement to the other players. (In the next section, we will
drop this assumption and allow the negotiator to follow his negotiation
statement by subsequent messages.) In this statement, the negotiator may offer
information about his type and the way that his action will depend on his type,
and he may make a request as to how the other players should choose their
strategies (possibly with randomization)..

The information that the negotiator alleges about his type can be
characterized by a vector of likelihoods in [0,1]T, such that every other
player should update his beliefs (in A(T)) about the negotiator's type using
Bayes' formula with this vector of likelihoods. That is, if the negotiator

announces some likelihood vector X = (A(t)) in [0,1]T, then he is alleging

teT
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that, for any t in T, any player who had prior beliefs p in A(T) before the
statement should, after the statement, assign posterior probability
p(t)A(t)/ZreT p(rjx(r) to the event that t is the negotiator's actual type.
The likelihood A(t) is interpreted as the conditional probability that this
statement would be made if t were the negotiator's actual type.

The way that the negotiator promises to choose his actions can be
described by a randomized strategy in A(C)T. That is, if the negotiator

announces some strategy Y = (Y(c|t)) in A(C)T. then he is promising

c€C, teT
to use action c with probability ¥(c|t) if his type is t.

The request that the negotiator makes on the other players can always
be described by some jointly randomized strategy o = (c(s))SGS in A(S), in
which o(s) denotes the probability that the others should use their joint pure
strategy s.

Thus, the set of possible final statements that the negotiator could make
may be identified with the set [0,1]T x A(C)T X A(S). When we represent a
statement this way, the likelihood vector in [0,1]T is the negotiator's
allegation, the strategy in A(C)T is the negotiator's promise, and the strategy
in A(S) is the negotiator's request.

To complete our basic model of the negotiator's problem, we need some
way to specify or determine what strategies in A(S) may be rational for the
playvers who will move after the negotiator in the game. (The utility function
U{+) is the basic determinant of rational behavior for the negotiator in this
model.) So let us assume that we are given some correspondence
F:[O,l]T x A(C)T - A(S) that characterizes the tenable requests that could
be made on the players other than i, for any allegation and promise that the

negotiator might make. That is, for any (),Y) in [0,1]T X A(C)T, F(\7)
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represents the set of all correlated strategies in A(S) that could be
rationally implemented by the players in the subgame that will follow the
negotiator's current move, if everyone believed the negotiator's allegation
A and promise Y. Thus, o € F(\,¥) if and only if the statement ()\,7Y,0) is
tenable in the sense of (1.1). We may refer to thls correspondence F as the

tenability correspondence. The actual construction of this correspondence

F(e) must ultimately depend on our developing a theory of rational behavior
in such subgames, but we defer such questions until Section 7 and assume for
now that this correspondence is given.

We assume that this correspondence F satisfies three basic properties:

(2.1) F(\Y) #9, VX e€ [0,1]T. VY € A(C)T;
(2.2) F(oM,7) = F(A,7), Yo € (0,11, ¥ € [0,1]1%, wr € ac)T;
(2.3) F(+) is upper-semicontinuous.

Condition (2.1) asserts that, whatever information is given about the
negotiator's type and strategy, there must be some strategy combination for
the other players thereafter that constitutes rational behavior for them.
Condition (2.2) is a homogeneity condition that follows from Bayes' formula.
Multiplying a vector of likelihoods by a positive scalar o does not affect
the posterior probabilities in A(T) that any observer would calculate, and
so the set of tenable requests should remain the same. Condition (2.3) is a
topological regularity condition, asserting that the graph of F is a closed

subset of [0,1]F x Aa(c)T x A(S).
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3. Negotiation statements with subsequent messages.

A negotiation statement may include a promise to communicate additional
information, by transmitting further messages through some communication
channel. That is, we may think of communication by a player as a two-stage
process, consisting of an introductory negotiation statement and subsequent
messages. The player's negotiation statement advocates some equilibrium of
the subsequent game with communication, and his subsequent messages form a part
of this communication egquilibrium. Since the intended interpretation of the
subsequent messages is defined by the negotiation statement that precedes them,
our analysis should focus on the negotiation statement itself. However, the
possibility of such postnegotiation communication has important implications
for our analysis of negotiation statements.

With such possibilities for further communication after his negotiation
statement, a negotiator can make a statement of the form "I am about to
transmit to you, through some suitable communication channel, either the

statement #1 or the statement #2'" We may refer to such a statement as the

introductory sum of statements y and My For any two possible negotiation
statements My and My if the sum of their alleged likelihoods is never greater
than one then the introductory sum of A, and Hy should also be a possible
negotiation statement. The model developed in the preceding section ignores
the possibility of postnegotiation messages, and the representation of
negotiation statements as vectors in [0,1]T X A(C)T X A(S)) does not include
all such introductory sums. To include all such introductory sums in our set
of possible negotiation statements, we must redefine the set of negotiation
statements to be some larger set €, into which the statements in

[0,1]T X A(C)T X A(S) can be naturally embedded. We now show how this
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can be accomplished by letting € = A(C X S)T.
In our notation, A(C X S)T denotes the set of all functions from the

set T into the set of all subprobability distributions on C X 8§, so

Acc x 8)T = fu = (u(c,sit)) ulc,s|t) > 0 VceC, VseS, VteT;

ceC,seS,teT

and } L ul(c,s|t) €1, VteT|.
ceC se€S

For any u in A(C x S)T and any t in T, we define

L{ult) = L L ulc,slt).
ceC s€S

That is, L{u]t) is the sum of the subprobabilities in the distribution on
C x S that is designated for t by u.
For any triple ()\,¥,0) in [0,1]T x A(c)T X A(S), let X * ¥ * g be
defined so that u =X * ¥ * g iff
pmlc,sit) = A{t) ¥(cl|t) o(s), VYceC, VseS, VteT.
Notice that the vector u determined by such a star product will be in the set
A(C x s)T. Furthermore, given u =X ¥ ¥ ¥ g, we can reconstruct X from u
by the formula
A(t) = L(ult),
and, whenever MX(t) # 0, we can reconstruct ¥ and o from u by the formulas
Y(cit) = Zses ulc,sit)/a(t),
a(s) = ulc,s|t)/(r(cit) x(t)).
Thus, the negotiator's allegation, promise, and request can all be essentially
reconstructed from their star product in A(C X S)T. The only terms that are
lost in this representation are the strategic promises and requests that would
be made by types that are alleged to have zero probability of making this
statement. So any negotiation statement that can be represented by a triple

in [0.1]T x A(C)T x A(S) can also be represented by a vector in A(C x S)T,
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by taking this star product of the three vectors in [O,I]T, A(C)T, and A(S);
and this representation in A(C x S)T does not suppress any relevant
information about the negotiator's allegations, promises, and reguests. This
representation may seem unintuitive at first, but it will greatly improve both
the simplicity and power of our notation to henceforth use this

representation. The literal interpretation of a negotiation statement u in
A(C x S)T is that, for each (c,s,t) in C xS x T, if the negotiator's type
were t then u(c,s|t) would be the probability that the negotiator would make
this negotiation statement, would choose his action c, and would have the other
players after him use their pure joint strategy s.

The tenability correspondence F from Section 2 can be represented in
A(C x S)T by the set é defined as follows:

é = {uf IN € [0,1]T, Iy € A(C)T, and 3o € F(A,¥Y) such that u = X * ¥ ¥ g}.
That is, if u € é then the request in u is tenable, so that the other players
would be willing to obey it if they believed the negotiator's allegations and
promises.

Representing negotiation statements as vectors in A(C X S)T has an
important advantage over the representation in [0,1]T x A(C)T x A(S), because
sums of vectors in A(C X S)T can be interpreted as representing introductory
sums of statements. That is, if u = Hy + My in A(C x S)T, then g can be
interpreted as the statement "I am about to announce either the statement #1
or #2'" If the negotiator would make this introductory statement before
announcing either #1 or #2' then indeed ﬂl(c,slt) + yz(c,slt) would be the
conditional probability that he would make this statement and subsequently
use action ¢ and have the other players use their joint strategy s if his type

were t. Not every vector in A(C X S)T can be expressed as a star product
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of three vectors in [0,1]T, A(C)T, and A(S); but every vector in A(C X% S)T

can be expressed as a sum of such star products. Thus, we can identify

A(C x S)T with the set of all possible introductory sums of statements that
the negotiator could make in [0,1]T x A(C)T X A(S). 1In this sense,

A(C x S)T represents the set of all possible negotiation statements, when
subsequent messages are allowed.

We let G denote the set of all vectors in A(C X S)T that can be
expressed as sums of vectors in é. That is, u € G iff u e A(C Xx S)T and
there exists some finite set {ul, e yk} such that {ul, cees yk} c 6
and #1 + ...+ #k = . Thus, any vector in G represents the introductory
sum of a set of final statements, each of which expresses a tenable request.
We may therefore refer to G as the set of tenable statements in A(C X S)T.
Condition (2.2) implies that G is convex. Convexity, condition (2.3), and
Caratheodory's Theorem (see [20, section 17]) imply that G is also a closed
subset of A(C x S)T.

A negotiator may choose to transmit messages through some mediator or
communication channel. We may think of such a mediator as being an agent of
the negotiator who filters and transforms messages from the negotiator
according to some random rule that is has been selected by the negotiator
himself. We now show how such a mediator could help the negotiator to
implement the terms of any statement in G.

