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ARE BAYESTAN-NASH INCENTIVES AND IMPLENTATIONS PERFECT?

by Ehud Kalai and Dov Samet

1. Introduction

Economists have. come to use game theoretic models and solutions in order
to analyze problems involving information and incentives. Gibbard [1973] and
Satterthwaite [1975] attempted to use dominated strategy incentive compatible
revelation games in order to deal with the information and incentives issues
arising in Arrow's [1951] social choice problem. As they and many other
authors discovered, this dominant strategy approach was too demanding and
failed to bring about meaningful analysis. Given the failure of this
approach, Hurwicz [1972], Peleg [1977], Groves-Ledyard [1977], Hurwicz-
Schmiedler [1978], Kalai~Rosenthal [1978], and many others (see Maskin [1985],
Postelwaite [1985], and Roberts [1986] for general studies and references)
have replaced the solution concept of dominant strategy by the weaker notion
of Nash equilibrium and applied it to general classes of strategic economic
games. Their approach paralleled the game theoretic development of the notion
of correlated equilibrium due to Aumann [1974] and has proven to be more
successful.

More recently as researchers wanted to model asymmetries of information
in a more explicit manner, they recognized that many economic situations can
be viewed as the games of incomplete information discussed by Harsanyi [1967-
8]. Consequently, we have seen many economic and managerial problems being
studied and analyzed as Bayesian games of incomplete information. A partial
list of studies of this type includes Wilson [1967], d'Aspermont-Gerard-Varet
[1979], Milgrom—Weber [1982]}, Myerson [1981], Matthews [1979], Milgrom and

Roberts [1982], Harris—~Raviv [1981], Maskin-Riley [1986], Riley—Samuelson



[1981], Crawford—-Sobel [1982], Myerson and Satterthwaite [1976], Postlewaite-
Schmiedler [1986], Palfrey-Srivastava [1986], and Ledyard [1986]. For a
comprehensive survey and study of Bayesian games, implementations, and
incentives, we refer the reader to Myerson [1985].

An active direction of research in game theory deals with the weaknesses
of the Nash equilibrium concept. Selten [1975] has argued that this concept
may predict outcomes which are not likely to occur and proposed a
strengthening of it which he called perfect (Nash) equilibrium. Following
Selten [1975], Harsanyi and Selten [1980], Myerson [1978], Kreps and Wilson
[1982], Kalai and Samet [1984], Mertens and Kohlberg [1982], Bernheim ([1984],
Pearce [1984], McLennan [1985], and others have studied a variety of these
types of modifications. We refer the reader to Van Damme [1983] for a
comprehensive study and a survey of this literature. Recently Forges [1984]
and Myerson [1984] have been developing these concpets further in order to
adapt them better for incentive problems involving communications and other
considerations of this type. However, a major portion of the literature on
incentives uses the unmodified notion of Nash (i.e., Bayesian) equilibrium,
and thus suffers from the weaknesses discussed by Selten. To illustrate an
example of such a weakness and for further discussion we introduce here the

following hypothetical game.

The Confession Game. Two players might have jointly committed an illegal

act. No one but the two of them knows whether they did it. Society would
like to implement the following outcomes. If they did commit the crime then
they should each be penalized (say impose an $M fine on each of them), but
otherwise no penalty should be imposed. It is suggested that this conditional
outcome be implemented by the following game. A representative of the society

will ask each one of them, separately, whether he has participated in the



illegal act. If any one of them admits to it then the penalty will be imposed
on both of them. However, if they both deny the accusation then they will be
let go without penalty.

It is argued that the game suggested above is "Nash incentives
compatible” and that the players will therefore reveal the truth. The
underlying logic is that every player will reason to himself that if his
opponent tells the truth then he cannot gain anything by lying, and thus
telling the truth does mnot contradict his incentives.

Obviously it would be naive to assume that the scheme proposed above is
satisfactory. While it is possible that a criminal player would not lose by
telling the truth it is very likely that he would. If there is-any
possibility that his criminal partner would lie then he would also prefer to
lie (we assume here that there is no inhergnt satisfaction from telling the
truth). Lying is a dominant strategy for a criminal player in this game.
When we apply Selten's perfect equilibrium notion to the analysis of this game
it selects for us what we consider to be the more reasonable prediction, that
they would deny having committed the crime under such a scheme.

A main purpose of this paper is to report general circumstances under
which incentives and implementations are perfect in the sense of Selten. In
the process of doing that we introduce a general decomposition property of
Bayesian games and exhibit a structural theorem relating perfect equilibrium
to this decomposition. The perfect equilibrium notion that we use is
sometimes referred to as “"trembling hand” perfection as opposed to "subgame
perfection.” In other words, we use Selten's original terminology.
Perfection of an equilibrium is a stronger requirement than subgame
perfection. For example, in the confession game discussed earlier, the "bad”

equilibrium is still subgame perfect. The same relationship holds with Kreps



and Wilson's notion of sequentiality.

For a strategy to be a Nash equilibrium it is required that
simultaneously every player's equilibrium action be an optimal reaction to his
opponent's equilibrium actions. For a strategy to be a perfect equilibrium it
is further required that every player's equilibrium action be an optimal
reaction to some interior strategies of his opponents which are arbitrarily
close to their equilibrium actions. As usual, a strategy of a player is
called interior if there is a positive (however small) probability that he
would take every action available to him at every state of his information.
This can be viewed as a minimal continuity or robustness requirement on the
proposed equilibrium concept. An important implication of this condition is
that optimality is tested not only at the equilibrium point, but also at some
interior points in every neighborhood of it. This is important because it
rules out knife-edge strategic stability which is based upon players assigning
certainty (probability one) to their conjectures on the actions of their
opponents. Under such idealized certainty the players can get locked in
unbelievable behavior which is really not credible if any small doubt enters
their considerations. Consider, for instance, the confession game discussed
earlier. True revelation is optimal to a criminal player if he is certain
that his opponent reveals truthfully. However, if there is any small positive
probability that his criminal opponent does not reveal truthfully then his
only optimal reaction is to lie. Thus the true revelation could not be a
perfect equilibrium behavior of the criminal player.

