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It is well known that most large linear programs are solved by the
Revised Simplex with a compact inversion wmethod. Although considerable
research has been devoted to methods for storing the basis inverse with
minimum storage requirements and to finding reinversion procedures that
produce sparse but accurate and easy to use inverses,the major demand on
storage, computational effort, and arithmetic rounding errors has
been the maintenance of the basis inverse.

Now, it is also well known that systems of equations may be solved by
iterative or indirect methods [13]. 1In such methods, an inverse is never
explicitly calculated. Furthermore, by the appropriate choice of iterative
methods, structural data may be used directly in computations. Hence, the
only storage required beyond structural data is the solution vector. Other
advantages of iterative methods are: (1) the prior knowledge of a close
solution vector can be used to accelerate convergence speed; (2) rounding
and arithmetic errors are readily controlled; (3) bounds on the solution
vector can be developed and used to detect solution termination and, in some cases,
to speed up convergence.

In this paper, a general framework is developed for examining a class
of linear programs that can be solved by iterative methods. The advantages
of solving systems of equations by iterative methods carry over to solving
linear programs. In addition, several new useful properties arise such as:
(1) a linear program can be reduced in size as the computational procedure
progresses and (2) certain iterative methods which converge asymptoticaily
faster than other iterative methods when used to solve systems of equations

can be shown to converge uniformly faster when used to solve linear programs.



I. Background

A few well known results are summarized for reference throughout the

following. From Fiedler and Ptdk [5], we have:

Definition 1 (Class Z)

The set of all real square matrices having non-positive off-

diagonal elements forms the set referred to as Class Z.

Definition 2 (Class K)

The subset of Z satisfying any property of the following theorem

comprises Class K.

Theorem 1
Let A € Z. Then the following are equivalent to each other:
(i) There exists a vector x = 0 such that Ax > 0;
(ii) there exists a vector x > 0 such that Ax > 0;

(iii) there exists a diagonal matrix D with positive
diagonal elements such that ADe > 0 where e is a

vector of ones;

(iv) there exists a diagonal matrix D with positive
' diagonal elements such that the matrix W = AD is

a matrix with a dominant positive principal diagonal;

(v) for each diagonal matrix R such that R Z A, the
/- N\
inverse of R exists and p' R 1(P—A)} < 1 where p(-)
is the spectral radius and P is the diagonal of A;
(vi) if B € Z and B =z A, then B is non-singular;

(vii) each real eigenvalue of A is positive;

(viii) all principal minors of A are positive;



(ix)

there exists a permutation matrix P such that PAP~ may
be written in the form RS where R(S) is lower (upper)

triangular with positive diagonal elements and R(S) € Z;

(x) A is nonsingular and A-lé 0;
(xi) the real portion of every eigenvalue of A is positive;
(xii) for each vector x # 0 there exists an index K such that

Xg yK3> 0 for y = Ax.

Corollary 1

Let A€ K, B€ Z, and B = A.

Then B € K and B satisfies:

1 1.

(i) A" =B "= 0
(ii) det (B) = det (A) > 0
(i1i) A™'B =T and BA™! =1
(iv) B 'A€ Kand AB™ € k-
(v) B7lA = I and a7l = I
(vi) p(I-B'lA) < 1 and p(I—AB_l) <1

From the above, the following results are immediately evident (the Perron-

Frobenius Theorem for non-negative matrices is required in places [13]).

Corollary 2

For

A€ Kand A =R, - S1 = R

- S, with S_. =2 S,= 0, then

1 2 2 1 2
(i) R1 € K and R2 € K
(ii) RI'R, = T and R,R. L 2 T
271 172 -
e -1 . -1 -
(iii) R1 R2 € K and R2R1 € K
. -1 1oy L
(iv) 1> p(R2 52) z p(R1 Sl) = 0
-1 -1 -1
= R > >
(v) R2 S1 = Ry Sl = Rl 52 = 0
. -1 - -1 -1
(vi) R2 Sl = R2 82 = Rl 52 = 0
AP RS A TS HRINS S B
(vii) A = (I Rl Sl) R1 = (I R2 82) R2
(viii) Ax=b if and only if x is a fixed point of
x = RIS, x + R b
1 1 1