For any 4 in G, suppose that u = 2§=1 #j’ where each
#j = Aj * 7j * Uj € é and cj € F(Aj,yj). A mediator could help the negotiator
to implement the terms of u by the following scheme. After the negotiation
statement g is announced, the negotiator should report his type to the

mediator. (Since the mediator is going to filter the information anyway, there
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is no loss of generality in assuming that the negotiator is asked to report
all of his information to the mediator.) Then the mediator should select (but
not yet reveal) his final message from the set {ul,...,yk}. If the negotiator
reported type t to the mediator then the probability of the mediator selecting
#j should be Aj(t)/L(ylt). Next, the mediator should confidentially recommend
an action to the negotiator, recommending action c with probability Vj(clt)
if t was reported and final announcement #j was selected. Finally, after the
negotiator has chosen his action in C, the mediator should publicly announce
the ﬂj that he has selected and should request that the other players select
their strategies according to the corresponding cj, so that each pure strategy
s is recommended with probability cj(s). Suppose that, for each type t, L{u|t)
is the probability that this particular mediation scheme would have been
selected by the negotiator when his type is t. Then the statement that that
this mediation scheme is to be used can be represented by the given vector u.

To verify this representation, notice that, if the negotiator's type is t,
then the conditional probability that this mediation scheme would be selected
and that ¢ and s would ultimately be implemented, assuming that everyone would
be honest and obedient to the mediator, is

L{uit) 215_ (A (E)/L{ult)) Y.(clt) o,(s) = 2‘?_ Mile,sit) = ul(e,s|t).

J=1 7] J J Jj=177
Furthermore, the mediator's final announcement of #j is also being used
consistently with its literal meaning, because, when the negotiator's type
is t, then the probability that the mediator will select #j using this scheme
and ¢ and s will be implemented is
L(ult) (Aj(t)/L(#It)) ‘YJ.(CIt) Uj(t) = #j(c,SIt).

assuming that everyone will be honest and obedient to the mediator. Notice

-~

that, since ;% = Aj * 73 * cj € G, the request cj in #j is tenable.
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In this context, we can now begin to formulate the question of reliability
of such a statement u. If the negotiator is honest and all players are
obedient to the mediator under the mediation scheme described above, then the

expected payoff to type t of the negotiator when he selects this scheme is

)X L (u(c,s|t)/L(u|t)) U(e,s,t),
ceC se€S§

because, under this scheme, given the reported type t, the probability of any
(c,s) being ultimately recommended by the mediator is

k
j§1 (Aj(t)/L(ﬂlt)) Vj(CIt) Gj(S) = plc,s|t)/Lult).

On the other hand, suppose that the negotiator plans to lie to the
mediator, claiming that his type is r when it is really t, and suppose that
he plans to disobey the mediator according to some function d&:C -» C, so that
he will choose action &8(c) if the mediator recommends c. (We need to consider
manipulative strategies for disobedience that are functions from C into C,
because the negotiator's optimal disobedience may be a function of the action
recommended to him, when this recommended action is correlated with the
mediator's subsequent requests to the other players. We are assuming here
that the negotiator will choose his action in C before the mediator's final
announcement. ) Then the expected payoff to type t of the negotiator from

manipulating this mediation scheme in this way is

)X r (ulc,sir)/L(ulr)) U(d(c),s,t).
ceC s€S

Let D denote the set of all functions from C into C, that is
p = cC,

For any types t and r in T, and any function § in D, we let

V(ult) = X L u(c,s|t) U(c,s,t),
ceC se€S
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Vip.s,rlt) = T L ulc,sir) U(S(c),s,t).
ceC se€S

Then to guarantee that the negotiator would not want to disobey and lie to
his mediator, as is reguired for reliability, we need that

(3.1) Viult)/Lult) = G(ﬂ,&,rlt)/L(plr), VteT, VreT, VdéeD.

Thus, the statement u may be considered reliable, in the sense of (1.2), if
condition (3.1) is satisfied.

These functions V(u|t) and V(u,d8,rjt) may be called discounted-payoff

functions, because they are equal to the product of the negotiator's expected
payoff (under honesty and manipulation, respectively) from g multiplied by
the likelihood of the statement u for the reported type (L(ujt) or L{ulr)).
Notice that V(ult), G(y,s,rlt), and L(ujt) are all linear functions of u, for
any given t, r, and 8. This linearity makes the discounted-payoff functions
more convenient to work with than the corresponding expected payoffs.
Condition (3.1) does not address the guestion of whether the initial
information supposedly conveyed by the statement x4 is plausible in the sense
of (1.3). That is, (3.1) cannot confirm that the probability of the negotiator
announcing u would, as claimed, be L(ujt) if his type is t. Criteria to
determine whether these likelihoods are plausible are developed in Section 5.
Before that, in Section 4, we develop a more abstract model of negotiation
statements, to generalize further the model just developed and to bring its

essential structures into better focus.
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4. Abstract negotiation problems.

To summarize the mathematical properties of the model derived above, we
define one further mathematical model of a negotiation problem.

An abstract negotiation problem is any (2, G, T, D, L, V, V) such that

2 is a closed convex subset of some topological vector space, G is a compact
subset of ©, T and D are nonempty finite sets, L is a function mapping G X T
into the interval [0,1}, V is a function mapping G X T into the real
numbers R, G is a function mapping G XD X T X T into R, and the following
properties are satisfied:

(4.1) L{ult), V(u|t), and G(ﬂ,&,r|t) are continuous linear functions

of u in Q, VteT, VreT, VYdeD;

(4.2) au € G, VYueG, Vae(0,1};
(4.3) 1f L(uyit) + L(uylt) S 1 VteT, then u +u, € G, Vu €6, Yu,eG;
(4.4) V(ult)/L{ult) and V(u,d,tir)/L(ult) are bounded functions

on {ueG| L(ult) > 0}, VteT, VreT, VYdeD;
(4.5) Wr € (0,1)7, 3u e G such that, VteT, YreT, YdeD,
L(ult) = A(t) and V(ult)/L{ult) 2 V(u,&,r)t)/Liglr);
(4.8) War e [0,117, YueQ, 3(\ * u) €0 such that, VteT, YreT, VdeD,
VA * uft) = A(t) v(ult),
G(A ¥ u4,8,rit) = A(r) &(ﬂ,d,rlt), and
L(X * ult) = A(t) L(ujt).
In the interpretation of this abstract model, © is the set of possible
negotiation statements. G is the set of tenable statements in Q; that is,
G is the set of statements that include requests that the other players would
be willing to obey if they believed the negotiator's allegations and promises.

T is the set of possible types for the negotiator, and D is the set of possible
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manipulative strategies that the negotiator could use if he chose to disobey
his own strategic promise.

L(ult) is the likelihood of type t making statement g, according to the
literal meaning of u. For any vector x4 in G and any scalar o between 0 and
1, the vector ou can be interpreted as the statement "after observing an
extraneous event that had probability ¢, I have decided to make the
statement u." Condition (4.2) asserts that such a statement is tenable if u
is tenable. The sum of two vectors #1 and p2 in G can be interpreted as the
statement, "I am about to make either the statement My or yz." Condition (4.3)
asserts that this introductory sum is a tenable statement if each of the
individual statements is tenable and the sum of their likelihoods never
exceeds one.

The functions V and G are discounted-payoff functions. They are defined
so that, if the requests in u are obeyed by all other players, then

V(uit)/Lujt)
is the negotiator's expected payoff from g when his type is t and he is honest
and obedient to the terms of u, and
V(s 8,r1t)/Liuir)

is his expected payoff when his type is t but he pretends that his type is r
and then disobeys the terms of u in choosing his actions according to the
manipulative strategy §. The functions V and G are linear in 4, by condition
(4.1), and they must be divided by the corresponding likelihoods to compute
his expected utility payvoffs. Condition (4.4) asserts that expected utility
payoffs are bounded. Condition (4.5) asserts that, given any vector of
positive likelihoods X\, there exists some tenable statement that is consistent

with the allegation ) and that gives the negotiator no incentive to lie or
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disobey his own promise.

Condition (4.6) asserts that we can define a star product between
allegations in [0,1]T and statements in . The star product X ¥ x4 represents
the statement that is derived from u by appending the further allegation that
all players should reupdate their posterior beliefs after u using the
likelihoods in A. In the model of Section 3, where = A(C x S)T, this star
product is defined by

(N * u)(c,sit) = A(t) u(c,sft), VceC, VseS, VteT.

This statement X ¥ 4 1is not necessarily tenable, even if u is, since the
additional information conveyed by )\ may disturb the other players' incentives

to obey the requests in u.

Lemma 1. The model constructed in Section 3 above satisfies all the

properties of an abstract negotiation problem defined in this section.

Proof. See Section 9.