In the next section we formally introduce the notions of Bayesian game,
Nash equilibrium, and perfect (Nash) equilibrium. We basically follow the
notations and conventions as in Myerson [1985] for the Bayesian games and

their Nash equilibria. For the prefect equilibrium concept we use the



definition described in Kalai-Samet [1985]. It is easy to verify that this
definition is equivalent to the original one given in Selten [1975].

The Bayesian games studied here may be thought of as n person two-stage
extensive form games. In the first stage nature draws a type for every one of
the n players from a commonly known probability distribution on the finite set
consisting of all type combinations (n—tuples of types). After the draw every
player is informed about the realization of his type and only his type. In
the second stage, simultaneously, every player chooses an action from a finite
set of actions available to him. The set of actions available to a player is
the same regardless of the particular type realization. At this point the
game is over and every player is rewarded a von Neumann-Morgenstern utility
level which is determined by the realized type and action combinations.

The third section of the paper is devoted to the study of special
families of Bayesian games and the relationship between their Nash and perfect
equilibria. The family of revelation games consists of the ones in which the
set of actions available to every player consists of his set of types. Thus
in such a game we may think of an action of a player as being a declaration
(possibly a false one) of the type that he is. For example, the confession
game discussed previously is such a game. A revelation game is called
incentive compatible if declaring one's true type by every one of the players
turns out to be a Nash equilibrium. The revelation games have special
importance in the incentives literature because of the "revelation
principle.” This useful principle states that to every Bayesian game with a
choice of a Nash equilibrium outcome, we can associate a derived incentive-
compatible revelation game in which the truthful playing yields the same
outcome. Thus in classifying the set of outcomes that may result from the

Nash equilibria of a given family of games, it suffices to restrict our



attention to the set of outcomes that result from truthful play in the derived
incentive—~compatible revelation games.

A somewhat broader family of games consists of what we call delegation
games. In a delegation game every player is prescribed an action for every
one of his type realizations. We refer to these prescriptions as
guidelines. We say that a delegation game (and its guidelines) are incentive
compatible if the total obedience strategy by all the players turns out to be
a Nash equilibrium. Mathematically these games turn out to be very similar to
the revelation games. Indeed formally every revelation game can be viewed as
a delegation game (with the guidelines being for every player to reveal his
true type). Because of this fact the “revelation principle"” induces
immediately a "delegation principle.” This latter principle says that to
every Bayesian game with a choice of Nash equilibrium outcome, we can
associate a derived incentive-compatible delegation game in which obedient
playing yields the same outcome.

Because of the importance of revelation and delegation games we are
interested in knowing when such incentive-compatible games are perfectly
incentive compatible. By perfect incentive compatibility we mean that the
truthful or the obedient strategies are perfect, and not just Nash,
equilibria.

As we report in Section 3, for a significant class of revelation and
delegation games, being incentive compatible is equivalent to being perfectly
incentive compatible. This class is characterized by the property that the
types of each player are what we call personal. For a given Bayesian game we
say that it has personal types if two conditions hold. The first condition is
that the types of the various players are drawn independently (in the

probabilistic sense). The second condition is that the individual player



payoffs are private. This means that a player's payoff depends only on his
type and the action combination of the group of all players. However, given
his own fixed type and given a fixed group action combination his payoff will
not be affected if we vary the types of his opponents (provided that their
actions are not changed). The confession game discussed earlier violates the
independent type assumption (the types there~—criminal or not—-—are completely
correlated) but satisfies the independent payoff condition.

As it turns out, many Bayesian games satisfy the two conditions just
discussed. For example, most of the Bayesian game papers cited earlier make
use of these conditions. The two main results of section 3 state that if an
incentive—compatible revelation or delegation game has only personal types
then it must be perfectly incentive compatible.

In section 4 we discuss the relationships between Nash implementability
and perfect implementability of an outcome function. We define the notion of
an n-person Bayesian environment to consist of four components. The first
component describes again the finite sets of possible type realizations for
every one of the n players. The second component is a commonly known
probability distribution on the set consisting of all possible type
combinations. The third component is a finite set describing all the possible
outcomes in the environment. The fourth component of the Bayesian environment
consists of a von Neumann-Morgenstern utility function for every one of the
players. We assume that a player's utility depends on the choice of an
outcome in the environment and on the type combination of the n players. 1In
such an environment it is assumed that after the initial drawing of a type
combination, every player is informed of his own particular type. Based on
this information, and his updated probabilistic belief regarding the type

combination of his opponents, a player has an ex post preference over the



possible outcomes in the environment. As in the case of Bayesian games we say
that the environment consists of personal types if the types are independently
drawn and every player's utility depends on the outcome and only on his own
type.

An implementer in a Bayesian environment wishes to bring about an outcome
for every combination of types. The implementor may be a public agent with an
interest in maximizing some social welfare or he may be a private agent
pursuing his own private interests. For example, a public agent may want to
bring about a Pareto optimal outcome for every combination of type
realization. A private implementor may be a seller selling an object to the n
players, and his interest may be to bring about the outcome that will maximize
the total revenues that he can receive from every configuration of buyer
types. Generally, what the implementor wishes to implement, is an outcome
function, which is a function assigning a probability distribution over the
set of outcomes for every type combination. However, the implementor may face
two difficulties. First, becuase of their own strategic considerations, the
players may not reveal their true types to the implementor. The second
difficulty may come up in situations where in order to bring about a certain
otucome the players themselves have to cooperate by taking some necessary
actions, and the implementor does not have the authority to control their
actions. In order to have a unified model that covers all the different types
of implementors we take the following approach.

