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ABSTRACT

An equilibrium concept is examined for the continuous trading model of
financial securities. This is the Radner equilibrium for the economy in which
consumption sets equal the nonnegative orthant (no bankruptcy is allowed).
Sufficient conditions are given for the existence of rational prices for all
bounded contingent claims and for the equilibrium security prices to admit an
equivalent martingale measure. An example is also given of a securities
market in equilibrium in which rational prices for all finite-variance
contingent claims do not exist and in which the security prices do not form a

martingale under any probability measure.



1. INTRODUCTION

This paper considers a market in which financial securities are
continuously traded. It is assumed that the market is in a state of
equilibrium of plans, prices and price expectations (Radner [22]). Two issues
are examined: Is there a price for every contingent claim such that no
arbitrage opportunity would be created if the securities market were augmented
by an Arrow-Debreu market in contingent claims? Are the security price
processes, properly normalized, martingales?

The first issue arises in the theory of rational option pricing. A
contingent claim (or a contract such as an option) is said to be rationally
priced if it is not possible to make unlimited risk-free profits by trading in
it and in the underlying securities. Following the seminal work of Black-
Scholes [2] and Merton [20] on the pricing of options on a stock whose price
follows a geometric Brownian motion process and that of Cox—-Ross [5] and
Merton [21] concerning particular types of jump processes, Ross [23] posed the
question of whether it is possible to rationally price all contingent claims
simultaneously, when the security prices may be general processes.

To be more precise, assume a probability space (Q,¥,P) is given. A
contingent claim is a random variable x on (2,¥,P). In a given securities
market, there is a linear space M of contingent claims which can be written in
the form x = T + Ge where I is a constant (the initial investment in the
portfolio) and Ge is the capital gains obtained from a trading strategy & (the
precise definition of trading strategies and capital gains will be given in
Section 3)., If the securities market does not itself admit an arbitrage
opportunity, then for any such x the investment I must be unique. Write

n(x) = I. A contingent claim x has a rational price if there exists a



positive linear functional ¢ on the span of M U {x} such that ¢ = © on M.
Ross [23] shows that if there is no arbitrage opportunity in the securities
market and Q is of finite cardinality then there is a positive linear
functional ¢ on the entire space of contingent claims such that ¢ = ®© on M.1
Thus all contingent claims can be rationally priced. Harrison and Kreps [13]
extend this result, showing for general Q that all finite-variance contingent
claims can be rationally priced (with the linear functional ¢ being in fact
strictly positive) by assuming that the securities market is in what could be
called a "frictionless—markets equilibrium."2

One aspect of the frictionless markets hypothesis is that traders are
allowed to choose negative consumption levels. For example, a trader can
finance risky investments by borrowing at the risk-free rate of interest,
resulting in negative net wealth in bad states. This cannot occur in a Radner
equilibrium, since creditors would find their consumption plans frustrated.
If there is no institution which prevents the choice of negative consumption
levels by traders, then the burden of preventing such choices must be borne by
the equilibrium security prices. The prices must cause markets to clear and
traders to choose nonnegative consumption plans. Typically there will not
exist prices which can accomplish this, as an example in Section 2 should make
clear.3

In order to have a theory which applies to a reasonably rich set of
economies, a different equilibrium concept is required. The most appropriate
seems to be that of a Radner equilibrium with consumption sets taken to equal
the nonnegative orthant of the space of contingent claims (i.e., no
bankruptcy). In economies with only finitely many states of the world, the
existence of such equilibria has been established by Cass [4], Duffie [9] and

Werner [25]. Duffie [8] has proven the existence of equilibria of this type



in certain economies with general state spaces.

In this paper it is assumed that the economy is in an equilibrium of this
form. As in Harrison—-Kreps [13], traders in the economy consume a single good
at each of two dates, indexed O and T. There is a risk—-free asset. The
numeraires at dates O and T are chosen so that the risk-free rate of interest
is zero. The remaining securities are indexed n = l,...,N. The price of
security n at date t € [0,T] is a random variable Z: with domain (Q,Jt,P),
where the ¥, are an increasing family of sub o-fields of ¥. All securities

are in zero net supply. Traders have endowments ey, er, where e, > 0 and eg

0

is a nonnegative random variable on (2,¥,P). An equilibrium, to be defined
more formally in Section 3, is a collection of security price processes,
security trading strategies and consumption plans such that the goods and
securities markets clear and such that consumption plans are utility
maximizing subject to the nonnegativity and budget constraints.

The results concerning contingent claim valuation are as follows. All
bounded claims can be rationally priced. However it need not be the case that
rational prices exist for all claims with, say, finite variance. In fact, an
example will be given of a securities market in equilibrium in which it is not
possible to rationally price all claims whose p-th power is integrable, for
any p < », This obviously contrasts with the result for the finite model and
also with the Harrison—-Kreps [13] result for frictionless-markets equilibria.

The martingale property is intimately related to the existence of
rational prices for contingent claims. The connection is elucidated by
Harrison and Kreps [13] and remains true in the presence of the no-bankruptcy
rule. Let LP denote the space of random variables on (Q,¥,P) whose p-th power
is integrable, for a given 1 < p < », Harrison and Kreps consider the case

p = 2, but the argument applies generally. The result is that, if Z: € Lp for



each n and t, then all the claims in 1P can be rationally priced if and only
if there exists a probability measure Q on (Q,¥) such that the Radon-Nikodym
derivative %% exists and belongs to 14 (where-i +'§ = 1) and such that each
process 7" is a martingale under Q. The probability measure Q is called an
"equivalent martingale measure” (a precise definition is given in Section 4).