5. Reference pavoffs and coherent plans.

In our model, a statement is tenable (in the sense of (1.1)) if it is
in the set G. Condition (3.1) is a formalization of reliability (1.2).
However, we have not yet considered the third component of credibility, the
plausibility (1.3) of a statement. That is, we still need to develop criteria
to answer the question of whether the types that would want to make this
statement are the types that the negotiator is alleging that his actual type
is among. The answer to this question depends on what each type of the

negotiator could have gotten if he had made some other statement instead.
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Thus, to assess the plausibility of a statement, we need some reference payoff

allocation w = (w(t)) in RT. where the reference payoff w(t) is

teT
interpreted as the expected payoff that type t of the negotiator could have
safely gotten by making some other statement. Once such a reference allocation

w has been specified, one might suppose that a statement y is plausible if,

for every type t in T,

(5.1) if L(uit) > 0 then V(ult)/L{uit) =2 w(t),
and
(5.2) if v(ujt)/L{ult) > w(t) then L(ult) = 1.

Condition (5.1) asserts that any type that could possibly make the statement
M should not get less from 4 than the reference payoff. Condition (5.2)
asserts that any type that would get strictly more from g than the reference
payoff should surely make the statement u.

Conditions (3.1) and (5.2) are difficult to work with. Notice first that,
if L(ult) = 0 or L(ujr) = 0 then the ratios in these inequalities are not
well defined. Conditions (4.1) and (4.4) guarantee that the numerator on
either side of (3.1) must equal zero whenever the denominator does, but this
still leaves us the problem of dividing zero by zero. Furthermore, even when
the denominators are nonzero, the nonlinearity of these conditions (3.1) and
(5.2) makes them difficult to work with. (Actually, there are ways to try
to resolve the problem of dividing zero by zero here. One way is to
arbitrarily pick some sequence of statements {Fk}:=1 such that M = 1 as
k - o, and all ratios V(#klt)/L(#kIt) and G(pk,ﬁ,rlt)/L(pklr) are well-defined
and convergent as k » ®. Then we may define V(ujt)/L(ult) and
G(y,J,r!t)/L(ylr) to be the limits of these ratios in the sequences. Such

sequences can always be found because of the boundedness condition (4.4).)
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So let us consider a weaker credibility criterion, which allows more
statements to be accepted as credible and which will be easier to work with.

We say that u is credible with respect to w iff

(5.3) ue G,

(5.4) L(ujt) > 0 for at least one t in T,

(5.5) Viult) + (1 - L(ujt)) w(t) 2 w(t), VteT,

(5.6)  V(ult) + (1 - L(ult)) w(t) 2 V(m.8,rit) + (1 - Liglr)) w(t),

VteT, VreT, VW4eD.

Condition (5.3) asserts that u is tenable, so that all the players moving
after the negotiator would be willing to obey the requests in u if they
believed the negotiator's promise and allegation in u.

We say that a statement g in G is null iff L(ujt) = 0 for every t in T.
Thus, a null statement could be interpreted as an assertion of the form "I
would never make this statement ...” Condition (5.4) asserts that a credible
statement cannot be null.

Conditions (5.5) and (5.6) can be readily interpreted if we allow that
the negotiator may direct a mediator or agent to negotiate on his behalf.

Such a mediator might announce the statement u on behalf of the negotiator

as a part of to the following scheme. First, the negotiator confidentially
reports his type to the mediator. For each type t, if the negotiator reports
that his type is t then, the mediator will announce y with probability L(ujt),
otherwise he do something else (make some other statement or perhaps just be
silent). We may let the reference payoff w(t) represent the expected payoff
to type t of the negotiator when the statement u is not made. If the
negotiator is honest and obedient and all other players are obedient then the

expected payoff to type t from this scheme is
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Luit) (V(ult)/Ligjt)) + (1 - L(uit)) wit)
= V(ult) + (1 - L(glt)) w(t).
(Recall that V(ujt)/L(ujt) is the expected payoff to type t from the terms
of u after it is announced.) On the other hand, if the negotiator's actual
type is t but he pretends that his type is r and then, if x4 is announced,
disobeys the terms of his promise according to the manipulative strategy d,
then his expected payoff is
L(uiT) (V(u.8,v1t)/Lulr)) + (1 - L(mir)) w(t)
= V{8, 0]t) + (1 - Liuir)) w(t).

Thus, condition (5.5) asserts that, for any type t, the negotiator's
expected payoff from this scheme should not be less than the reference payoff
that he could have gotten by some other negotiation statement. In fact, (5.5)
is equivalent to (5.1), and so (5.5) may be interpreted as a weak plausibility
condition.

Condition (5.6) asserts that the negotiator's expected payoff under this
scheme, implemented honestly and obediently, should not be less than what he
could expect to get by lying and disobeying. Notice that, if L(ujt) =1
for all t, then (5.6) is equivalent to (3.1). More generally, if u satisfies
(5.2) (letting the 0/0 ratios be defined as discussed parenthetically above),
then (3.1) implies (5.6). Thus, (5.6) can be interpreted as a reliability
condition that is weaker than (3.1) in many important cases. The difference
between (3.1) and (5.6) is that (5.6) assumes that the negotiator can report
his type to the mediator before any negotiation statement is announced and
can allow the mediator to control the decision to announce u according to the
terms of u itself. The reference payoffs are needed in (5.6) to account for

the negotiator's payoff when u is not announced under such a scheme.



_25_

Thus, (5.3)-(5.6) constitute a natural definition of credibility for
mediated negotiation statements, once a reference allocation w has been
specified. Given any w in RT, the set of all statements that satisfy (5.5)
and (5.6) is a compact convex set, and so the set of credible statements with
respect to w is convex. The central theoretical question that remains is
how to determine the appropriate reference allocation w for our analysis.

With no loss of generality, we may assume that there is only one
negotiation statement that is actually made by the negotiator with positive
probability, so that this statement has likelihood one for all types. Any
given theory that predicts that all the statements in some set {ﬂl, e ﬂk}
will be made with positive probability is equivalent to a theory that asserts
that the negotiator's initial statement will be u, where u = Hy & oo v
(so u can be interpreted as "I or my agent will soon announce the one of the
messages in the set {ul, ce s yk}, which should be interpreted according to
its literal meaning"). In effect, we can assume without loss of generality
that the fundamental negotiation statement made by the negotiator is actually
uninformative, because any further informative communication could be subsumed
by messages in a communication equilibrium that is established by the

negotiation statement. This argument is called the inscrutability principle

and is discussed further in [16]. Since, under the given theory, the

statements in {#1, --+» M} were supposed to be the only statements used with

positive probability by any type, their likelihoods must sum to one, so

(5.7) L{ult) = 1, VteT.

We define a plan to be any statement g that satisfies this condition (5.7).
Thus, a theory of negotiations should predict one credible plan that the

negotiator should be expected to negotiate, no matter what his type is. 1In
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general, however, each type of the negotiator will have different preferences
over the set of tenable statements. To compel all types to announce the same
plan, the reference allocation must define a standard of credibility that
accepts one plan but rejects all other statements that any types might prefer
over it. This property is the key to determining the reference allocation.

We say that an allocation w in RT is strongly attractive iff there are

no credible statements with respect to w. That is, for any strongly attractive
w, if we altered the game by giving the negotiator a new option, called "the
easy way out," that would pay w(t) to each type t, then the only credible
negotiation statement for the negotiator would be "I am taking the easy out"
(which would correspond to a null statement in the original game). Obviously,
if the components w(t) are all higher than the upper bounds on the utility
functions (given in (4.4)), then w must be strongly attractive, by (5.4) and
(56.5). 1t is straightforward to check that the set of strongly attractive
allocations is an open subset of RT.

We say that w is attractive iff it is the limit of a sequence of strongly
attractive vectors in Ri. Thus, if w is attractive then any statement is not
credible with respect to reference allocations that are arbitrarily close to
w. Furthermore, as the following theorem asserts, for any attractive reference
allocation and any reliable plan that any type might be tempted to advocate,
there is a plausible inference that the other players could make about the
negotiator's type after this plan is announced, such that this plan with this

inference would not be tenable.

Theorem 1. Let w be an attractive reference allocation, and let u be any
plan that satisfies (5.7) and the reliability conditions (3.1) or (5.6).

Suppose that V(ult) > w(t) for at least one t in T (so that at least one
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type would find it profitable to announce u, relative to w). Then there exists
some likelihood vector A in [0,1]T such that X\ * yu ¢ G and, for every t in T,

=1, if v(ugit) > w(t),
0, if V(ujt) < w(t),
€ {0,1}, 1if V{ujt) = w(t).

Alt)

Proof. See Section 9.

We say that a statement u is a coherent plan iff L(ujt) =1 for every

t in T and there exists some attractive reference allocation w such that yu is
credible with respect to w. Thus, although x4 may not be the unique credible
statement with respect to w, if we allow that g is judged with respect to w
but every other statement is judged with respect to some strongly attractive
vector arbitrarily close to w, then yu is the unique credible statement. (This
may seem like a double standard, but it is only infinitesimally so.)
Equivalently, we may suppose that the other players would accept the
announcement of 4 as inscrutable or uninformative about the negotiator's type;
but, after the announcement of any other reliable plan that might tempt some
of the negotiator's types, the other players would update their beliefs
according to the plausible likelihood vector that is given by Theorem 1, which
would destroy the tenability of the plan.

We can now state our general existence theorem.

Theorem 2. For any negotiation problem, as defined in Section 4, there

exists at least one coherent plan in G.

Proof. See Section 9.

We say that a plan u is incentive compatible iff it is tenable and
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reliable, in the senses of (5.3) and (3.1). Notice that a plan u is coherent
iff it is incentive compatible and there exists some attractive reference
allocation w such that V(u|t) > w(t), for every t in T.