We define a Bayesian game in a given Bayesian environment as a pair
consisting of two components. The first component has a set of actions
available to every one of the n players. The second component is a result
function which assigns a probability distribution over the set of the

environmental outcomes to every action combination of the players. But the



utility functions that the players have over the environment's outcomes
induces a utility function over the players' actions. Thus every Bayesian
game in the given Bayesian environment induces a regular Bayesian game in one
natural way. In this way the notions of Nash and perfect equilibrium get
extended to games in the environment.

We assume that an implementor in a given Bayesian environment is
described by a family of environmental games from which he has the authority
to select one. This family describes the amount of control that he has. For
example, if the family of games available to him is a singleton, then he has
"no real control and the players will play this one given game. On the other
extreme, a social implementor, for example a legislator, can have much control
in the sense that his family of games may be large and he can choose the
"rules of the social game"” from many available ones. Interesting implementors
are intermediary ones with partial control. For example, a seller wishing to
sell an object can consider many different auction methods. Each choice of an
auction method would mean one choice of a game from his available set. It
would be reasonable to assume that if he is a private seller then his family
contains all the legal auction methods provided that they include the action
"do not participate™ in the feasible action set of every one of the players
(buyers).

We say that an outcome function is Nash implementable in a given Bayesian
environment by a given implementor if his family of implementing games
includes a game with a Nash equilibrium that yields this outcome function.
Similarly, an outcome function is perfectly implementable if the implementing
Nash equilibrium is perfect.

The main result of section 4 is in illustrating that in a Bayesian

environment with personal type, an implementor can Nash implement a given
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outcome if and only if he can perfectly implement it. This equivalence is
illustrated under the assumptions that the family of implementing games is
complete (as defined there), and is a mathematical corollary of the results in
the previous section.

In section 5 we discuss briefly correlated equilibria which may be viewed
as equilibria in Bayesian games. Our results for general Bayesian games show
that those correlated equilibria which correspond to totally mixed strategy
equilibria of the game in normal form are perfect. This result is not just a
corollary of the trivial fact that totally mixed strategy equilibria of games
in normal form are perfect.

In section 6 we deal with Bayesian games having a general type structure
(not necessarily personal types). We show that the type combinations in such
a game can be decomposed into cells of personal types. Such a decomposition
separates the types of every player by two characteristics. One
characteristic is public and its realization may affect the other players
through the probability of their own type selection and through their
payoffs. The other characteristic is personal and its realization does not
affect the other players in either of these two ways. We show that every
Bayesian game has such a unique coarsest personal type decomposition. It
turns out that the perfect equilibrium notion on Bayesian game factors nicely
through the type decomposition. For a strategy combination to be a perfect
equilibrium it suffices that it be a best reply to an arbitrarily close
strategy combination which is interior but only relative to the personal
decomposition. By being interior relative to the decomposition we mean that
in every cell of personal types, the cell types use all the available
strategies among them (rather than every type uses all of the strategies). It

is then obvious to see that the results in sections 3 and 4 follow immediately
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from this general result when the decomposition involved is the trivial coarse
decomposition, i.e., consisﬁs of only one such cell.

In section 7 we give two examples of Bayesian games which demonstrate
that neither independence of types nor private payoffs is enough to guarantee
perfection even when the probability of each type combination is positive.

One of the examples shows in particular that totally mixed correlated

equilibria are not necessarily perfect.

2. Definitions and Notations

We define an n—person Bayesian game G by a set of players N = {1,2,...,n}

and by a four tuple

G=(T=XT ,A= X A., P u=(u sU_yeee,U ))0
. i 1" 2 n
i€N

The interpretations of these symbols are as follows.

T; is a finite set describing the possible types that player i may turn

out to be.

Ai is a finite set describing the set of actions that player i may

take. He can take any of these actions regardless of his type.

p is a probability distribution on T. Thus, for t = (tl,tz,...,tn), p(t)
is the prior probability that player one would be of type t;, player two

of type ty, etc. We assume throughout this paper that for every player i
and every t; € T; the marginal probability of type t; being chosen is

positive (P(ti) > 0).

u; describes the utility of player i as a function of the collective

action that is taken and of the types of all the players. Thus
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uj AXT->1R.

We may think of the game G as an extensive form game being played in two
stages. First, nature selects a type for each player resulting in a t €T
according to the probability distribution p. Now, simultaneously, every
player discovers his own type and proceeds to choose any one action from his
set of actions Aj. In his choice of an action he can use randomizations over
actions. This process results in a pair (a,t) which yields to the players a
vector of utilities u(a,t) = (uj(a,t),...,u,(a,t)).

Since the actions of this game involve randomizations, we extend the
utility functions by the usual expected utility rules. If r is a probability

distribution on A X T then

u, (r) = L. u (a,t)r(a,t)
(a,t)€EAXT
For a vector v = (vl,vz,..., vi,...,vm) and a scalar w; We use the

conventions

(v_i) = (V]sVgseeesVi]s Vip]seeesVp), and

(v_i: Wi) = (vl’v2"“’vi—1’ Wi vi+1,...,vm).

Also, for any finite set M we use the symbol A(M) to denote the set of
probability distributions on M. Thus, g € A(M) means that g: M > R, g(m) > 0
for every m € M, and 2 g(m) = 1. The int A(M) denotes the distributions that

meM

put positive probabilities on every element of M (g(m) > O for every m € M).