If some trader has a von Neumann-Morgenstern utility function, then the

Radon-Nikodym derivative‘gg can be taken to be his marginal utility of final

dp
wealth (scaled so has to mean one). Let p, denote the conditional expectation
d
of E% with respect to ft, the expectation being with regard to the measure

P. For the process (Z:) to be a martingale under Q is equivalent to the
process (ptZZ) being a martingale under the original measure P. Thus the
existence of an equivalent martingale measure is an analogue for the
continuous trading model of the asset pricing equation derived by Lucas for
the discrete-time, infinite horizon model (equation (6) in [17]). In other
words, it is an expression of the Fuler equation for the portfolio choice
problem. Bewley [1] discusses the economic significance of the scaling of
prices by marginal utilities in Lucas's model; it amounts to normalizing
prices, including that of the consumption good, so that the marginal utility
of the unit of account is constant across states.

The existence of an equivalent martingale measure is also of technical
interest. For example it would imply that continuous price processes are of
unbounded variation, since the only continuous, bounded-variation martingales
are constants (Elliot [10], Lemma 11.39). A direct proof of this fact is
given by Harrison, Pitbladdo and Schaefer [11].

It turns out that an equivalent martingale measure (with Radon-Nikodym
derivative in Ll) exists if each Z: is bounded and if in equilibrium the no-

bankruptcy constraint is not binding for some trader. By "not binding” it is



meant that the trader chooses a consumption plan which is bounded away from
zero. By assuming a sufficient degree of risk-aversion, one might be able to
deduce that such a consumption plan will be chosen. However this seems
somewhat unsatisfactory, since it is usually in the presence of risk
neutrality that the martingale property is sharpest (no change of probability
measure is required).

The aforementioned example will demonstrate that the existence of an
equivalent martingale measure is not implied by the aggregate endowment of the
economy being bounded away from zero. This would be sufficient in a
representative agent setting; however, in general, the no-bankruptcy rule may
preclude the arbitraging which otherwise leads to the martingale property (and
to the existence of rational contingent claim prices).

The organization of the paper is as follows. Section 2 presents a simple
example of an economy in which no frictionless—markets’equilibrium exists.
Section 3 describes the general securities market model. Section 4 states the
results concerning the existence of rational option prices and equivalent
martingale measures and also states the main features of the example. Proofs

are in Section 5 and the details of the example in Section 6.
2. EXISTENCE OF FRICTIONLESS-MARKETS EQUILIBRIA

Consider an econmy with one good, two consumers, two states of nature (L
and H), two securities (a stock and a bond) and two dates. Each state of
A | . . .
nature has probability o Each consumer is endowed with 3 units of the good
at date zero and 1 unit (resp. 5 units) at date one in state L (resp. state
H). Each consumer formulates a plan (xo,xL,xH) for consumption at date zero

and state—contingent consumption at date one. The utility function of



consumer 1 is
U, ( )—()+l()+l()
1 XO’XL’XH = qu XO 2 u XL 5 u XH

where u is a monotone, strictly concave function on RBR. The utility function

of consumer 2 is
U, ( ) = Fex 42
2 ¥o**e) T X0 T2 XL T2 *we

The securities are defined by their prices at date one (before payment of
dividends) in terms of the consumption good at that date. The bond price is 1

in each state. The stock has price %-in state L and-% in state H. Each

security is in zero net supply.

A securities price system consists of date-zero prices for the bond and

stock, Py, and Pg respectively. Consumer i chooses bond and stock holdings, bi

and s;, and a consumption plan (xiO’XiL’xiH)' If markets are frictionless, he
maximizes his utility over the set of consumption plans (xo,xL,xH) € B for

2
which there corresponds some (b,s) € R satisfying:

s 3s
< — — -
X, + p]b + P S 3, X <1+b+ 5 s Xy <5+ b+ 5

There is one price vector (pb,ps) at which markets will clear, when the

consumers' choice problems are of this form. We must have P, = P, = 1 for the

second consumer {who is risk-neutral and does not discount the future) to have

Il
£~
-

a maximum. At these prices the first consumer chooses b1 = =4 (fully

51

insuring) and the second consumer will accept b2 = =4, S, 4. The

consumption plans are: X190 = ¥ = ¥1g = 3, Xpq = 3, Xop, = -1, Xyp = 7.



It cannot be regarded as an equilibrium phenomenon that consumer 1 is
planning to consume 3 units in state L, when only 2 units will exist. By
trading in the risk-free asset consumer 1 has extended a loan to consumer 2,
on which the latter will default. The only conclusion that can be reached is
that no frictionless—-markets equilibrium exists.

1f consumers are constrained to choose bundles in mi, then there will
exist a market-clearing price vector at which consumption plans are truly
consistent. This is the type of equilibrium to be studied in this paper. To
see that such an equilibrium exists here, observe that there are enough
securities to span the states of nature (if one makes the change of variables
q, = (3pb/2) P and 4, = Pg ~ (pb/2), then the budget equations collapse
to: r + qrx; + qu¥y < 3+ qp + SqH) so one can implement an Arrow-Debreu

equilibrium for the economy in which consumption sets equal Ri.
3. THE MODEL OF SECURITIES MARKETS

3.1. Uncertainty. Denote the set of states of nature by Q. Information
concerning which is the true state is assumed to be symmetric across agents.
At the final date it is represented by a o-field ¥ and at each prior date s by
a o-field IS, where ¥ = ; F c ¥ (i.e. the Js form a right—continuous

trs

filtration). Agents are also assumed to hold the same subjective probability

measure P. Without loss of generality it is assumed that each subset of each

P-null event in # belongs to each Jt.