A plan u is strongly dominated for the negotiator iff there is an

incentive-compatible plan ; such that V(;|t) > V(ult), for every t in T.

A coherent plan cannot be strongly dominated. (If ; were an
incentive-compatible plan such that V(;lt) > V(ult) 2 w(t) for every t, then
; would be credible with respect to any reference allocation sufficiently close
to w.) Thus, the negotiator's expected payoff allocations that are generated
by coherent plans must be in the undominated frontier of the incentive-feasible
set, which is generally a (|T}|-1)-dimensional surface in RF.

In fact, there is reason to believe that the set of coherent plans is
usually a small, zero-dimensional set (finite or countable). Notice that the
set of attractive reference allocations is a (|T}-1)-dimensional surface, since
it is the boundary of an open set in R?. By definition, an attractive
reference allocation is one that admits some credible statements but almost
fails to admit any. So it is reasonable to expect that the set of statements
that are credible with respect to an attractive reference allocation is minimal
in size. Such a "minimal" set could not be a single point (since, for any «
in (0,1], ou is credible with respect to w if u is credible with respect
to w), but a minimal credible set could be a segment of a one-dimensional
ray. Then the condition that such a one-dimensional set should include
statements that are plans, in the sense of having L(ujt) =1 for all t, gives
us |T|-1 independent equations to satisfy. Thus, the set of attractive
reference allocations that support coherent plans should usually be

zero-dimensional. Obviously, this is not a rigorous argument, but it strongly
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suggests that the set of coherent plans is small for most negotiation problems.

To guarantee that coherent plans exist, we must allow that the attractive
reference allocation w that supports a coherent plan u may be different from
the negotiator's expected payoff allocation from . (See the second example
in Section 6.) 1In such cases, the attractive reference allocation may not
coincide with the negotiator's expected payoffs from any incentive-compatible
plan.

Strict ineguality between expected payoffs from the coherent plan x4 and
reference payoffs from the attractive allocation w that supports u can only
occur for types that are, in a sense, free-riding on the other types in the
negotiation of u. To make this idea precise, let % denote the set of all types
that get the same expected payoff from the coherent plan u as from the
attractive reference allocation w that supports it. Then % is nonempty and
there is no other incentive-compatible plan that is strictly better than u
for all the types in %. (If some incentive-compatible plan ; were strictly
better than u for all the types in %, then some convex combination of g and
; would be an incentive-compatible plan that was strictly better than w for
all types, which would violate Theorem 1.) Thus, the desirability of u for
the negotiator would be evident even if we ignored the preferences of his types
outside of %.

The attractive reference allocation w that supports a coherent plan wu
may be quite difficult to interpret when w(t) < V{(u|t) for some type t of
the negotiator. The best general interpretation that we can offer is that
the reference allocation represents a hypothetical conjecture that the
followers make about what the negotiator would have expected to get, as a

function of his type, if he had made some negotiation statement other than
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the one that he actually made. Such a conjecture is necessary to define a

criterion for evaluating the plausibility of the negotiator's allegations.
A weaker concept of coherence may be defined that avoids the use of

reference allocations, but it requires us to restrict the negotiator's

statements to plans, which involve no nontrivial allegations. We may say that

M is a semicoherent plan (or that g is coherent in the weak sense) iff u is

an incentive-compatible plan and, for any other incentive-compatible plan v
such that V(le) > V(ulz) for some E in T, there exists some likelihood
vector X\ in [0,1]T such that XA * v ¢ G and A(t) = max .. A(r) > 0 for every
t in T such that V(vit) > V(gjt). That is, g is semicoherent iff, for any
other incentive-compatible plan v that the negotiator might prefer, there is

an inference that the followers might make about the negotiator, if he
negotiated for v, such that they do not take his negotiation for v as evidence
against any type that prefers v over u, but they would not be willing to obey
his requests in v after making this inference.

It is easy to see that a semicoherent plan cannot be strongly dominated
for the negotiator by any other incentive-compatible plan. Furthermore,
Theorem 1 implies that any coherent plan is semicoherent, so the set of
semicoherent plans is nonempty. In Section 6, we show an example in which
the set of semicoherent plans is much larger than the set of coherent plans,

and we show another example in which the two sets coincide.

6. Sender-receiver examples.

Two-player sender-receiver games have been studied to gain insights into

the problems of communication in games, since Crawford and Sobel [4}. 1In these
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games, one player, the sender, has all the private information and the the
other player, the receiver, has all the payoff-relevant actions. The sender
moves first, sending some message or signal to the receiver, who then chooses
an action. 1In analyzing sender-receiver games here, we assume that the sender
is also the sole negotiator. A statement by the sender is tenable iff he is
requesting the receiver to use only actions that maximize the receiver's
expected payoff given the sender's allegation. In this section, we consider
two sender-receiver games, to illustrate some of the key properties of coherent
plans.

Throughout this paper, we have assumed that communication between a
negotiator and the other players could be facilitated by a mediator. In fact,
this assumption is crucial to our general existence theorem. Our first example
illustrates the importance of this mediation assumption.

In this game (suggested by R. Aumann, based on a similar example studied
by Moulin and Vial (14]), player 1, the sender, has a set of three possible
types {1a,1ib,1ic} which are initially considered by player 2 to be egually
likely. Player 2, the receiver, has a set of three possible actions {x,v.z}.
The payoffs to players 1 and 2 respectively depend on player 1's type and

player 2's action according to Table 1.

Player 2's actions

X y z
la 0,0 5,4 4,5
Player 1's types 1b 4,5 0,0 5,4
ic 5,4 4,5 0,0

TABLE 1.
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Notice that player 2 is initially indifferent between his three actions,
since each type has probability 1/3. Type la of player 1 would most prefer
that 2 choose y, but player 2 would choose z if he were convinced that 1's
type was la. On the other hand, y is also good for type 1lc of player 1
(although x would be slightly better for 1c), and player 2 would be willing
to obey a request to choose y if he believed that the reguest could have come
from la or 1c with approximately equal likelihood. Thus, type 1la would like
to be pooled with 1c, but distinguished from 1b, to be able to tenably
request y. Similarly, 1c would like to be pooled with 1b but distinguished
from la, to be able to tenably request action x; and 1b would like to be
pooled with la but distinguished from 1c, to be able to tenably reguest z.

Suppose, for now, that player 1 can only communicate with player 2 by
direct face-to-face communication, so that any signal that player 1 sends must
be received unaltered by player 2. With such communication, there are only
fully pooling equilibria in this game. That is, no matter what may be the
set of signals available to player 1, in any equilibrium of the signalling
game, playver 2 must always have the same (uniform) posterior distribution over
player 1's types after receving any signal that has positive probability, and
player 2's strategy must be independent of the signal sent by player 1. Thus,
for any equilibrium, there must be some pair of 1's types which could both
do strictly better (getting payoffs of 5 and 4) if, with equal likelihood,
they would announce that the third type has likelihood zero and request that
2 should use his best action given this information. Furthermore, the third
type would lose relative to the equilibrium from this request. Thus, for any
reference allocation that is close to a feasible allocation (generated for

player 1's types by a fully pooling equilibrium), there is a credible statement
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that at least two of player 1's types could more profitably use. 1In fact,
there can be no coherent plans for this example without mediation.

Now suppose that player 1 can also send messages to player 2 through a
mediator or noisy channel, as we have assumed throughout Sections 3 through 6.
Then, as Theorem 2 guarantees, there does exist a coherent plan that would
be implemented by a mediator as follows. First player 1 confidentially reports
his type to the mediator. If 1 reports la then, with probability 5/6, the
mediator asks 2 to choose y, and, with probability 1/6, the mediator asks 2
to choose z. 1If 1 reports 1b then, with probability 5/6, the mediator asks
2 to choose z, and, with probability 1/6, the mediator asks 2 to choose Xx.
if 1 reports ic then, with probability 5/6, the mediator asks 2 to choose x,
and, with probability 1/6, the mediator asks 2 to choose y. 1In this coherent
plan, each type of player 1 gets the payoff 5 with probability 5/6 and gets
the payoff 4 with probability 1/6. The attractive reference payoffs that
support this coherent plan are 42 for each of the three types of player 1.

No two types could simultaneously get more than 42 by an allegation that
assigns likelihood zero to the third type, since at least one of these types
would get 4 from player 2's best response.

The mediator is needed in this plan because player 2 is not willing to
obey any request to choose some action unless there is at least a 1/6
probability that it is the second-most preferred action of player 1. So a
mediator is needed to filter player 1's request and guarantee that there is
always at least a 1/6 probability that the request that 2 hears is for 1's
second-most preferred action.

Mathematically, introducing mediation into the communication process helps

to guarantee the existence of coherent plans, because mediation convexifies
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the set of credible statements. For example, without mediation, the reference
allocation that gives 3.1 to each of player 1's types would allow a credible
statement in which any pair of 1's types are given likelihood 1, but there
would be no credible statement in which all three types have positive
likelihood. Another useful mathematical analogy may be with the theory of

the core. Coherent plans are similar to core allocations in traditional
cooperative game theory, in that no coalition of types can block a coherent
plan with a credible statement. Under this analogy, allowing mediated
statements is mathematically analogous to taking the balanced cover of a game,
which guarantees nonemptiness of the core.