A strategy of player i1 is a function

;¢ Ti > A(Ai)
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We denote the set of all strategies of player i by S; and we let

S = X §. denote the set of strategy tuples of the n players.
i€N
A strategy s; 1is called completely mixed for type ty if

Si(ti) € Int A(Ai). s; is called completely mixed if it is completely mixed

for every t; € T;. A strategy tuple s is completely mixed if all its si's are

completely mixed.
For a given strategy tuple s € S and a types vector t € T we use s(t) to
denote the probability distribution induced on A when each player plays his

randomized strategy independently of the others. Thus, for every a € A

s(t) (a) = I (Si(t'))(a')'
ieN 1 1

Now we can extend the utility functions uj; to be defined on S x T, in the

natural ways as follows

u. (s,t) = ) s(B)(a)u (a,t)
1 a€A 1

u,(s) = ) wu (s,t)p(t).
1 t €T 1

We also define p(t‘ti) to be the conditional distribution on t given that

player i is of type ti» p(ti) is the marginal distribution of p on T; and

u (sfe,) = tzT u, (s,0)p(t]t,)

his expected utility conditioned on his type. We will also use other standard

notations for conditional and marginal probabilities as necessary. Observe
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that
(*) u (s) = ) u (s|tdp(t)
t. €T, i i
il
In general if {Ll’LZ""’Lm} is a partition of T then
w (slL) = ] u (s,e)p(e|L)
t€L
k
and

m
u, (s) = kzl u, (5|1, )p(Ly)

We define the best reply (b.r.) strategies as follows. For a strategy

. th,

tuple s and player i s strategy r; € S; we say that r; € b.ri(s) (really of

s_;) if ui(s_i: ri) = max{ui(s_i: qi): q; € Si}. For r,s € S we say that

r € b.r(s) if r.

i € b.r;(s) for every i € N. We say that a strategy tuple £

*
is a Nash equilibrium if £= € ber.(f").

We say that £ is a perfect (Nash) equilibrium if there is a sequence of

completely mixed strategies ff -+ £% and £F € ber.(ff) forr = 1,2,.e. . In
*

other words, f is a best reply to a sequence of completely mixed strategies

approaching it. It follows immediately that a perfect equilibrium is a Nash

equilibrium.

3. Games, Revelation Games and Delegation Games with Personal Types

We say that the types in a Bayesian game are personal if two conditions

hold:

1. Statistical Independence, i.e., p(t) = I p(ti) for every t € T;
i€eN

and

2. Private Payoffs, i.e., if t, t € T with ti = Ei then

u;(a,t) = uj(a,t) for every a € A.
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Observe that many games are of this type. For examples all games
involving exchange of commodities for which players have private valuations
and types are drawn independently fall into this category.

A strategy s; € S; is completely mixed relative to Ty if for every

aj € A; there is a type t; € T; with (si(ti))(ai) > 0. Thus being completely
mixed relative to T; is much weaker than being completely mixed because it is

not required that every type of player i completely mixes his actions but only

that the group as a whole completely mix their actions.

Theorem 3.1. Let G be a game with personal types. A strategy tuple s* is a
perfect equilibrium if and only if there is a sequence of strategy tuples

* *
s¥ > s” with s° € b.r.(sY) and each sg being completely mixed relative to T;.

Proof. This theorem follows immediately from its generalization which is

proved in the following sections.

Corollary 3.1l. 1In a game with personal types if a Nash equilibrium is

completely mixed relative to the Ti's, then it is perfect.

*
Proof. Choose s = s~ for each r.

A game G is called a revelation game if A; = Ti for every player i. 1In

other words the strategies of the players are to declare their type (with the
option to lie).

A revelation game is called Nash incentive compatible if playing honestly

is a Nash equilibrium. In other words, the strategy defined by
(si(ti))(ti) = ] for every i € N and every t; € Ti is a Nash equilibrium.

A revelation game is called perfectly incentive compatible if playing

honestly is a perfect Nash equilibrium.
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Corollary 3.2. A revelation game with personal types is Nash incentive

compatible if and only if it is perfectly incentive compatible.

Proof. It is obvious that the honest strategy is completely mixed relative to
T; for every player i. Thus, if honesty is a Nash equilibrium then it must be
perfect equilibrium.

By a delegation game we mean a Bayesian game with a vector of functions

g = (gl,...,gn) such that each g4 is a function from Ti onto A;j. We refer to

the functions in g; as the individual guidelines. Since each g; is onto it
follows that in a delegation game |Ai| < |Ti| for every player i.

A delegation game is (or its guidlines are) Nash incentive compatible if

obedience to the guidelines is a Nash equilibrium. In other words the
strategy tuple s defined by (si(ti))(gi(ti)) = 1 is a Nash equilibrium.

Similarly, it is perfectly incentive compatible if s is a perfect equilibrium.

Observe that every revelation game is a delegation game in one natural
way when we define the guidelines to be honest revelation. Also with these
guidelines every Nash incentive compatible (respectively perfectly incentive
compatible) revelation game is a Nash incentive compatible (and respectively
perfectly incentive compatible) delegation game. However, not every
delegation game is a revelation or even strategically equivalent to one. If
every guideline function of the delegation game is one-to—one then it is clear
that the delegation game is essentially a revelation game (the only difference
is that the names of the actions may not coincide with the names of the
types). But if the guideline functions are not one-to—one then we have a
delegation game with ,Ail < 'Til for some players and thus it cannot be a
revelation game.

Observe, however, that the well-known "revelation principle” induces

immediately a "delegation principle” which states that every Nash equilibrium
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f a Bayesian game induces a Nash incentive compatible delegation game with

the same payoff distribution. This follows immediately from the revelation

principle and the fact that every revelation game is a delegation game.

Corollary 3.3. A delegation game with personal types is Nash incentive

compatible if and only if it is perfectly incentive compatible.
Proof. This is also an immediately consequence of Corellary 3.1l.

4. Nash Implementability and Perfect Implementability

In this section it would be convenient to introduce a universal set of
outcomes over which the types of the players have preferences. As the players
play games, outcomes in this set will result, yielding utility to the players
through their preferences over the outconmes.

We first describe an n—person Bayesian environment by

E=(T=xT, P, Cy u= (u,,u

. geee,Uu ))'
jey & 172 n

Each T; is a finite set describing the types of player i, p is a probability
distribution on T with p(ti) > 0 for every player i and every t; €Ty, C is a
finite set of outcomes, and every u; is a von-Neumann Morgenstern utility

function representing the preferences of player i, u;: C X T » IR,

it

To illustrate such an environment consider the confession game described
in the introduction and the following Bayesian environment. N = {1,2} are the
two players, T} = T, = {H,C} denote whether a player is the honest or the
criminal type, and p(H,H) = 1 - &, p(C,C) = ¢, p(H,C) = p(C,H) = 0 describes
the probabilities of the type combinations. The relevant set of outcomes

(penalties) here may be modeled as C = Rg (= emf) and the utility of player 1

(and similarly player 2) may be viewed as
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u((=x, -y), t) = -x

for every one of the possible four type combinations.