3.2. Economies. Consumption occurs only at date zero and at the final
date T. Let L denote the family of random variables on (R,F,P). Identify

random variables which agree almost surely. The notation "x > y" will mean



X > ¥ a.S., et cetera. Denote the class of essentially bounded random
variables by L®, and, for any 1 < p < », let LP denote the class of random
variables x satisfying E{|x|p} { », These spaces are of principal interest;

however the commodity space of each economy is taken to be simply B x L. Let

L+ = {x € L|{x > 0}. Denote by A the class of triples a = (eo,eT,>) where
ey € R+, er € L+ and > is a complete transitive reflexive binary relation

on B x L _ satisfying (monotonicity) if T >r', x> x' and (r,x) # (¢',x")
then (r,x) > (r',x'); (convexity) the set {(r',x")|(r',x') > (r,x)} is convex
for each (r,x) € R+ x L+; and (continuity) if (r,x) > (r',x') and ((rv,xv)) is

X lim r -rj =20
a sequence from R+ L+ such that v-+w| v | and

. 2, _ . - '
llmv-+wE{va—Xl } = 0, then there exists v such that (rv,xv) > (r',x")

for each v > v. An economy consists of a H-tuple of agents @ € A,

3.3. Remarks. One might also want to assume that agents' preferences
are "proper” (see Mas—Colell [18] or [19]). This assumption has been used
extensively in the recent literature on existence of equilibria in infinite-
dimensional spaces. It has the effect of ensuring the existence of supporting
hyperplanes to agents' upper-contour sets. The separating hyperplane theorem
is at the heart of the argument that options can be rationally priced (see in
particular Kreps [15]), so it is natural to inquire whether properness might
be of some importance. It does not seem that it is. For the positive result
of this paper, Theorem 4.3, it is not necessary to assume properness. The
negative result, Example 4.5, involves only risk-neutral agents. Risk-neutral
preferences are proper, since they are represented by linear utility
functions. The only role for properness would seem to be that of enabling one
to deduce that the linear functional in Theorem 4.3 belongs to, e.g., LZ, but

. . 2 )
one must also know that the functional agrees with ™, on L N MZ in order to



conclude that contingent claims in 12 can be rationally priced, and I can see

no way to prove this.

3.4, Trading Strategies. A trading process for a (risky) security is

taken to be a bounded real-valued function on Q@ x [0,T] which is measurable

with respect to the predictable c—field.4

It will always be assumed that
there exists a riskless asset which earns a zero rate of interest. A trading
strategy consists of a trading process for each risky security, from which a

trading process for the riskless security is defined implicitly by the

requirement that the total portfolio be self-financing (see below).

3.5. Price Systems. Following Harrison-Pliska [12], a security price

process is taken to be a nonnegative semimartingale. A price system is an N-

tuple of security price processes, where N may be any natural number. Given a
; 1 N . 1 N

price system Z = (Z°,...,Z") and a trading strategy 8 = (8 ,...,9 ), the

capital gains process is defined to be the stochastic integral5

I o~3z

_ t .n n
(6e2), = jo o, dz_.

n=1

As mentioned before, a price system always implicitly includes a constant
0
price process ZO. Take Zt = 1. The trading process for security zero is then
defined by
0 0 Y a.n n,n
0, = (Bez)_ + 8] + ) [6,2y = €.Z,.1
n=]1
For each price system Z set MZ = {1 + (9°Z)T|I € B, 6 is a trading

strategy}. This is the set of marketed contingent claims. An NAO (No
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Arbitrage Opportunity) price system is a price system Z with the property

that (O-Z)T = 0 for each trading strategy © satisfying (e'Z)T > 0. If Z is an

NAO price system and m € M, then there is a unique I € R such that

Z

m=1+ (9°Z)T for some trading strategy 6. 1In this case define nz(m) = I,

3.6, Equilibrium. For each agent a = (eo,eT,>) € A and each NAO price

system Z, let Ya(z) denote the set of budget-feasible net trades:

Y (2) = {(r,x) e Rx Llr + e

0>O,X+eT>0,xEMZ,r+1cz(x)<0}.

The set of demands is

£ (2) = {(r,x) € Ya(Z)|(;+e0, )_c+eT) > (r+e, xre ) |¥(x,x) € v (2)}

An NAO price system Z is an equilibrium price system for an economy

(al,...,aﬁ) if there exist net trades (rh,xh) € £ (Z) such that thlrh =0

H

and Zh=lxh =

0.

4. RESULTS

4.1, Definitions. For 1 < p € =, an NAQ price system Z has the lfl

extension property if there exists a strictly positive linear functional ¢ on

LP such that ¢ = 1_ on P n MZ (by "strict positivity” it is meant that

Z

¢(x) > O whenever x > 0 a.s. and P{w|x(w) > 0} > 0). An equivalent martingale

measure for a price system Z = (Zl,...,ZN) is a probability measure Q on
(Q,¥) such that (i) for each B € ¥, Q(B) = 0 iff P(B) = 0, and (ii) for each

n n
s £t, eachn=1,...,N, and each B € Js, fBZS(w)dQ = fBZt(w)dQ.
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4.2. Remarks. The LP extension property is what was termed in the
introduction "the existence of rational prices for all the contingent claims
in LP,” with the exception that it requires strict positivity of ¢. Given the
monotonicity assumption on preferences, this is necessary if there is to be no
arbitrage opportunity in the Arrow-Debreu market on M n Lp.

If Z admits an equivalent martingale measure Q, then it must be an NAO
price system, because the capital gains process defined by any trading
strategy will be a martingale under Q. Furthermore Z must have the L”
extension property, since the functional ¢ defined by ¢(x) = fo(w)dQ will
agree with n, on Lm n MZ. The LP extension property for p < = is actually
equivalent to the existence of an equivalent martingale measure Q for which
the Radon-Nikodym derivative %% belongs to LY (where é-+ i = 1). This is the
connection between option pricing and the martingale property established by
Harrison and Kreps [13].

If Q were a finite set, one would have L = LP for each 1 < p € @, and the
L-extension property would be equivalent to the existence of an equivalent
martingale measure. Furthermore (Harrison-Pliska [12], Theorem 2.7) each NAO

price system would have the L-extension property. In this respect the no-

bankruptcy rule is an insignificant market friction in finite models.

In the following, Li+ denotes the set of x € L2 with the property that,
for some constant & > 0, x(w) > & a.s. The appearance of 12 rather than some

other LP is due to the nature of the continuity assumption on preferences.