The coherent plan described above is the unique coherent plan for this
game. There are infinitely many semicoherent plans, however, including all
incentive-compatible plans that are not strongly dominated for the sender and
give an expected payoff greater than 4 to each type of the sender.

For a second example, consider the following sender-receiver game,
proposed by Farrell [5]. Player 1, the sender, has two possible types, 1la
and 1b, which player 2 initially considers to be equally likely. Player 2
has three possible actions, x, v, and z. The payoffs to players 1 and 2

respectively depend on 1's type and 2's action as in Table 2.

Player 2's actions

X y A
la 2,3 -1,0 0,2
Player 1's types
1ib 1,0 0,3 2,2
TABLE 2.

In this game, type la would like to reveal his type to player 2, but type



1b would prefer to not be distinguished from type ia. Farrell [5] shows that
this game has no neologism-proof equilibria, in the sense that he defines.
However, there is a unigue coherent plan for player 1 in this game, and it

is also the unigue semicoherent plan. In this plan, the probability

distribution over player 2's actions depends on 1's type according to Table 3.

Player 2's actions

X v z
ia .8 0 .2
Player 1's types
ib .4 .2 .4
TABLE 3.

This plan cannot be implemented without a mediator. (Indeed, Farrell
asserts that direct face-to-face communication would only allow one pooling
equilibrium in which player 2 chooses z for sure.) The plan in Table 3 is
supported as a coherent plan by the attractive reference allocation that gives
1.6 to type 1a and gives 0 to type 1b.

Notice that this reference allocation of 1.6 for la and 0 for 1b gives
strictly less to type 1b than the expected payoff of 1.2 that 1b gets in the
coherent plan itself. 1In fact, the coherent plan's actual payoff allocation
of 1.6 for 1a and 1.2 for 1b is not attractive, because any reference
allocation close to this would permit player 1 to credibly allege that he is
type la and request that player 2 choose action x. The reference allocation
(1.6, 0) can be attractive even though it is weakly dominated by (1.6, 1.2),
because decreasing the reference allocation for type 1b makes it harder for
player 1 to plausibly allege that he is type 1a. This example shows that,

for a plan to be coherent, it may be necessary to use a reference allocation
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that is different from (and weakly dominated by) the actual expected payoff
allocation from the plan.

Farrell [5] and Grossman and Perry {6] have defined solution concepts
that are closely related to the coherent plans of this paper. Both of these
papers assume that mediation is not used, and both implicitly equate reference
payoffs with expected equilibrium payoffs. General existence theorems are
not possible for the solution concepts developed in these papers, as the

examples in this section would suggest.

7. Seguentially coherent plans.

When a player makes a negotiation move in a dynamic multistage game, the
tenability correspondence F should be derived from an analysis of the game
after his move. 1In Section 2, we simply assumed that this correspondence was
exogenously given, but we can now show how this correspondence may be derived.

Let us consider a dynamic multistage game with n players, numbered 1 to
n, who get to move in order of their numbers (player 1 first, n last). During
each player's move, he can make public statements and choose some
payoff-relevant action. To keep our notation from getting too complex, we
assume in this section that each player moves only once, there are no
simultaneous moves, and all statements are observed by all players. However,
we do not assume that a player's payoff—relevant actions are necessarily
observed by the other players.

Such a game may be formally described by a model of the form

r = (pov (®i’ Ti) Ti) C]..’ pi) uj.

) e . .)

i=1’ Tn+1l

where, each Ti’ Ci’ and ®i is a nonempty finite set, Ti is a function from
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®i into Ti' pO is a probability distribution over @1, P; is a function from

Ci X ®i into A(®i+1)’ and u, is a function from Ch+1 into R. We assume that

py(8,) >0, Ve, €@,
and, for every i in {i, 2, ..., n},

Vti € Ti' aei € ®i such that ti = Ti(ei),
and

voe, € 0O,

i+1 P41’ B(Ci,ei) € Ci X ®i such that pi(e

i+1|ci'ei) > 0.

In the interpretation of this model, @i is the set of all possible states

of the game at the beginning of player i's move. @ is the set of all

n+l
possible final states or outcomes of the game. T, is the set of possible types
(or private-information states) for player i when he makes his move, and Ti(ei)
is i's type if the state of the game is Bi when he moves. Ci is the set of
possible payoff-relevant actions that i can choose among. The probability

that the initial state of the game will be 91 is po(el). If ei is the state

when i moves and i chooses action c; then pi(e ,ei) is the probability

i+11%4
that Bi+1 will be the state when i+1 moves. If the final outcome of the game

is B then the utility payoff for player i is ui(en+

n+l The assumptions

1)'
listed above guarantee that any state and type could occur with positive
probability, if the players choose their actions appropriately.

For any finite set X, we let AP(X) denote the set of all probability
distributions on X that assign positive probability to every element in X, so

2%(X) = {q € A(X)] q(x) > 0 VxeX}.

A conditional probability system on X is defined by Myerson [17] to be function

g that maps nonempty subsets of X into probability distributions on X such

that, for any sets Y and Z such that @2 #Y c€c Z ¢ X,

Zer a(y|Y) = 1, and
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a(x12) = a(x]¥) L.y a(v|2), Vx €Y.
We let A*(X) denote the set of all conditional probability systems on X. Any
probability distribution g in AP(X) generates a conditional probability system
g in A*(X) by the formula

Z(x1¥) - { q(X)/Eer q(y), if x eV,

0, if x ¢ Y.

It can be shown (see Myerson [17]) that any conditional probability system
in A?(X) is the limit of a sequence of conditional probability systems that
can be generated from distributions in AP(X) in this way.

At the beginning of player i's moves, the beliefs of all players about
the state of the game are derived from some conditional probability system
in A*(Cﬁ). When player i announces an allegation and a promise, he is in
effect announcing how to compute the new conditional probability system in

a¥ (@,

1+1). For any L in Af(@i), any allegation Ai in (0,1]Ti, and any strategy

. AO Ti cas fq s R . s . *
7& in A (Ci) , a conditional probability distribution bi(ni,xi,yi) in A (C&+1)

is determined by Bayes' formula.
This function bi can be defined precisely as follows. Suppose that L

A;, and 71 are given as above., For any X that is a nonempty subset of ®,

i’ i+1’
let
= {@, . , . . . .
Y = { ; €01 Hc, € C;, and 3@, . €X such that p,(e, ,lc,,6,) >0}
Then, for any x in X, let
B(x,X) = L L om (yly) Al (v)) vileglt (v)) py(xley,y).
veY cieCi

Then, for any ei in @i,

B(e, . X)/E __, B(x,X), if e, €X,
(b, (m,,x;,7,))(8,1X) = { 1 x€X i
0, if ei ¢ X.



This Bayesian-updating function birA*(®i) X (0,1]Ti X A.O(Ci)Ti NYNICIS

i+1
is continuous on its domain. However, Ai must be in (0,1]Ti and Vi must be in

AP(Ci)Ti (that is, both Ai and Yi must have all strictly positive components)

to guarantee that Bayes' formula never involves dividing by zero in the
definition of bi(ni,ki,yi). To define Bayesian updating when some components
of i's allegation and promise may be zero, we must define
| B,:5%(®,) x [0,1]71 x A(C,)Ti +» A%(®, )
i i ’ i i+l
to be the minimal upper-semicontinuous correspondence containing the graph of
bi‘ Then Bi(ni,ki,yi) is always a nonempty set of conditional probability
systems on ®i+1' and
B, (T.,7:,7.) = {b.(m..%.,7.)} Wxr. € (0,1171, vr. € 2%c.)Ti, wn, € a*(o.).
i1t ittitTi i i ’ ’ i i ’ i i
To derive a model as in Section 2 to represent the negotiation problem
faced by any pilayer i in this game, we need to define the set of pure joint
strategies for players after i. Player n has no followers, so let
Sn = {@}.
For any other player i, the set of pure joint strategies for players after i
can be defined recursively by the formula
- Ti+1
(7.1) S = (Ciyq X Si+1) ’
That is, a joint strategy for the players after i is any rule for determining
the action of player i+1 and the joint strategies for the players after i+1
as a function of the type of player i+1. (The choice of a joint strategy for
the players after i+1 can depend on i+l's type because his statement may convey
information to them.)

We can recursively define utility functions for actions and strategies

at earlier stages in the game by the following formulas:



n
u;(c,.8,8 ) = . 2 o P, (8, 41c,-8,) u (8 ),
n+1 n+1
and, for any j < n,
j - I+
Ui(cj’sj'ej) . E o pj( J+1Ic ,e ) Uy (sj(Tj+1(9j+1))'9j+1)'
j+1 j+1
. Jj
(Notice that s, (TJ+1(93+1)) € CJ+1 X Sj+1 if s; € Sj-) Then Ui(cj'sj'ej)

is the expected utility payoff for player i if, when j moves, the state is Bj,
j's action is Cj’ and sj is the joint strategy to be used by the players
after j.

We now define U,:C, X §; x T, X A?(@i) -+ R by the formula

8.€ O,
i i

where

ni(eilti) = ni(eil {x € ®i| Ti(x) = ti}).
That is, Ui(cj'si'ti|"i) is the expected utility payoff for player i at his
move if his type is ti’ his action is C;» the joint strategy for the players
following him is S and conditional probability system LA characterizes
current beliefs about the state of the game.