Now we define a Bayesian game in the environment E by a set of actions

A= x A, and a resulting outcome assignment R: A > A(C). While we have now
i€N
defined the notion of a Bayesian game twice we observe that a Bayesian game in

the environment E described by a pair (A,R) induces a Bayesian game
(T, A, P, u) in one natural way. The T, A and p components of the Bayesian

game are the same while the utility functions u; are extended from the

environment to the game by

ui(a,t) = ui(R(a), t)

Returning to the confession game environment described above we could

describe the scheme of the introduction as the following game G.

Ay = Ay = {A,D}, standing for Admit and Deny,

=

Pan

S

[w)

N’
il

= (0,0) with probability one and,

=
~~
[~
o>
o’
i

R(A,D) = R(A,A) = (_M)_M)

with probability one.

The induced utilities here are then for i = 1,2 and every type combination t

ui((D,D), t) 0, and

u; ((D,A), t) = uj((A,D), t) = u;((A,A), t) = -M.
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We are interested in the question of what outcome functions can be

implemented by an implementor. An outcome function is a function

0: T > A(C). The implementator may be a public or private agent and may have
a variety of incentives in implementing various outcome functions. There are
two problems that the implementor may face. First, he may not fully know the
types of the players. Second, he may not be able to fully control their
actions. We assume that he has some control over the rules or the choice of
the game that will be played. The implementor hopes that by choosing the game
cleverly and assuming a type of solution regarding the players' behavior he
may be able to bring about the outcome function that he chooses.

We let T be a set of Bayesian games in the Bayesian environment E and

refer to them as the implementation games. The interpretation is that these

are the games from which the implementor can choose.

We say that an outcome function O is Nash implementable by I' if there

exists a game in I with Nash equilibrium strategy tuple that induces the
outcome function O. Formally, there should be a game (A,R) in T with a Nash

equilibrium strategy tuple s* such that for every t €T

] R(a)s (t)(a) = O(t)

acA

Namely for every type combination t at the Nash equilibrium s* the players
should take actions that induce the distribution 0(t).

Similarly we say that an outcome function O is perfectly implementable by

*
T' if there is a perfect Nash equilibria strategy s which implements O.

What is implementable obviously depends on the solution concept. It is
clear that every perfectly implementable outcome is Nash implementable but not

the converse. Also what is implementable depends on the set of games T
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available to the implementor. The larger I' is the more outcomes it may
implement. For example, returning to the confession games, the outcome

function that we want to implement there is

0(c,Cc) = 0(H,C) = O(C,H) = (-M,-M) with probability 1,

and O(H,H) = (0,0) with probability 1.

If we let T = {G} consists of the game described above (i.e., the scheme from
the introduction), then since true revelation is a Nash equilibrium of G we
would say that T Nash implements O (I' also Nash implements the total denial
strategy). However, I' does not perfectly implement O. It is interesting to
see that by enlarging I' society can perfectly implement this desired O. The
tradeoff in doing this is that the implementor may punish the innocent players
harder than before (only off the equilibrium path). Consider the game Go

defined as follows:

Al =4 = {A,D} as before but

£
~~
o>
o
N
I

= (-M, -1.5M) with probability 1,

£
~~
o
o>
N
I

= (-1.,5M, -M) with probability 1,
R(A,A) = (-M,-M) with probability 1,

R(D,D) = (0,0) with probability 1.

In other words, Gy is designed to punish a single denier harder than a
confessor. If we let T = {G,GZ} then T' perfectly implements O by using Gp in
which true revelation is a perfect equilibrium.

One assumption that is necessary for our implementability equivalence

theorem is that I' is rich enough. It will state that the implementor,
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starting from every feasible game in I' can reduce it by crossing out actions
which are not used at a Nash equilibrium of this feasible game. More formally
we say that T is complete if for every G = (A,R) € T and every Nash

*
equilibrium strategy s of G the game

- * —
G (s )=(x Ai’ R) €T
i€N
where

*
A, = {ai €A;: for some e, €T, (Si(ti))(ai) > 0}.

(See Remark 4.1 for further discussion.)

We say that a Bayesian environment E consists of only personal types if

as before the types of the players are statistically independent, and their

preferences are private, i.e., for every i € N and ¢ € C, uj(c,t) = ui(C,E)

whenever £ = t;»

Theorem 4.1: The Equivalence of Nash and Perfect Implementability. In a

Bayesian environment consisting only of personal types with a complete set of
implementation games the sets of Nash implementable outcome functions and

perfectly implementable outcome functions coincide.

Proof. We only have to argue that every Nash implementable outcome is
perfectly implementable. But if O is Nash implementable by a game G and a
Nash equilibrium s* then it is Nash implementable by the game G—(s*) where the
strategy tuple s* (with a little abuse of notations) is also a Nash
equilibrium inducing 0. But by Corollary 3.1, s* is a perfect equilibrium of

G_(s*). Thus O is perfectly implementable by I.

Remark 4.1. The condition that I is complete means that the implementor can

impose a game where actions that are not used at a given equilibrium are
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omitted. This assumption is consistent with the philosophy of the
implementation literature that we follow in this paper. In this literature it
is implicitly assumed that in the case of multiple Nash equilibrium the
implementor would have a way of choosing the final one. Our completeness
requirement is a weak version of this assumption because it only assumes that
the implementor chooses the family of actions that may be used at this
equilibrium strategy (rather than the exact strategy). A stronger assumption
would have been to let the implementor choose any subset of the players'
actions. This would have been too strong because one of its implications
would have been that the implementor (remembering that he may be a private
agent) can force the players to actions which would yield less than
individually rational payoffs. For example, a seller of an item with such a
power can force his buyers to pay for his item much more than their valuations
for the item. This of course could not happen under our completeness
assumption.