4.3, THEOREM. Let Z = (Zl,...,ZN) be an NAO price system.

(a) There exists a positive linear functional ¢ on L such
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= @ N .
that ¢ nz on L MZ
(b) 1If there exists an agent o = (eO,eT,i) € A and a net trade

(r,x) € Ea(Z) such that x + e, € Li+, then Z has the L extension property.

T
If in addition Z: € L for each n € {1,...,N} and t € [0,T], then there exists

an equivalent martingale measure for Z.

4.4, Remarks. Part (a) of the theorem is essentially proven by Ross

{21]. The proof of the first of part (b) follows Harrison-Kreps [13],

(=~
exploiting the fact that the nonnegative orthant of L has a nonempty norm

interior, The proof of the second part of (b) combines the argument of
Harrison-Kreps {13] discussed in Remark 4.2 with an argument introduced into
economics by T. Bewley and M. Majumdar (use of the Yosida-Hewitt [25]

P . . 1 . «© . ] .
decomposition to obtain a continuous linear functional on L  having a "price

representation”).

The details of the following will be given in Section 6.

H
) and an

4.5, Example., There exists an economy (eO h=1

h*®Th*<h
equilibrium price system Z for this economy such that each of the following

conditions are satisfied:

ZHe e’
h=1"Th +H°

b. ZE € Lco for each n € {l1,...,N} and t € [0,T].
Ce Z is not a martingale under any probability measure.

d. For any 1 € p < », there does not exist a positive linear functional

P
¢ on LP such that ¢ = nz on L. N MZ.
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5. ©PROOF OF THE THEOREM

LEMMA. Let Z be an NAO price system. Set K = {x € L n Mz|nz(x) = 0}.
Suppose { is a nonzero positive linear functional on ’ satisfying (x) € O
for each x € K. Let 1 denote the constant function on @ which takes the value
1. Then, for each x € L n MZ, nz(x) = §(x)/C(l).

Proof. Choose ; € L such that C(;) < 0. For some scalar e > O,

L+ € ; € L:. Hence §(l) > -« C(;) > 0. Now recall that 1 € MZ and that

nz(i) = 1. Consider x € L. N MZ' Set b = ﬂz(x)- Then X - bi € K and

bl - x € K. Therefore L(x) = C(bl) = bC(l)- []

Proof of (a). Let J = L:\{O} and X = {x € L” n Mz|nz(x) = 0}. The sets

J and X are convex and disjoint, and J has a nonempty interior in the L~ norm
topology. Hence there exists a nonzero continuous linear functional  on L~
satisfying £(x) > L(y) for each x € J and y € K. (Dunford-Schwartz [7],
Theorem V.2.8). Since 0 € K n ¢l J, it must be that £ € O on K and § > 0 on

J. Thus, by the lemma, ¢ = n_ on L nM

7 7 where ¢ is the positive linear

functional with values ¢(x) = §(x)/C(l).

Proof of (b). Let (;,;) € ga(z) and & > O satisfy x + er > 6 a.s. Let

= {x € L”|(T+e_, x+e +x) > (r+e_ , x+
J {x L I(r eo, X eT x) (r eo, X eT)}

and let K be as in the lemma. The sets J and K are convex and disjoint. By
(=]
the monotonicity assumption, L+\{0} c J, so J has a nonempty interior in the

[o-]
L norm topology. Hence there exists a nonzero continuous linear functional
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£ on L~ such that £(x) > C(y) for each x € J and y € K. (Dunford-Schwartz
[7], V.2.8). Clearly C > 0 and 0 > {(y) for each y € K, The functional { can
be identified with a finitely additive set function on (Q,F¥). The same symbol
C will be used to denote this set function, no confusion being likely.

Let T = Cc + Cp be the Yosida-Hewitt [27, Theorems 2.3, 1.23]

decomposition of L. There exists a sequence of sets Ek € JF such that

lim  P(E,) = 0 and lm T (E ) =0 but CP(Q\Ek) = 0 for each k (Yosida-

o

Hewitt [1952, Theorem 1.22]). Also CC > 0 and Cp > 0. We will show that
C=Oo
p
Assume Cp # 0. Then Cp(§+eT) > é'deCp > 0. Hence there exists € > 0
h X . = - (% ;
such that Cp(x+eT) > eg(l). Let X, el (x+eT)’lEk here iEk denotes the

function which takes the wvalue 1 on Ek and 0 elsewhere). Then
T (x,) = €C (1) - C_(xte
505 () - T Gerey)

<et (D - et(D)

-eC (1).
CN

Moreover

lim L (x,) = €L (1) + lim fEk(§(+eT)dr,C
= e¢ (1)
o\~

by the continuity of the indefinite integral. Hence limk>mC(xk) < 0., From

this it follows that X ¢ J for sufficiently large k. But
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which converges to zero as k+ ®., Therefore the monotonicity and continuity
assumptions imply that xk € J for large k. This contradiction establishes
that £ = O.
P
Define Q(E) = C(E)/C(Q) for each E € . Then Q is a probability measure

on (Q,¥). Also, for each x € L n MZ,

_ 1 - L(x)
JxdQ = wgy Ixdt = 2y

Hence, by the lemma, fde = nz(x).

If P(E) = 0 then O(E) = 0 since { represents a linear functional on L.

Consider any E € ¥ for which P(E) > 0. Let Yy = 1. -2

i
~E tong., Sinee

x + e € L++, we have X + e

T + Yy € L+ for sufficiently large k. By the

T
montonicity assumption, iE € J. Moreover E[(YleE)z] = 4_kP(Q\E)-+ 0 as
k + », Hence Vi € J for sufficiently large k by the continuity of
preferences. This implies that C(yk) = C(E) - Z_kC(Q\E) > 0. Since one of
C(E) and C(Q\E) must be positive, it follows that L(E) > 0. This implies
Q(E) > 0. Hence the linear functional x =+ fde is strictly positive, and,
moreover, condition (i) of the definition of an equivalent martingale measure
is satisfied.