and

-1 -1
= +
x = R,"S,x + R,'b

Now, consider a linear program of the form

(1) Max c¢'x

subject to
Ax=b
x=0
b=0

where A is m by n, ¢ and x are n by 1, b is m by 1, and ¢' is the transpose
of c. Let AJ denote the square submatrix of A formed by the m column iden-
tifications listed in J. The program listed in (1) will be referred to
as a class K optimization if the transpose of every feasible basis AJ is

a member of class K. The dual to program (1) is

Min b'v
subject to

A'v

[tV

C

Since b is non-negative, and as will be shown, the optimal v satisfies v,

the dual problem is simply

(2)

Hence, for v an extreme point, v must satisfy

(3) A&v =c

for some J. Let N be the sct of all J such that A& € K for J € N. Problem
(2) and Equation (3) immediately suggest the use of matrix iterative methods

in finding v¥*, the optimal dual values. That is, let

i



Then by Equation (3), we have that

= +
RJv SJv cJ

or

-1 -1
(4) v = RJ SJv + RJ ¢y

provided R and S are chosen so that R is non-singular. Matrix iterative

analysis suggests solving Equation (4) by the following recursion

(5) Vo jils M e r1L G

Equation (5) converges if and only if p(R}lsj) <1 [9].
Noting Equation (5) and Problem (2), the following procedure suggests itself

for finding v*:

n+l -1 n -1
—] a
(6) v Max RJ SJ v + RJ €5

Now, providing p(R:]1 SJ) < 1 and R 1 z 0 Veinott [14] has generalized

J SJ

results of Denardo [3] and provea the following:

Theorem 2

For a class K optimization problem where each A& is split so that
®1s) <1
P 2

and

-1 )

then Equation (6) provides a sequence which converges to the (unique)

optimal dual values and the optimal basis AJ* satisfies

-1 S |

o= S "
VS R S5V T RppC g

Splits of Aj satisfying the requirements oi Theorem 2 are referred to as

asymptotic monotonic contractions or simply monotonic contractions.



IT. Splits, Convergence Speed, and Computational Aspects

A class of splits which satisfy the requirements of Theorem 2 are

now characterized.

Theorem 3

For A& € K and B € K where B = A!,- J € N, then the set of all

R and § satisfying

Lyr =R -8

B4 J g

with SJ Z 0 provide monotonic contractions.
Proof

(i) DMonotonicity

AJ =BR_ - B§_=R_ -5

J J J J
then R—lS = ﬁﬁlB-1B§ = ﬁ—lg providing R_ is nonsingular
J J J J J J J )
Now, by Corollary 1, B_1A3 € K and, hence, ﬁJ € K.
By Theorem 1, ﬁ; exists and ﬁ;i = 0. Thus
-1 2-1 2
RJ oJ = KJ SJ =z 0.

(ii) Contraction
-1
Since ﬁJ =z B LA& , by Corollary 1

-1 - -1, -1, -1 -1
1> p(I - RJ15 1A3) = p<ﬁJ1(RJ - B Aj)) = p(RJ QJ)= p(R; sJ)

Q.E.D.

The convergence properties for two different splits of B-lA', labeled by



where the subscript on J denotes a split type, are now characterized.

For simplicity let ﬁJ and SJ be written R. and SJ respectively.
. . J .

i i i 1
Theorem &

In using Equation (6) with spiits satisfying Theorem 2 where

R. -S. =R. -S. withS. =zS. =0
I 9 Iy Y I
then
+ - : .
ol = Max le SJ V; + RJl C.
JEN ) 2 %2

converges to V¥ faster than

+ - -
v? 1 = Max le SJ ]P + le cJ
JEN 1 1 1 1

Proof
Assume v1 — v* from below (the proof for above follows in a
similar fashion).