We also note that a similar theorem could have been attained by other
notions of completeness. For example, starting with a game G = (A,R) and a
Nash equilibrium s*, we could have required that T include the games
6 = (;,R) where the actions available to player i are the mixed strategies

induced by his types, i.e.,
A= s ()t Ti}.
Notice that the game G is equivalent (up to names of actions) to what is known

*
as the revelation game induced by G and s . We then in effect could apply the

revelation principle and Corollary 3.2 to obtain the same result.
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5. Correlated Equilibria

The implementation problem, described in section 4, is that of finding
sets of actions A; for the players and an outcome assignment R defined for
these actions given the types T; and the probability distribution p over
types. The designed actions and outcome assignment with the given structure
of types generate a Bayesian game as described above. The mediation problem
treated in this section is reversed. The actions of the players A; and the
utilities resulting from these actions are given to the mediator (i.e., the
mediator faces a game in normal form). What has to be designed is a message
n
X

space T; for each player i and a probability distribution p on T = T,.

The Bayesian game is then defined as follows. The mediator choosesizlin T
according to the probability distribution p, each player i is informed of his
type tj and chooses accordingly an action a; € A;j. One can easily verify that
an "instruction principle” analogous to the "revelation principle” holds for
the mediation problem. That is, any distribution over outcomes that can be
achieved by such games can be achieved also if we confine ourselves to message
spaces T; = Ay and to equilibria of the Bayesian game in which each player
chooses the action given to him as a message.

In terms of the definitions of section 3 such Bayesian games are Nash
incentive compatible. (Of course, the interpretation of these games is
different here; "types” should be replaced by “"instructions” and “revelation”
by "obedience.")

Now let g = ((Ai)iEN’ (Ui)iEN) be a game in normal form. Let p be a
probability distribution over A = X A, and let G(p) be the Bayesian game

i€EN
described above. We say that p is a correlated equilibrium in g if G(p) is

Nash incentive compatible, i.e., if "obeying"” is a Nash equilibrium in G(p).

Similarly, p is a perfectly correlated equilibrium of G(p) if it is perfectly
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incentive compatible.

Applying Theorem 3.1 to correlated equilibrium yields the following.

Corollary 5.1: Let p be a correlated equilibrium. If p > 0 and instructions

are drawn independently for each player then p is a perfect correlated

equilibrium.

Proof: In the game G(p) types are personal, since statistical independence is
assumed and payoffs are independent of types and therefore are private. Since
p > 0 the requirement that each type is drawn in some positive probability is
also satisfied.

The corollary appears to be vacuous, because when instructions are drawn
independently the correlated strategy p corresponds to an equilibrium in the
game g. Each player can draw his instruction independently of the others and
obey his instruction which seems to be tantamount to playing mixed strategy.
But then if p > 0 we have a totally mixed strategy equilibrium in g which is
perfect by definition.

This argument is flawed. Indeed our correlated equilibrium p corresponds
to a totally mixed strategy equilibrium in the sense that both yield the same
distribution over outcomes. But these two equilibria are two'distinct
equilibria in two different games. One is a real mixed strategy equilibrium
in g; the other is a pure strategy equilibrium in G(p). This mathematical
difference between playing the mixed strategy p in the game g and playing the
pure obedient strategy in the game G(p) can be interpreted in terms of
commitment. The question whether to obey the result of a random choice of
action is left open in G(p) while in g playing the mixed strategy should be
interpreted as a commitment made by the player before the choice has been made

to obey it. This distinction is crucial, for example, in the minimax theory
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as is shown by Aumann and Maschler [1972]; mixed minimax strategies cannot in
general be supported if players are not precommited to obey the results of the
random choice.

Corollary 5.1 should be understood, then, as asserting that perfection
unlike minimax theory, is not affected by precommitment in games in normal
form. A totally mixed strategy equilibrium remains perfect even if players
can disobey the result of randomization.

In Example 2 of section 8 we show that this perfection is due not only to
total mixture but also to the independence of players' randomization. Indeed
correlated equilibria which are independent in this sense may fail to be

perfect even when p > O.

6. General Type Decomposition

If B is a partition of a set S and s € S then we let B(s) denote the

element of B containing s. Given a Bayesian game we say that

L= (Ll,Lz,...,Ln) is a decomposition of the type space T = X Ti if for
i€N
every i

12 (i)
Ly = (LisLiseeesly )

is a finite partition of Tj. For t €T we let

L(t) = x L_(t)
jey *

and refer to it as the cell of L containing t. Obviously L generates only

finitely many distinct cells. By a personal type decomposition we mean a

decomposition L = (Ll,Lz,...,Ln) satisfying the following two conditions:



_26_

1. Types are consistently independent relative to the decomposition L, i.e.,

p(t|L(£)) = T p(t |L (£,)) for every t € T.
. itTitTi
i€N
2, Payoffs are private relative to the decomposition L, i.e., for every

t €T and every t € L(t) if ty = Ei then ui(a,t) = ui(a,E) for every

a € A.

Notice that personal type decompositions always exist because the trivial fine
decomposition, Li = ({ti})t.ET.’ trivially yields a personal decomposition.
Also, if L is the coarse trivi;l decomposition, Li = (Ti), then we are back in
the special cases discussed in the previous sections.

To illustrate a personal decomposition consider an example where two
players are about to engage in a bidding game for a bottle of old wine. Each
of the two players could be of three possible types, denoted by CH, CM, and
D. The type CH is one who plans to consume the wine and has a high valuation
for this act. The CM type is also a consumer but his desire to drink the wine
is moderate. The D type, on the other hand, is a dealer who thinks that this
wine has a high potential future value. Suppose that the prior distribution

on type combinations is as follows:

CH CM D
CH A x 7T x .7 b4 x 7 x .3 o1 x .7
CM 4 x 3 x 7 A ox 3 x .3 .1 x .3
D A1 x 7 .1 x .3 4

This probability distribution satisfies the consistent independence condition
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relative to the partition illustrated in the table. The partition cells have

the following probability distribution

C D
C .4 .1
D .1 .4

and within the cells the types are consistently independent with

p(CH|C) = .7 and p(cM|C) = .3

The condition of private payoff for this decomposition would require that a
consumer of any type should not care against what type of consumer he won (or
lost). A dealer type should not care against what type of consumer he won (or
lost) buy may care to know that he won (or lost) against another dealer.