It remains to show that Z is a martingale under Q. Fix n,

1

s £t and B € 38. Consider the trading strategy 06 = (© ,...,GN) defined by

o" =0 if m # n, e:(w) =1if s <t <tandBe7, and o%u) = 0 if
T £ (s,t] or B ¢ 38. This is indeed a trading strategy, since 8" is adapted

and left-continuous. Set x = (S-Z)T. Then X € MZ and ﬂZ(X) = 0. Since
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n n . . .
X = (Zt - Zs).iB’ this implies that
n n
Z - = 0.
J3(z -2 )40 [l
6. THE EXAMPLE

6.1. Information. Fix a countable partition 0 =tk < t1 {eoel t_ =T of

0

the interval [0,T]. Denote by Q the space of triples (i,j,k) of positive

integers satisfying i < j and k € {1,2}. Throughout the remainder of the

paper the letters i,j and k will be used exclusively to denote the first,

second and third coordinates, respectively, of a typical state w € Q. The
variables t; and tj will be random trading dates (stopping times).

Deterministic dates will be denoted by t and tn. Set 3t = {0,Q2} for t <

t
2’ m

tye Fornm> 1l and t <t <t let Jt be the o—-field generated by the
n

n+l’

partition consisting of all the (singleton) events [i=R, j=m, k=1] and
[i=2, j=m, k=2] where & < m < n, the events [i=f, j > n] where % < n and the

event [j > i > n]. Note that the events [i < n] and [j < n] belong to Jt .
n
Set F =F_ = VvV F (which is just the discrete o-field). Let P be the

T _ , 1.2 1. m-2
measure on (Q,F) defined by P[i=R, j=m, k=1] = P[i=R, j=m, k=2] = (5) CE)

1.2
for all & < m. Observe that P[i=R] = 2(3) for each & and

that P(Q) = P[i>1] = 1.
6.2. The Economy. There are two consumers. Let e01 = e02 = l. Set

eTl(i’j’k) =1 if j is an odd integer and eTl(i,j,k) =0 if j is even. Set

= - >
eTz(w) 1 eTl(w). Let >

= >, be represented by the utility function

6

1 2
E{x]/5 for (r,x) € R+ X L.

]
[a]
+

u(r,x)
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6.3. The Price System. There are two risky securities.7 Let

1 . .
Zt(w) = Zi(w) =1 for each w and t < ty. For 1 € n< <, w=(i,j,k) and

1 1 2 2
< = =
tn t <€ tn+1’ set Zt(w) Zt (w) and Zt(w) Zt (w), where

n n
1 _ 1\ : .
Zt(w)—(/z) if n<i
n
= (i+1)2(l/2)l_1 if n> i,
2 . .
Zt (w) =1 if n < j
n
1 . .
=5 if n>» jand k =1
3 . .
=5 if n > j and k = 2.
. 1 1
See Figures 1 and 2. Set A = Z - Z . Note that
n t t
n n-1
. s n . .
An(l,J,k) = —(L@ ) if n<i
= (n2+2n)( Vz)n—l if n=1
=0 if n > i.

[ INSERT FIGURES 1 AND 2 HERE]

2
6.4. Trading Strategies. For any trading strategy 6 = (91,9 ) the

capital gains earned through T is given by the Stieltjes integral:
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(02)y (1,300 = ] 0p & (1,3, + (-D(Yy)el .

n=l n j
Since 61 is predictable and Jt = Jt for tn—l <t < tn’ the random variable
1 n—1
et is Jt -measurable. In particular it is constant on the event [i > n-1].
n n-1

Since A = 0 on the event [i < n-1], there is no loss of generality in
n

1 1

restricting Gt to be constant on R. Set a = Gt and bn = Gt . A trading
n n n

strategy is taken to be a pair of sequences 9 = ((an),(bn)) where (an) is a

bounded sequence in R, each b, is ¥ -measurable, and for some constant k,
n-1

supn lbn(w)| < ke The capital gains earned through date T is written as
w
b

Ge(w) = anlanAn(w) + (—l)k( Vz)bj(w), where w = (i,j,k).

6.5. Implications of the No-Bankruptcy Rule. For this paragraph fix an

r € B, Let 6 = [(an),(bn)) be a trading strategy satisfying e + Ge > T a.s.

for h=1o0or h =2, We will show that, for each n » 1,

n~-1
-( 1/2 )nan >r + mzl( 1/2 )mam, (1)
n-1, 2 -l m
( 1/2) (n +2n)arl >r + mzl( Y, a . (2)

0
Adopt here the convention that 2 ( Vz)ma = 0,
m=1 m
First we show that (2) implies (1). Suppose to the contrary that (2)

holds for each n but that for some n and € > O,

n—-1
—( 1/2)nan <-~e+t1t+ ) ( Vz)mam. (3)
m=1

Then, for v=mn + 1,
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-1, 2 v=1
(Y)Y TH(vH2v)a >+ }( 1/, )%a
Y m
m=1
>r+ e-r.
Make the induction hypothesis that, for some p > n + 2,

Yy )V_l(v2+2v)av > e (4)

for each v=n+ 1l,eee,p = 1. From (2), (3) and (4) we have

A\

pol 1 ym
r+2(2)am

( Vz)“_l(u2+2u)a
K m=1

n p-1
r+ Y (Y + ] (Yy)Ma
m=1 n m=n+1 m

0

pu—1
r+e-r+ ) ( Vz)(m2+2m) e
m=n+1

A%

Hence (4) must hold for each v > n + 1. But limv_>m( yé)v _1(v2+2v) = 0, so

this contradicts the assumption that the sequence (an) is bounded. We
conclude that (1) holds for each n, provided that (2) does.
Now we verify (2). If h =1 (resp. h = 2) consider the states

w, = (n,2,1), w, = (n,4,2) for some fixed even (resp. odd) integer &. Then

1 2

= = . b = b s i
eTh(wl) eTh(wZ) 0. Moreover X(wl) z(wz) since by is

F -measurable. Letting b = b (w,) = b (w,) we have
o1 21 292

n-1
-1 2 b
Golw,) = (Y, )" (n +2n)an - mzl( Y, )mam -2,
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By assumption e + Ge > r, So