We can now formulate the negotiation problem that player i faces in this
game in the terms of the basic model that we developed in Section 2.
Obviously, when the negotiator is player i, we should let € = Ci’ T = Ti'
and S = Si in the model of Section 2. Player i's negotiation problem depends
on the current beliefs about the state of the game, which are characterized
by some conditional probability system "i in A*(@i). Given such a “i’ the

utility function U(e) in Section 2 should be identified with the function

Ui(Olni). To complete the model, it now remains only to specify a tenability



- 41 -

correspondence F.

When 1 = n, the set of follower's joint strategies Sn is a trivial
one-point set (since there are no followers), and we may define Fn by the
formula Fn(An,Thlnn) = A(Sn). Then, letting F(es) = Fn(-tnn) completes the
formulation of the last player n's negotiation problem in the model of
Section 2. Following the construction of Sections 2 through 5, let ¢n(nn)
be the set of coherent plans for player n, for any given conditional
probability system nh in A*(Gn). By Theorem 2,

o (m)cAc xs )P, vr ea*@).

Now, for any player i, suppose inductively that a correspondence ¢i+1(.)

such that

Ti+1, v, . e a* (o,

(7.2) Gz, (mw, ) cAC,, xS i+1 1)

i i+1 i+1)

has been defined to represent the set of coherent plans for player i+l1 when
he moves in this game, as a function of the public information at his move.

Notice that A(Ci+1 X Si+1)Ti+1 can be naturally embedded in A(Si), by the

recursive definition (7.1) of Si' Using this natural embedding, we define the

o A¥ .
correspondence 'i+1'A (®i+1) 4»‘A(Si) so that o; € wi+1("i+1) iff there

exists some M1 in ¢i+1("i+1) such that

ci(si) = I1 ”i+1(si(ti+1)'ti+1)' Vsi € Si'
t, €T,
i+1 i+l
The sets ¢i+1(“i+1) and ¢i+1(“i+1) are obviously isomorphic, but they have
different interpretations: ¢i+1(“i+1) is the set possible negotiation

statements that player i+1 could coherently make; whereas ¥,

1+1(1ri+1) is a set

of requests that player i could make as a part of his negotiation statement.
Since tenable reguests of one negotiator must correspond to plans that would

be confirmed by the next negotiator, we should identify @, ) with the

i+1(Mj41
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set of tenable requests that player i can make when LI represents the updated

1
beliefs generated by i's allegation and promise.

So let the correspondence fi:[O,l]Ti x A(Ci)Ti X Af(@i) ﬂﬂkA(Si) be
defined by the equation

fi(Ai,Vilni) = {ail 3, € Bi(ni.ki,Vi) such that o, € ¢i+1(n )}.

i+l i+l
That is, fi(Ai,Vilﬂi) is the set of all tenable requests by player i that would
be confirmed by player i+1, with some Bayesian updated beliefs, after player

i announced allegation Ai and promise 71, if L represented the beliefs at the
beginning of i's move. Our inductive assumption (7.2) implies that
fi(Ai,Vilﬂi) # @, as required by (2.1); and the definitions of bi and Bi
guarantee that fi(aki,Vilﬂi) = fi(ki’yi'"i) for any scalar « in (0,1], as
required by (2.2). But we cannot guarantee that fi is upper-semicontinuous,

as required by (2.3). So, for any L in Af(@i), we define Fi(-lﬂi) to be the
minimal upper-semicontinuous correspondence containing fi(-lﬂi). Then Fi(olﬂi)
is nonempty-valued, homogeneous, and upper-semicontinuous, as conditions
(2.1)-(2.3) require. Letting F(e) = Fi(olﬂi) completes the formulation of
player i's negotiation problem in the model of Section 2. Following the
construction of Sections 2 through 5, let ¢i(ﬂi) be the set of coherent plans
for player i, given the conditional probability system m in A*(Ei). By
Theorem 2,

(7.8) B2 6, (m) € AC; si)Ti, vn, € a%(®,),

which justifies the inductive assumption (7.2). Thus, we have recursively
defined ¢i(ni) to be the set of plans that player i could negotiate coherently,
given beliefs LIy when he and each of his followers take full account of the

fact that a tenable request must be one that would not be renegotiated by

subsequent players.
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Let 50 be the initial conditional probability system on ®1 generated

by Py- Then wl(ﬁo) may be called the set of sequentially coherent plans of

the game ", and it represents our fundamental cooperative solution concept
for this game. These are the randomized joint strategies for all players that
could be coherently announced in the first stage of the game and would not
be contradicted by any coherent negotiation statement by any other player.

Notice that ¢1(50) c A(So), where (unwinding the recursive definition (7.1))

¢ (T1x...xT3)

n
S = x
_ 1

0 i=1
So any sequentially coherent plan describes how every player's action may
depend on the types of all players before him. Because a coherent plan is
incentive compatible for the negotiating player at every stage, any
sequentially coherent plan is a sequentially rational communication equilibrium

of I" in the sense of Myerson [17].

Plans that are sequentially semicoherent or (sequentially coherent in the

weak sense) may be similarly defined, by letting ¢i(n) be recursively defined
as the set of semicoherent plans for player i, above formula (7.3).

In this construction, we twice took an upper-semicontinuous extension
of a function or correspondence: in going from bi to Bi’ and from fi to Fi'
The extension from bi to Bi is an application of the basic idea of Kreps and
Wilson [10]: that Bayesian updated posteriors after events of probability
zero should be computed by taking the limits of the posteriors that would be
computed in a slightly perturbed system in which everything has positive
probability.

The extension from fi to Fi resoives a more novel technical problem,

however. To see why this extension is needed, consider the folliowing
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three—-person game. First, player 1 chooses Heads or Tails. Then player 2
has an opportunity to negotiate, but he has only one trivial ("inaction")

option in C Then player 3 chooses Heads or Tails. Suppose that neither 2

2°
nor 3 observes 1's action. The payoffs are as follows: player 1 gets $1 if
he matches 3 and gets $0 otherwise; 2 gets $1 if 3 chooses Tails and gets
$0 otherwise; and 3 gets $1 if he does not match 1 and gets $0 otherwise.

Let p denote the probability that 1 chooses Heads in this game. The
coherent plans for player 3 are just his own best responses: Heads if
o < .5; Tails if p > .5; and any randomized strategy if p = .5. These are
also the tenable requests for plaver 2, so that his coherent plans must be
to reguest Heads if p < .5, and to request Tails (which he prefers) if
o 2 .5. This discontinuity at p = .5 creates a serious dilemma for
playver 1. If 1 promises to use Heads with probability p such that p > .5,
then 2 should tell 3 to choose Tails, in which case 1's promise to use Heads
with positive probability is not reliable. On the other hand, if he promises
to use Heads with probability p such that p < .5, then 3 must choose Heads,
in which case 1's promise to use Tails with positive probability is not
reliable. Obviously, the unique eguilibrium of this game is when 1 and 3
independently randomize with egual probability between Heads and Tails (so
p = .5), but 2's negotiation move seems to interfere with this plan (since
2 wants to steer 3 to Tails when 3 is indifferent). The technical resolution
of this paradox is in our extension from f1 to Fl' While fl(.5) includes only
the plan in which 3 obeys a request from 2 to choose Tails, Fl(.s) includes
a plan in which 3 does Heads as well as a plan in which 3 does Tails, because

for any positive €, there are plans in fl(.s—e) in which 3 chooses Heads.

Thus, 1 can promise to use Heads with probability .5 and tenably "reguest"
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that 3 should also randomize between Heads and Tails. To interpret this
technical resolution, we might suppose that 3 has an inclination to obey 2's
request as long as the expected cost to himself from doing so is less than
some very small or infinitesimal number; and so 1 should choose Heads with
a probability that is infinitesimally less than .5, to exactly counteract 3's
inclination to obey player 2.

An alternative solution concept could be proposed in which the two
upper-semicontinuous extensions are replaced by one. Given any “i in Af(@i),
we could define %i(olﬂi) to be the minimal upper-semicontinuous correspondence
on [0,1]Ti x A(Ci)Ti that extends ¢, . (b,(w,,*)), which is defined only
on (0,1]Ti X AP(Ci)Ti. Then, we could generate a somewhat different
formulation of i's negotiation problem by using ﬁi(olﬂi) as i's tenability
correspondence instead of Fi(olni). Using ﬁi in this way would be more in
the spirit of Selten's [23] concept of trembling-hand perfect equilibrium,
whereas our definition of seguential coherence using Fi is more in the spirit
of Kreps and Wilson's concept of sequential equilibrium.

The assumption that players move one at a time, in a given order, is
essential to the analysis of this section. For example, the analysis of the
"Battle of the Sexes" game of Luce and Raiffa [12] depends on which player
moves first, even if the player who moves second does not directly observe
the action of the player who moves first. We only assume that the first player
can commit to an action and make a negotiation statement before the second
player can make any commitments. With this assumption, if the man is moves
first in the "Battle of the Sexes" then the unique sequentially coherent plan
is for both players to choose the actions that he most prefers ("going to the

prize fight"), because he will announce that he is using his action from this
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equilibrium and this statement will be credible. On the other hand, if the
woman moves first, then the uniqgue seguentially coherent plan is for both to
use the actions that she most prefers ("going to the ballet").