(i) let n =1 and VO < v¥ be the initial guess. Then we have

vi = Max R:].'l SJ vo + R.}L CJ - R:]}: SJ:': vo + R:].'j:‘ CJ‘J:
JEN 1 71 1 1 1 1 1 "1
v; = Max R}l S W o+ R}l c; = R;i S 1 L+ R;i ¢ 1y
JEN 2 V2 2 V2 2 2 2 V2
Now, since RJ? = RJ -8y SJ* for J2 = Jl*
1 2 2 1
1 -1 -1 -1 -1 0
vi =[I-R.,”S. + R. S_.] R [s.. v +c.])
1 J, 73, 3, TI% J, J% J,
or
-1 -1 1 -1 0 -1
- + R = VT o+
[I-R;™ S, J SJ“] Vi =Ry S5 Ry ¢



But,

1 - -1 0 ~1
vV, =R S v + R c
2 JZ J2 J2 J2
Thus,
- - -1
v ®Pos o -k s ) w0 e (k]
2 1 2 72 2
Since
V} Z V° and by Corollary 2, part (vi)
» K :
(ii) Assume v, z v and consider
+ -
v% 1 = Max RJ1 3 le
JEN 1 1
+ -
vg 1 = Max RJ1 SJ vg
JEN 2 2
As in part (i)
-1 -1 K+1 -1 -1
(I-R.*S. +R."S_ )vo*=(@®."s.. -R
J2 32 J2 Jl’ 1 J2 le J2
Thus,
+ - - -
Vg 1 + (RJl SJ .- RJl SJ ,K = RJl SJ VZK
2 Y1 2 V2 t 2 V2
But v2 = v1 , thus
K+1 -1 -1 -1 . -
v (R>*S.. -R.US_) v, = (IR + R
2 J2 Jl J2 Iy 1 J2 J2 J

Y

v

[ p—



K+1 K

Since vy = v, and, by Coroliary 2, part (vi), v2K

+1,§ v K+1

Q.E.D.

Another class of splits satisfying the requirements of Theorem 2 are

given in the next theorem.

Theorem 5

For Aj € K and B-lﬁ € Kwith B € K, J € N, then the set of

J
ail R and S satisfying BA& = ﬁj - §J with B-IQJ 2 0 provide monotonic
contractions.
Proof
(i) Monotonicity
| ~1 _ _
A B §J B §J Ry - 8
R-1 S = ﬁal § providing R. is nonsingcular.
J J J J ° 0 J ©

. . - 1 ~ N .
But since B ﬁj < K, RJ i1s nonsingular. Furthermore,

by Theorem 1, ﬁ;l B = 0, thus R;l SJ =0
(ii) Contraction

Now B-lﬁj = A& . Thus, by Corollary 1,

- T T fo-1l,. T — AL
1> p(I-R.7 BAY) = p .7 {K. - BA) . = p(R S.)
J o J j

Q.E.D.

4

Resuits similar to Theorem 4 can now be derived for the split category of

. - . . -1 . \ ; -1
Theorem 5. 1t is to be noted that replacing B A'J is Theorem 3 by A'J B
also gives monotunic contractions as well as repieaiig BA'J by A'JB in

1 -1

Treorem 5 witn RJ B - € X and §J B = 0.



. - . £ N .
Severa. splits (K and §) of A& are now summarized.

n

{(a) Regular splits
B = sI where s > 0 (usuaily s = 1)

(1) Neumann Split

k=1
1
= I - = T
SJ S AJ
(ii) Jacobi Split
_ 1ol . Lo
RJ = DJ (the diagonal of S AJ)
- p_ - a4
gJ J s J

(i1i) Gauss-Seidel Split

. . . . 1,
ﬁJ LJ (the lower triangular portion of S AJ)

- 1
gJ LJ s AJ

{iv) Totten Split [12]

R
J

5, = SJ - RJQ

£, (1-Q)

where ﬁj and §J may be a Neumann, Jacobi, or Gauss-Seidel
. 1 TLoa - - -
split of = A& and ﬁJL 5,2Q=0 J & N,
{(b) Similarity Transformation | .4

. NN R N .
B € Kand 3 ~ < K and Aj B is split.
Again, the Neumann, Jacobi, Gauss-Seidel, and Totten variations
may be considered. Note: tnis split does not fit Theorem 3 but

can also be shown to yield monotonic contractions.