Th

(Y, )" 1(n242n)a_ > r + nil( Y, )y + 2 (5)
2 n ! 2 m 2
m=

Also,

~1¢,2 ngl b
Gglw,) = ( Y, ¥ (n +2n)an - mzl( yz)mam s

SO

n-1, 2 nsl . b
( VZ) (n +2n)an >r + z ( VZ) am - > 6)
m=1
Collectively, (5) and (6) imply (2).

Since the left-hand sides of (1) and (2) have opposite signs, it follows

from (1) and (2) that

n-1 o
r+ Y (Y)"a <o
m
m=1
for each n > 1. For the case n = 1, this reduces to r € 0 (which means that
the trader cannot borrow in order to consume in excess of his endowment in

period zero, if he is to avoid bankruptcy with probability one).

n=0

and the process (bn)r:1 is predictable.

is a martingale with

2
6.6. Expected Capital Gains. The process (Zt )

@

t the filtrati
respect to the filtration (Jt )n=0’

Hence the expected capital gains earned through date T by trading in the

2 2

w®
second security, E[zn=1bn(zt —Zt )], must be zero. The sequence (an) is
n
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bounded in absolute value by some constant Kk, so for any integer N and

w = (i’j’k)’

N izl 17§D s 2, 0:v 17 411
| ) a A (w)] < co[ T (Y™ + @20y Yy )t
n=1 n=1

=xs[1 + (12+21-1)( 1/2 )i_l]

Hence the Lebesque Convergence Theorem yields

©

E[ ) anAn] = 3 a E[A ].
n=1 n=1

Also we have

E[An] -(%?nPli>n] + (%)n-l(n2+2n)P[i=n]

= -+ PV P @G"

(éﬁn(4n2+8n—1).

6.7. A Dynamic Programming Problem. For a given r < 0, let

J(r) = sup{ Z (%)n(4n2+8n—l)an}
n=1

where the supremum is taken over all bounded sequences (an) satisfying (1) and

(2)s We will show here that J(r) = -11r/3; i.e., that the supremum is
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realized at the sequence a, = —-2r, a, = a, = «e» = Qo

1 2 = 23
To this end, let S = [0,-r] x {0,1,2,...} and A = [5,—1»]. For any
(B,v) € S set
-8
Y(B,v) ={y € A| —5—— < y< g}

2v2+8v+6

and if y € Y(B,v), set w(y,B,v) = (4v2+16v+11)y, f(y,B,v) = 2(B-y)/3,
g(y,B,v) = v+ 1. Notice that the pair (f(y,B,v), g(y,B,v)) belongs to S.

Define

V(@) = sup { ] (Yp)M(y ,B v )]

n=0

where the supremum is over the class of sequences (yn) satisfying

> 0 v i .
Yy € Y(Bn,vn) for each n and where the Bn’ , are defined by:

BO = B’ vo =V (7)
Bn+1 = f(yn’Bn’Vn), Vn+1 = g(yn’Bn’Vn)' (8)
We will show that J(r) = -11r/3 in two steps. The first step is to show

that v*(B,v) = (4v2+16v+11)B for each (B,v) € S. The second step is to show
*
that J(r) = v (-r,0)/3.
The function w is bounded below on the set {(y,B,v) € Ax sly € Y(B,v)}

since, on that set,
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2
w(y,B,Vv) = 2(2v74+8vb)y - ¥y
> 3r.

*
Therefore v is the value function of a positive dynamic programming problem

(Blackwell [3]). The optimality equation is:
v(B,v) = sup{w(y,B,v) +1,v(g",v)|y € (B, W} (9)

where B' = f(y,B,Vv) and v' = g(y,B,Vv). Let v(B,Vv) = (4v2+16v+11)B. Then the

right-hand side of (9) equals

sup{ (4v2+16v+11)y +1 [4(w1)2 + 16(v+1) + 11](%)(B—y)|y e Y(8,w)}

it

(%)(4v2+24v+31)8 + sup{(%)(8v2+24v+2)y]y e Y(8,W)}

(D) (4VPH26 w3108 + (3)(8v +24v+2)8

(4v2416v+11)8.

Hence this function v satisfies the optimality equation. Moreover

(4v2+16v+11)B = nZO( Yo ™y LB _,5)

where ;O = B, ;1 = }2 = 4o« = 0, and the sequences <§n)’ (;n) are defined by

(7) and (8). Therefore
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2 %
(4v +16v+11)B < v (B, V).

Since in positive dynamic programming problems the wvalue function is the
termwise smallest of the solutions of the optimality equation (Blackwell [3],

2 *
Theorem 2), it follows that (4v +16vt11)B = v (B,v).

The sequence (; ) ml satisfies (1) and (2), so it must be that
n’n=

*
J(r) » -11r/3. It therefore remains only to show that J(r) < v (-r,0)/3.

Consider any sequence (an)nf satisfying (1) and (2). Set BO = -r and

1

1 1.n
= >0, i = () (= = -
Vo 0. For each n define Yo (2)(3) a1 Bn+1 Z(Bn yn)/3 and
Yo+l = “n + 1.