The above example suggests that there is often an advantage to moving
first. On the other hand, there are games in which moving later may be an
advantage. For example, consider a three-person game in which players 1 and
2 have no payoff-relevant alternatives, and player 3's alternative actions
are Heads and Tails. Suppose that 3 is indifferent between Heads and Tails,
but 1 prefers that 3 should choose Heads, while 2 prefers that 3 should choose
Tails. Under the assumption that 2 gets to make the last negotiation statement
before 1 moves, the unique sequentially coherent plan is for 3 to choose
Tails. In the initial negotiation statement, player 1 would like to request
that 3 should choose Heads, but this request would not be tenable because it
would be immediately contradicted by player 2. Thus, when two players are
both trying to influence a third player by their negotiation statements, the

last person to speak before his move may have the advantage.

8. Other negotiation structures.

In Section 7, we assumed that a player has an opportunity to negotiate
whenever he moves in a game. It is straightforward to relax this assumption,
but we must then add to the structure of the game a specification of which
moves are "negotiation moves" and which are not.

For example, we might assume that a particular player i can make mediated
public announcements at his move, but that these announcements are not

necessarily treated as negotiation statements. Substantively, this means
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either that playver i cannot make his announcements in a language with given
literal meanings (i.e., he can wave his arms or put lanterns in a church
steeple but cannot say anything in English), or that he cannot be confident
(for some exogenous reason) that the following players would attentively
listen, understand, and respect literal meanings of his statements when they
passed appropriate credibility tests. To take this revised assumption into
account, the only change that is needed in the definition of sequentially
coherent plans is, for such a nonnegotiating player i, to let ¢i(ni) be the
set of incentive-compatible plans (rather than the set of coherent plans) when
this set is defined just above formula (7.3) in Section 7.

If it is assumed that some given players can neither negotiate nor
communicate when they move, then other changes are needed in the definition
of seguentially coherent plans for multistage games. For example, suppose
that between the negotiation moves of plavers i and j, where i moves before j,
there is a sequence of moves by other players who can not communicate when
they move. Then the strategies for the players between i and j that are
specified in a tenable request by player i must form a sequential equilibrium
for these players, given the requested behavior for player j and his followers
and given i's allegation and promise. Furthermore, the strategies for player j
and his followers that are specified in a tenable request by player i must
form a coherent plan for the game starting at j's move, given the allegation
and promise by i and given the requested strategies for the players between
i and j. Using such a notion of tenability, it should be possible to
generalize the model in Section 7 to allow for such an exogenously given éet
of noncommunicative players.

One extension that is straightforward to make in the model of Section 7
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is to allow that a player may have more than one move in a game. To reduce
such games to the model of the Section 7, we can simply use the temporary-agent
device suggested by Selten [23]. That is, each time a particular player moves
again, we could suppose that he is represented by a different agent, who has
the same utility function and the same type-information as the player,
including a recollection of his past types and actions. Then treating these
agents as the "players" gives us an eguivalent game in which no one moves
twice. (The only subtle point which needs to be checked, to verify this
equivalence, is that there is no advantage for a player's later agent to know
whether an earlier agent might have disobeyed or lied to the mediator who
transmitted his public messages. Since the messages that the mediator
transmitted for the earlier agent are known by everyone, and since we assume
that the later agent's type includes all information about the earlier agent's
type and action, there is no advantage for the later agent to learn anything
else about the earlier agent's private communications with his mediator.)
Although many of the most interesting models of bargaining (as, for
example, the model of Rubinstein [21, 22]) do assume that players move one
at a time, the assumption that there are no simultaneous moves is restrictive
in general. It is not clear how our model could be extended to allow for two
players to make simultaneous negotiation statements that are heard by all the
other players. The problem is that each player's set of tenable requests must
depend on what the other player is announcing. If they simultaneously make
different contradictory requests on a later player who is willing to obey
either one, which does he obey? (When the negotiators spoke one at a time,
we assumed in Section 7 that the later request would be obeyed.)

One way to avoid this dilemma is to suppose that players who negotiate
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simultaneously must be speaking to different disjoint sets of players. A
simple model with this kind of negotiation structure was considered by Myerson
{151, in an analysis of equilibria among several principals who head separate
corporations. In this model, the set of incentive-compatible (that is, tenable
and reliable) plans for each corporation depends upper-semicontinuously on

the plans of other corporations. Consequently, each principal's optimal
incentive-compatible plan (that is, his coherent plan) for his corporation

may depend discontinuously on the plans chosen by other principals for their
corporations. This discontinuity may prevent the existence of any equilibrium
in which each principal is negotiating his optimal incentive-compatible plan
for his own corporation, given the plans that the other principals are

simultaneously negotiating. However, a natural guasi-eguilibrium concept can

be defined, for which a general existence theorem can be proven (see [15]}.

The essential idea behind this quasi-equilibrium concept is that our definition
of "optimality" or "coherence" must be weakened, so that the set of coherent
plans for any negotiator is convex and depends upper-semicontinuously on the
plans that are chosen simultaneously by other negotiators. This technical
point is likely to be relevant in any model with simultaneous negotiation.

In the model of Section 7, the only communication between players was
assumed to be in public statements and messages that all players observe. We
may want to drop this assumption and allow a mediator to transmit different
confidential messages to each player in the game. 1In [16], a model with such
full communication potential is analyzed under the assumption that one player,
called the principal, has all of the negotiating ability. That is, in the
model of [16], confidential messages can be transmitted to and from any player,

but only the credible public statements of the principal are necessarily
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interpreted according to their exogenous literal meanings.
To formulate this model in the current context, let {1,2,...,n} be the
set of players, and let player 1 be the principal. Let Ei be the set of

actions available to player i, and let Ti be the set of his possible types.

— n —_ —_— — n -_— - —
Let = X, . .= X, . C,, = X, N o= X, . T,
et C j=1 CJ, C_1 j#i CJ T =1 TJ T_1 jei TJ For any ¢

in C and t in T, let u;(c,t) denote the utility payoff to player i when c is
the list of actions chosen by the playvers and t is the list of their actual
types. Let pi(t_ilti) denote the probability that player i would assign to

the event that t_i in T-i is the list of types of the other players if ti were

i's own type.

A coordination plan or mechanism for this game is any g in A(E)T,
specifying a probability distribution over the combinations of players' actions

for any possible combination of players' types. For any such g, any player

i, any t; and r; in Ti' and any function 6:5i - C.

i’ let

Vl(#'avrlltl) = ):_ Z_ pi(t—ilti) /.l.(Clt_-

ry) uil(c_;,d8(c;)),t).
t ;€T . ceC e

(Here cy is the i-component of the vector c¢ in C, (c_i,J(Ci)) is the vector
in C differing from c in that the i-component is changed from c; to J(Ci),
(t—i’ri) is the vector in T with i-component equal to r, and all other
components as in t_i, and t = (t_i,ti).) Similarly, let

V. (ult,) = T ¥ p.(t .]t,) u(clt) u,(c,t).
! ! t e . cec * "V 1 # !

Then a plan g is incentive compatible iff, for every player i,

8. V. L) 2 A. , .t (€T, €T, :C, .
(8.1) l(ﬂltl) > Vl(y 6,r1|t1), theTl, VrleTl, Vs C1 - Ci
The wide communication possibilities in this model cannot be subsumed
in a model of the form considered in Sections 2 and 3, but they can be subsumed

in the more general model considered in Section 4. To translate this model
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into the formulation of Section 4, when the negotiator is player 1, we equate
the negotiator's set of types T and manipulative strategies D in Section 4

with the sets Tl and 6161 here respectively. The set of possible negotiation
statements (which is necessarily more general than the set of plans) for

player 1 is

Q= {(ue A(E)T| 3\ € [0,1]T1 such that ¥t € T, I u(clt) = A(tl)}.
ceC

(Here t1 is the l1l-component of t = (ti)?=1.) That is, a statement is any
result of a star product between an allegation in [O,I]T1 and a plan in A(E)T,
where such a star product is defined by the formula

(A * m)(eft) = x(ty) ulelt).
Notice that the formulas for Vi and Qi above can be applied to any statement

& in ©Q. Thus, the negotiator's discounted-payoff functions V and V in

and V, here respectively. We

Section 4 can be equated with the functions V1 1

may define the likelihood function L by the equations

L(plt)) = I_ m(elt), vt_eT_ .
ceC

Finally, the set of tenable statements G is the set of statements that satisfy
the incentive constraints (8.1) for every player i other than player 1.