A strategy of player i, s. € S;

i ij» is completely mixed relative to a

partition L; of player i types, Ty if all the actions of player i are used by

1’
the members of every element of his partition, i.e., for every Li € Ly and for

every a; € A there is a type t; € Lg with si(ti)(ai) > 0.

A strategy s € S is completely mixed relative to the decomposition L if

for every player i s; is completely mixed relative to the partition L;.

Consider, for example, the bidding game described above with the choice
of bid high and bid low available to all types and the following strategy for
every one of the two players. Bid high if you are CH and bid high with

probability .50 if you are of type D. Clearly this is not an interior
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strategy but it is interior relative to the decomposition.

%
Theorem 6.l. A strategy tuple s € S is a perfect equilibrium if and only if
for some (and equivalently for every) personal type decomposition L there

%
exists a sequence of strategies st > s  with every st being completely mixed

%
relative to L and with s being a best reply to each st.

Proof. The "only if" direction is obvious by the definition of perfect
equilibrium and the fact that the trivial fine decomposition is personal. To
prove the "if" direction we assume the existence of a sequence sT as described
in the theorem and will construct a sequence of strategy tuples gr > s*, gr

being completely mixed and with the property that for every player j:
(*) u,(g_.: h,) = uj(s .2 h.)

%
for every hj € Sj' Thus, since s 1is a best reply to s¥ it would also be best

reply to gr showing that s* is a perfect equilibrium. For t; € T; we let

T ~ r
ar(t,) = GLZ(t ) sl )/t (e )]
€ii

Thus ag(ti) is the average action of types of player i which are personally

equivalent to tj. Since the si's are completely mixed relative to Ly it
follows immediately that the ag(ti)'s are completely mixed for every t;. Now

we define gi by
g:(t.) = [1 - 1/rp(t |L (£ ))1s;(t.) + [1/rp(t |L (£.))]a; (x,)
1 1 1 1 1 1 1 1 1 1 1 1

It is obvious that for sufficiently large r's gg is a well-defined completely
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mixed strategy with g{ > s;. Now, since for any strategy s,
uj(s) = g uj(slc)p(C) (where we sum over all the cells generated by L) it
suffices to show that (*) holds conditionally on C, for each cell C.
Moreover, since the strategies g{ are defined on a cell C, only in terms of
the restrictions of the strategies sg to types in C, we may analyze the
restriction of our game to types in C as a complete Bayesian game. Thus we

assume without loss of generality that the game has only one such cell and

that L is the coarsest decomposition, i.e., for i = 1,2,...,n,

Li = (Ti)’
Li(ti) = Ti’

lLiCepd| = |1,

1]

o
2]

Il
&~

r r
ai(ti) Si(ti)/|Ti|’ and
tiETi

g,(t,) = [1 - 1/(rp(t,))1s (t) + [1/(rp(e,))]a)

It would suffice to show (*) for this special circumstance. We show indeed

r r
that for each type t: € T. and h, € S; u,((g ., h,)|t.) =u.((s ,, h.)]|t.).
TPe 73 J J P U ey By I j IR R | b

From this (*) follows because for any strategy s,

u,(s) = t.éT' uj(s]tj)p|tj).
J 3

We observe now that if a game has only personal types than uj(a,t) = uj(a,tj)

and for every strategy tuple f,

f -
w (e, azA uj(a’tj)(fj(tj))(aj)[ieg\j t'éT. (£,(t,))(a p, (£ )]
1 1
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So, for our g' strategies and any strategy h.j of player j

r —
u (g hj)}tj) -

Y u,(a,t )h (t))a)[ T (g5 (t.))(a, )p. (t,)]
aeN 3 3 31 J iEN\jtizTi 11

h r
azA u, (2t ) j(tj))(aj)[ieg\j t.gT. (s;(£;))(apIpy (2]
1 1

= T . .E.D.
u (G b e)) Q

Clearly the usefulness of Theorem 5.1 depends crucially upon the
availability of "coarse” personal decompositions (for the trivially fine
decomposition Theorem 5.1 does no more than repeating the definition of a
perfect equilibrium). It is therefore useful to know that a unique coarsest
personal decomposition C = (Cl,Cz,...,Cn) exists. Also each one of its
individual partitions C; can be constructed independently without having to
construct all the C;j's simultaneously.

For a subset of player i types, D.

; £ Ty, we say that D; is a set of

1

personal types if

1. p(t_ildi) = p(t_i,Di) for every di € Dy and t_; €T and

i -i’

di)) for every j # i, t_; €T d

20 Uj(a,(t_i: di)) = uj(a,(t -i _i’

-4t i

L
di € Di and a € A.

The following are two obvious facts.
1. If B;y and D; are sets of personal types and B, nD; # § then By U Dy

is a set of personal types.
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2. {ti} is a set of personal types for every t; € T

It follows immediately that there is a unique coarsest partition of Ty to

sets of personal types. We denote this partition by Ci = {C;,Ci,...,Cf(l)}

and refer to it as the coarsest personal type partition of player i. Observe

that it follows immediately that a partition B; is personal to player iif and

_____ i+ We define C = (Cl,Cz,...,Cn) as the

coarsest personal type decomposition. This terminology is justified by the

following theorem.

Theorem 6.2. L is a personal decomposition of the type set T if and only if

for every player i L; is a refinement of Cj.