First we will show that
(y »B»v) € {(y,8,V) € A x 3|y € Y(B,W} (10)

for each n. A direct calculation shows that

2\n_ _ 2.n-m
B =-3% - ] AV
=0
n-1
_ (2\n7__ _ 2-m,1,,1.m
= (3) [-r EO (3) (2)(3) am+1]
n
VAN A lm
= (3) [ r z (2) am]'
m=1
Also (Y0 = (U@ 3™y = (3/22™ Yy, so (1) implies that
n n-1 n-1
Yooy € Bn-l for each n > 1. Similarly condition (2) implies that

(n2+20)( Y, )“‘1(2)(3)“'1yn_1 > —(3/2)“’1811_1

for each n » 1. Equivalently,
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[(n+1)2 + 2(n+1)](2)yn > =B

for each n » 0. Noting that vn = n, we have

Va2 T
2v +8v _+6
n o n
: = - < =2 - 3}0
Since B r>0andy , <B _,» we have B B _ y 1)/ for each
2 -1
n. This implies that 2y > —-(v +4v +3) B_ » =B _. Hence
n g n  n n n
n
= — —_— = /l < -
Bn+l Z(Bn yn)/3 < 2(8n+ 5 )/3 B, In particular, Bn r for each n. 1In

sum, (B_,v_ ) € S for each n. Furthermore Yy € B < -r and

n’ n : n n
Yn > —( VZ)BH > r/2. Hence Yn € A for each n, and the proof of (10) is
complete.

It follows now that

*
v (-r,0)

A\

nZO(Z) w(y »B_»v.)

@ l 0 2
1 GO sy Dy,

1l\n
3) @

_ v (Lyn,, 2 L
= n20(2) (4n +16n+11)(2)( ntl

]
w
o~3
~
o |
~

2
(4n +16r1+11)an+1

37 @41 + 16(a-1) + 11]

n=1

a
n

3] (D" 4n’+8n-1)a
n=1 n



Since (an) was an arbitrary sequence satisfying (1) and (2), we conclude that

%
v (-r,0) > 3J(r).

6.8. Equilibrium. In this economy consumer h chooses a net trade bundle

(r,x) satisfying 1 +r > 0, x + e > 0 a.s. to maximize U(l+r,e__ +x) subject

Th Th
to the budget constraint: x = -r + Ge for some trading strategy 6. Let
r € R and let 6 = ((an),(bn)) be a trading strategy such that
Ge + e > r a.s. From paragraph (6.5) we see that we must have (1) and (2)
and r € 0. From (6.6) and (6.7) we have that

1+ + E[eTh—r+Ge]/5

fl

U(l+r,e —r+Ge)

Th

]

1 + (1/5){E[eTh] +4r + ) (1/6/)n(4n2+8n—1)an}
n=1

N

1+ (1/5){E[eTh] + 4r - 11r/3}

A

1 + Ele..1/5,

Th

and this last expression is of course the utility realized with zero net

trades. Therefore autarky is an equilibrium.

6.9. Nonexistence of a Martingale Measure. Assume that Q is a finite

nonnegative (countably additive) measure on (Q,7) with the property that
[ zidq = [z} (w)aq
B s Bt

for each B € ?S and each s € t. It will be shown that Q = O.
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Let En = {w = (i,j,k) € Q|1 > n} for each integer n. Since En < En and

- +1

n En = P, the countable additivity of Q implies that 1imn)mQ(En) = 0 (see,
n=1
e.g., Loeve [16], p. 85). We will establish by induction that

Q(En) > (n+1)Q(R)/2n for each n, which will yield the desired conclusion.

Since E1 = Q, the inequality to be proven is true for n = l. Assume for

some integer n that Q(Em) > (m+1)Q(R)/2m for each m < n. In particular,

QE ) > (n+1)Q(R)/2n. Tet s =t._q, t =t_and B =E_. Then B is an atom of
n n-1 n n

ZS and it is the union of the sets B1 = {(i,j’k) e Qli > n} and

B2 = {(i,3,k) € Qli = n}, each of which is an atom of 3t- For each w € B, we

have Zi(w) = ( yé)n—l

3 for each w € B Zi(w) = ( Vz)n; and for each

1’
2 -1
w € B2, Zi(w) = (n+1) ( Vz)n « Thus

(Y™ eeB) = (V)" + (Yp)™ me) o(B,).

Since Q(Bl) > 0, this implies that
2

Q(B) > (n+l) Q(Bz)
and, noting that Q(Bl) = Q(B) - Q(By), this yields

Q(B) > Q(B) - Q(B)/(n+1)°

2
= n(n+2)Q(B)/(n+1)

Since By = En+1 and B = En’ we have
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n(n+2) (n+1)Q(R)

QE_, ) > .
n+l (n+1)2 2n

(n+2)Q(R)

2(n+1)

as desired.

6.10. The Extension Property. The existence of optimal trading

strategies, which was established in paragraph 6.8., iimplies that Z is an NAO

price system. Hence nz is well-defined on MZ. Fix 1 € p <=, Tt will be

shown here that there is no positive linear funtional ¢ on Lp such that

¢ = nz on LP n MZ' Actually this can be deduced from paragraph 6.9., since,

as noted in Remark 4.2, the existence of such a functional would imply the

existence of an equivalent martingale measure.8

However it may be instructive
to consider an alternative proof.