When we translate this principal's mechanism-design problem into the
formulation of Section 4 in this way, then the set of coherent plans is exactly

the set of neutral optima for the principal, as defined by in {16]. Similarly,

the set of semicoherent plans coincides with the principal's core defined in

{16]. To prove that the principal's neutral optima are coherent plans, notice
that w is a strongly attractive reference allocation in this negotiation
problem iff there are no nonnegative vectors XA and u, other than the zero

vectors, that solve the following system of constraints:
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Z_ ulelt) = x(t)), VteT;
ceC

Vitulty) 2 V(8,0 0ty), Vizl, vreT,, ve.eT,, V6.:C, - Ty

Vile) + (1= A(E))) w(t)) 2V (mé,r,1t) + (1 - A(r)) w(t,),
VrleTl, theT VJI:C1 - C

1’ 1’

- > T
Vl(y|t1) + (1 A(tl)) w(tl) > w(tl), theTl.
Using theorems of the alternative (see [20, section 22)]), or the duality
theorem of linear programming, one can show that there are no nonzero solutions

in the nonnegative orthants to these linear constraints iff there exist

nonnegative vectors (2,a) such that, for every type tl in Tl’
(®(t)) +T T a(d,r,lt)) w(t) - L L a(d,tlr) wir) > L v(t),

r, 4% ry 4 t

where, for every t in T,

v(t) =
n
max &(t,) p,(t_;It ) u (e, t) + _g L I a;(é;.r 0t;) p,(t_;1t;) u,(c,t)
ceC i=1 Ji ry
n
- i§1 § E a;(6;,t,1r;) py(t_;iry) u;((e_;,6,(c;)), (t_;,r,)).
i i

These dual constraints, derived from the credibility conditions, are almost

the same as the conditions in Theorem 7 of [16] that characterize the
principal's neutral optima. Notice that, since all the inequalities
constraining (%,a) are strict, we can always perturb R slightly to make its
components strictly positive, instead of merely nonnegative. Then, by Lemma 1
of [16], for any incentive-compatible plan x, a sequence of strongly attractive
allocations can converge to an attractive reference allocation that supports

M as a coherent plan iff there exists a sequence of warranted claims that

satisfy the conditions of Theorem 7 of [16] for the same plan u.
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9. Proofs.

Proof of Lemma 1. Conditions (4.1), (4.4), and (4.6) follow easily from

the definitions of L, V, and Q. (Notice that the V/L and Q/L ratios in (4.4)
are expected values .of bounded payoffs in the finite range of U(e).)
Conditions (4.2) and (4.3) follow straightforwardly from (2.2) and the way
that é and G are derived from F. Compactness of G follows from
upper-semicontinuity of F (2.3) and Caratheodory's theorem.

To show that (4.5) is satisfied, we use a fixed-point argument. Let A\
be given as in (4.5). For any (7,0) in A(C)T x A(S), define K(7,0) so that

(v,0) € K(v,0) 1iff o is in the convex hull of F(\,Y), 7 € A(C)T, and

£ T 7(c|t) ofs) Ulc,s,t) = max T o(s) Ulc,s,t), VteT.
ceC se€S c€C se€S

Using upper-semicontinuity of F, it is straightforward to show that K satisfies
all the conditions of the Kakutani fixed-point theorem, so there exists some
(7.0) such that (7,0) € K(¥,0). Let u=X* ¥ * g. Since o is in the convex

hull of F(A.?). # is in G. Furthermore, L(ujt) = A(t) for every t, and

T © ulc,slt) U(c,s,t)/A(t) = & L 7(cit) a(s) U(c,s,t)
ceC se€S ceC sE€S

> T F 7(cir) 8(s) U(S(c).s,t) = V(i &, rft)/A(r)
ceC se€S

for every t and r in T and every 8§ in D. Thus u satisfies condition (4.5).
Q.E.D.

Proof of Theorem 1. Let w be any strongly attractive reference allocation

such that |w(t) - w(t)| < {V(ult) - w(t)} for every t such that
V(glt) 2 w(t). Let X(t) =1 if v(uJt) = w(t), and let X(t) =0 if
V(ult) < w(t). Condition (3.1) and the equations in (4.6) than imply that

the statement XM * u and the reference allocation w would satisfy
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conditions (5.5) and (5.8). Clearly A(E) =1, so X * u is not null. If
A ¥ u were in G, then X * u would be credible with respect to the strongly
attractive vector ;, which is impossible. Q.E.D.

Given a negotiation problem as defined in Section 4, let M be a number
such that

M 2> |V(ult)/L(g|t)l VteT, VYueG such that L(ujt) > 0.
Such a bound M exists by condition (4.4).

Lemma 2. Given any w in RT and any E in T, if W(E) < -M then there
exists some u in G such that g is credible with respect to w and L(ﬂl%) = 1.

Proof of Lemma 2. For any small positive number €, define the

correspondence Je:[—M,M]T X [8,1]T i [—M,M]T X [e,l]T so that
(z,m) € Jo(y,2) iff

(1) there exists some g4 in G such that L(ulr) = X(r) VteT, and

2(t) = V(ult)/A(t) 2 V(. 8,01t)/A(r) VD, VteT, VreT,
and
(2) m(t) =1 if y(t) > w(t),

m(t) = ¢ if y(t) < w(t)

m(t) € [e,1] if y(t) = w(t).
Condition (4.5) guarantees that Je(y,A) is a nonempty set. Condition (4.1)
and the assumption that G is compact and convex guarantee that Je(y,x) is

convex and that Je is upper-semicontinuous. Thus, by the Kakutani fixed-point

(v_.,A_.). Clearly,

theorem, there exists some ,
(ye Ag) such that (ye.Ae) € Jo (¥ xg

Ae(t) =1, since ye(t) > -M > w(t). Notice that Ae(t) =g if
ye(t) < w(t), and Ae(t) =1 if ye(t) > w(t). Let He be chosen to
satisfy (1) when z =y = ye and m = X\ = Ae.

By compactness, we can assume that the sequences {ye}, {\_.}, and {ﬂe}

€
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are all convergent as € goes to zero. We let y, X, and x denote the limits
of these sequences. Notice ﬁ € G, because G is compact. For any t in T,
if y(t) < w(t) then X(t) =0, and if y(t) > w(t) then X(t) = 1. Thus,
for any t in T,
V(ult) + (1 - L(ult)) w(t) = (y(t) - w(t)) x(t) + w(t)
= max{y(t),w(t)}.

Thus, (5.5) is satisfied by u. Furthermore,

A(r) ¥(t) = X(r) lim y_(t) 2 X(r) lim Q(ye,a,r|t)/xe(r)
-0 -0

= V(g 8,r/t)
for any t, r, and §. (Notice that, if X(r) = L(mjr) = 0 then

V(i,8,rlt)

0, by continuity (4.1) and boundedness (4.4).) Thus,
V(uit) + (1 - L(ult)) w(t) = max{y(t),w(t)} 2 X(r) y(t) + (1 - X(r)) w(t)
> V(md,rit) + (1 - LEIt)) w(t),
so u satisfies (5.6). Finally, L(ﬁIE) - Xt) =1, so 4 is not null. Thus,
M is credible with respect to w. Q.E.D.

Proof of Theorem 2. Notice first that, if a statement u is credible with

respect to w, then there exists a statement ﬁ that is credible with respect
to w such that I . L(ult) 2 1. To prove this, let

o= (1/(max{L(ult)| teT})u.
This u satisfies (5.5) and (5.6) by linearity. Condition (4.2) implies that
(1/(k max{L(ult)| teT}))u 1is in G, for some sufficiently large integer Kk,
and then (4.3) implies that this u is in G.

Now, for any w in [—(M+2),M+2]T, let Hl(w) c RT be defined so that
y € Hl(w) iff there exists some statement u that is credible with respect

to w such that ZreT L(mir) 21 and y(t) = w(t) + L(ult) for every t in T.
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It is straightforward to check that Hl(-) is an upper-semicontinuous and
convex-valued correspondence.

Hl(w) =@ iff w is strongly attractive. Let Hz(w) be defined so that
Hz(w) = {w - lT} if w is strongly attractive, Hz(w) = Hl(w) if w is not
attractive, and Hz(w) is the convex hull of Hl(w) and {w - lT} if w is
attractive but not strongly attractive. It is straightforward to check that
Hz is nonempty-convex-valued and upper-semicontinuous. (Here, lT is the vector
in RT in which all components are egqual to one.)

For any w in [—(M+2),M+2]T, Hz(w) c [-(M+2),M+2]T. To verify this,
notice first that, if vy € Hz(w) then |y(t) - w(t})] £ 1 for every t, so
that y(t) can fail to be in [~(M+2),M+2] only when |w(t)j 2 M + 1. If
w(t) > M, then L(ult) = 0 for any u that is credible with respect to w (by
(5.5) and the definition of the bound M), so that vy € HZ(W) implies that
y(t) £ w(t) <M + 2. On the other hand, if w(t) < -M for some t, then w
is not attractive, by Lemma 2, and so Hz(w) = Hl(w), and so y € Hz(w)
implies that y(t) 2 w(t) 2 -(M + 2). Thus, vy € Hz(w) implies that
v & [-(M+2),M+2]T.

By the Kakutani fixed-point theorem, there exists some w in [—(M+2),M+2]T
such that w € Hz(ﬁ). Notice that w ¢ H (w) for every w in [—(M+2),M+2]T.
so Hz(ﬁ) * Hl(ﬁ), which implies that w is attractive. So w is a convex
combination of the vector w - lT and a vector in Hl(ﬁ). Therefore, by
definition of Hl' there is some number o and some statement u that is credible
with respect to w and such that L(ult) = & for every t in T. Let
A= (1/a) u. Then u € G (by conditions (4.2) and (4.3)), and u is credible

with respect to w. Furthermore, L(u|t) =1 for every t in T, so g is a

coherent plan. Q.E.D.
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