Proof. Let L = (Ll’LZ""’Ln) be a decomposition of T, we want to show that
it is a personal decomposition if and only if for every player i L; is a
personal partition of T;. We first show that if L is personal then for every
player i, for every Lg € Ly, for every a,b € Lg, and for every t_; € T_j,
P(t_i a) = p(t_i b) (and hence = p(t_i L;)).

Let L = L(t_;: a) = L(t_;: b). Then from the definition of L being

-4*

personal we obtain that
p((t_;: )|L)/p(a) = p((t_ : b)|L)p(b)
it follows that

p((t_,: a))/p(a) = p((t_.: b))/p(b)

and hence
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p((t_ [a)) = p((t_ [b)).

Next observe that if L is personal and c,d € Li for some element of the

partition Li then for every j # i for every t_;. €T

i —i> and for every a € A

u,(a,(t ,: ¢)) =u, ((a,(t ,: d)))
3 -1 j -i

because (t_i: c) and (t_j: d) belong to the same cell of L. Thus we conclude
that if L is a personal decomposition fhen every L; is a personal partition
and must be refinement of C;.

Now, to prove the other direction of the theorem, assume that L is a
decomposition with each of its L;'s being a personal partition (hence a
refinement of Ci)’ We want to show that for every cell t, L(t) satisfies
conditions (1) and (2) in the definition of a personal decomposition. To see
that the second condition holds assume that for player i t € L(t) t; = Ei and
a € A, Then from the fact that Lj(tj) (=Lj(Ej)) is personal for all j, it

follows that
ui(t) = ui(tl,tz,...,ti_l,ti,ti+1,...,tn)

= ui(tl,tz,...,ti_l,ti,ti+1,...,tn)

ui(tl,tz,...,ti_l,ti,ti+1,...,tn)

ui(tl,tz,...,t t,, t,

i-—l, i, 1+1,oo-,tn)o
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We can change one coordinate at a time because in each change we only
change the coordinate of one player j without leaving his Lj(tj) and thus not
affecting the payoff if 1 (i # j and no change was necessary for 1i).

Condition 1 in the definition of a personal decomposition follows from
the identity:

s

P(i:1 L (ep) x {t—{l,Z,...,s}}) B
s+l

p(ts+1'I"s+l(ts+l))p(]._:

L (£) x {t_{ }}) for s = 0,1,2,+..,n-1

Q.E.D.

1 1’2’...’S+1

7. Examples

The truth revealing equilibrium in the Confession Game described in the
introduction fails to be perfect. 1In terms of the conditions guaranteeing
perfection in Corollary 3.2, this is due to the statistical dependence of
types. But this game has also the special feature that although each type of
player has a positive probability, there are type combinations which have
probability zero. One might suspect that when p > 0 (i.e., when every type
combination is possible) one of the conditions defining personal types is
superfluous. the next two examples show that even when p > O neither
statistical independence nor private payoffs can guarantee alone the

perfection of truth revealing equilibrium.

Example 7.1: The Insufficiency of Statistical Independence of Types Alone.

In the following revelation game there are two players, I and II. The sets of
types and actions are: A) =T, = {tl,tz}, A2 = T2 = {sl,sz}, and the
probability distribution of types is p(t;) = p(t,y) = p(s;) = p(sy) = 1/2.

The payoffs for I are given by:
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type $1 type s
S S2 S S2
t] 1 0 1 0
type t1
ty 0 2 0 1
81 52 8 S2
t] 1 0 2 0
type t2
to 0 1 0 1

We assume for simplicity that player II's payoffs are constant in the game.
Truth revealing is an equilibrium; player II is clearly indifferent between
playing s; and sp. As for player I, each one of his types is indifferent
between playing t and t,; in either case, his expected payoff is 1/2. For
example, as type t; when he plays t; he is paid 1 with probability 1/2 (the
probability that player II is of type s; and therefore plays sl) and he is
paid O with probability 1/2 (the probability that player II is of type s) and
therefore plays 32)‘ So in particular truth revealing for player I is a best
response to the truth revealing of player II.

Now suppose that player II deviates from truth revealing and he plays

(1 - €1 el) as type s) (i.e., he plays s; with probability 1 - €; rather
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than 1), and (€9, 1 - &9) as type 52( €15€9 > 0). As type ty, player I when
playing t; is paid: 1/2(1 - €]) + 1/2e5 and when playing tj:

1/2(281) + 1/2(1 - €2). So I will not choose the truth (i.e., playing tl) if
2€1 < 281. Similar computation for type t, shows that player I will not
choose the truth (i.e., t2) if 2e; < 3ey. Since one of the inequalities
always holds it follows that truth revealing for player I is not best response
for any deviation of player II from truth revealing. Truth revealing is

therefore not a perfect equilibrium.

Example 7.2: The Insufficiency of Private Payoffs Alone. In the revelation

game G, there are two players, I and II. Types and action sets are
2
Al =Ty = {tl,tz,t3} and Ay = Ty = {51’52}° The probabilities p(ti,sj) are

given as entries in the following table:

P(tiysj)
51 $2
to 1/9 2/9

The payoffs in the game are independent of any type.
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11
Sl Sz

t) 3,0 0,0
Ity 0,0 3,0
tg 2,0 2,0

Since the payoffs of each player are independent even of his own type a truth
revealing equilibrium can be interpreted as a correlated equilibrium.

Truth revealing (or obedience) is an equilibrium in this game. Player II
is always indifferent between his two actions. Player I is indifferent
between actions t; and t3 when he is of type t; (his expected payoff is 2 for
either action) and he strictly prefers both actions to t3. A similar result
holds for player I as type tp. As t3, player I strictly prefers action tj3.

When player 11 trembles he plays (1 - €1 81) as type s;, and
(82, 1 - 82) as type sp. When e, < 2¢, player I prefers action ty to t; as
type t; and when € < 282 player I prefers action t3 to t, as player tj.

Under no tremble will player I reveal his type (or obey his instructions) both
when he is t; and t,. It follows that truth revealing is not a perfect

equilibrium and as a result the correlated equilibrium p is not perfect.
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