It will be shown that in this economy there exists a free lunch, in the
sense of Kreps [15]. Specifically it will be shown that there exists a

sequence of trading strategies Ov which generate capital gains m = G, € L?
\Y

0
\J

that converge in the LP norm to the constant function 1. The LP extension
property must fail in consequence of the fact that

7_(1lim wmv) # llmv

Z v > wnz(mv)

_)
(recall that nz(l) = 1 and that RZ(GG) = 0 for any trading strategy 6) and the
fact that any positive linear functional ¢ on LP must be norm continuous
(Schaefer [22], Theorem II.5.3). The discontinuity of T, would constitute an
arbitrage opportunity in an Arrow-Debreu market, but the no—-bankruptcy rule

precludes its exploitation in the securities market.
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The trading strategy ev will be a truncated "doubling strategy.” It
involves borrowing at the risk—-free rate of interest to finance stock
purchases at date zero. If the stock price falls, more funds are borrowed to
finance additional purchases. This procedure is repeated until either (1) at
some date t < tV the stock price increases, in which event the stock is sold,
the debt repaid, and the profit invested in the risk-free asset, or (2) at
date tv the stock is sold and the proceeds used to repay a portion of the
debt. The larger is v the more likely it is that (1) occurs. However (2)
always occurs with positive probability and the amount of the loss is
unbounded in v. Therefore any trader will go bankrupt with positive
probability if he follows the trading strategy Gv for any sufficiently large
ve In a frictionless market it is possible to borrow at the risk-free rate of
interest to finance such trading strategies, and this accounts for the fact
that Z would not be an equilibrium price system in such a market (since a
trader with monotone and norm continuous preferences would, for any net trade
x, always prefer, and could afford, x + m,, for large V).

To construct the "free lunch,” let a; = 1 and for n > 1, define aj by

2 -1 a5l
(n+1)7°( 1/2 )n a - Z ( 1/2 )ma = 1.
n n=1 m

n m
d = 1 . ifd > 1
Set d_ Zm=1( /7)) a_. Note that if d _, then

n-1 -2 n-1
d = ) (Yp)Ta + (Vp)(rD™[1 + ] (15" ]
n m=1 n m=1 n

<1+ (n+1)~2]d . (11)

n-1

. . _ \ V., @
Define the trading strategy ev = ((an),(bn))n=1 by
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=0 ifn> v

v
and b = 0 for each n. Setting m = Ge we have, for each w = (i,j,k),

\Y

if i € v

I}
f—

mv(w)
= —-d if 1> v

The LP distance between m. and the constant function 1 is

\Y

Py © n_ -vp . -v.p

. = . d l = .

2d7e) _ . (1/3)" =3 d . 1f d <1 for each v, then lim 37 'dP = 0. 1f

dV > 1 for some Vo then dV > 1 for each v 2 VO and in view of (1l1) we can
0

choose p > VO such that

ojw

(d_/a P <1+ (+1)72JP < [1 + (u+1)72]P <
for each n > p. Therefore

A\
37VaP = 37MaPe Y (1/3)d /a P < 37MP/2) Y,
v n=p+1 n n-l1 V)

which converges to zero as v-»«.
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FOOTNOTES
1 Ross suggests that his result is valid for infinite-dimensional spaces
of contingent claims, but the argument seems to be incorrect. Assume Q is an
infinite set. Ross does not specify the space of claims to be considered, but
if it is to be interesting it should at least include L*, the space of
essentially bounded claims. Let X be such a space. Ross says, "endow it with
a strong enough topology to insure that the positive orthant (x € X|x > 0) is
an open set, where x > 0 if x > 0 on all non-null sets with strict inequality
on some non-null set, and x > 0 if the inequality holds on all non-null
sets.” To apply the separation theorem, as Ross does, the topology must be a
vector topology. There is, however, no vector topology on X such that the set
(x € X|x > 0) is open. To see this, choose an X > 0 such that for each real
€> 0 there is positive probability that X < e Since there is no scalar e
such that ; - @l > 0 (here i denotes the constant function which takes the
value 1) the point X is not interior to (x € X|x > 0) in any vector topology
of X (see Kelley-Namioka [14], Theorem 2.5.1 (iv)). Actually, Ross's proof
does not require that the set (x € X|x > 0) be open but only that it have a
nonempty interior (see Dunford-Schwartz [7], Theorem V.2.8). This will be
true if and only if X = Lm. See Theorem 4.3(a) for the case X = ﬁw and
Example 4.5 for a counter—example to Ross's claim in the case

of X = Lp for p  =.
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2 Harrison and Kreps actually do not use the "equilibrium” aspect of
this hypothesis, but only that some trader would have an optimal trading
strategy with markets being frictionless——in their terminology, that the price
system be "viable.” The only viable price systems one might expect to
observe, however, would be ones which lead to an equilibrium of plans. The
point of the argument to follow is that this set of price systems is likely to

be empty.

3 Kreps [15] notes that equilibria may not exist simply because net
trade sets are not bounded below when markets are frictionless. This
difficulty is in addition to that noted in the text. Werner [26] shows for
the case of finite Q that it may be possible to prove existence without net

trade sets being bounded, but his argument does not imply that nonnegative

bundles will be chosen in "equilibrium.” Of course with a representative
agent there will be an equilibrium in which nonnegative bundles are chosen,

since one can support the agent's endowment vector (under minimal

assumptions).

4 All of the results of the paper are valid if one considers instead
only "simple" trading strategies, as in Harrison-Kreps [13]. The example is
in fact more difficult to obtain when one allows a richer class of strategies,
as is done here. The proof of the theorem would require no modifications,
since the important element is the pair (Mz,nz) defined below (which Harrison

and Kreps call a "price system").
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5 For the definition of the stochastic integral of a bounded predictable
process with respect to a semimartingale, see Dellacherie-Meyer [6], Theorem

VIII.3.

1
6 1fxe L+\L+ then E[x] = «, If one insists on a real-valued utility

function then one could use

. r+E[x]/5
u(r,x) = ———————

if x € L
l+r+e[x]/5

=1 otherwise.

However the distinction is immaterial since by construction we will have

1
C .
MZ L
7 The only purpose served by including the second security is to ensure
that # is generated by the price processes. This enables one to state the

result as: there do not exist rational prices for all the LP functions of the

security price histories.

8 To be precise, the existence of a positive linear functional ¢ would

only imply the existence of a martingale measure Q such that Q(E)

0 whenever

P(E) = 0. It would not necessarily be true that P(E) = 0 if Q(E) 0.

However it has been shown that such a measure Q as this is nonexistent.
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FIGURE 1
w = (4, 12, 1)
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FIGURE 2
w = (6, 8, 2)
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