By Theorem &4, it is readily noted that, for a given B, the Gauss-Seidel
split converges faster than the Jacobi split which converges faster than
the Neumann split. This is desirablie since the Gauss-Seidel split reguires
Oiily onc vecitor of scorage as opposed to two for the Jacobi and Neumann split.

It is recadily shown that the Totten split converges faster than the corresponding

w

companion spiit.
Tiie ifact that the Gauss-Seidel split converges faster than the Jacobi
and Neumann splits has been known for iteratively solving systems of equations.
But, in such settings, the Gauss-Seidel split converges asymptotically faster
and not necessarily uniformly faster. Hence, Theorem 4 is somewhat surprising.
Now, the split yielding the fastest convergent sequence is not necessarily
the best since computer storage and computational effort are not necessarily
cqual for diffexent splits. It should be noted at this time that in computing
n’ R;l should be carried out implicitly (if R;l is diagonal on lower
triangular) which permits the use of the original data for certain B matrices.
Thus, the original problem sparsity is maintained.

A further compiexing item in choosing a split is the following useful

result of Hastings and dMello [6]

Theovewm 6 (Basis Elimination)
The basis A&, J &€ N is sub-optimal if

-1 n -1 n -1
J J J J

Thus, one spliit may yield a slower convergent split than another but be such
as to climinate potential basis faster, which, of course, is desirable. LEven
the computation of bounds [10,11] for one split might impose a far greater

effort than for other splits. For example, it is well known that



Thus, the maximum row sum oI RJ S._ may not be strictly less than 1 as

J
currentiy required in bound computations. To cirvrcumvent such cases, an
integer NJ must be determined where

M

H(R;lSJ) Il <

and bounds computed only after MJ itervations of the algorithm.
A composite algorithm for soiving class K problems is now given. Let
parameters M, §, and v be specifiea wnere § is a solution tolerance and M

is a refinement parameter. A procedure, extending Equations (6), for

solving class K problems is:

Step 1 (Pre-Processing)

Perform any possible pre-processing of data such as determining
B or Q. Set n =0 and go to Step 4.

Step 2 (Value Refinement)

1+“'{+ - + i 1 -
L (les L e s (RlSJ) R°' ¢

J 2=0

r

Step 3 (Basis Elimination)

Using Theorem 6, detect and eliminate J € N which are sub-optimal.
If only one J is left in N, go to Step 6.

Sten & (Basis Selection)

Choose another basis J € N, labelled J2, such that J2 satisfies

Max R_" S v + R. ¢
JEN

- . n
for tiie current value v



Step 5 (Termination)

If
Co-1 - o
{R.” S v+ 7D c. - vl = e go to Step 6. Otherwise
J, J J J ‘
2 "2
+ - -
set Vo 1. R 1 S v+ R 1 c and relabel J, by J and return to
J J J J 2
2 "2 2 "2

Step 2.
Step 6 (Post-Processing)

Perform any post-optimal computations such as finding v* and the

optimal primal values given the optimal basis J*. Also, various types

of splits require a post-optimal transformation.

It is to be notec that Step 3 should only be used when tight
enough bounds are present. Furthermore, Steps 3 and 4 should be com-

bined so as to avoid redundant computations.



III. Applications

It is well know that discrete-time discounted (semi-) Markov decisions
may be considered as Class K problems. 1In such problems, the total dis-

counted returns can be expressed as

where J denotes a policy anc QJ & transient transition matrix. In the

terminology of this paper

Al =1 -Q. J €N

]
J J
where N is the policy space. Totten [12] was the first to exploit the

properties of the underlying functional equations to speed up convergence

by using various types of splits of Aj other than the split

RJ = I

A much broader class of problems that can be solved as class K
optimizations is the Leontief substitution system [15]. Consider the
linear program given in (1) where the constraint matrix A contains, at

most, one positive element per column. A is termed pre-Leontief. The

N

i*" row of A is called trivial if for every x = 0 for which Ax = 0, the

. th . . . .th . .
i component of Ax is zero, otherwise the 1 row is called non-trivial.

Definition 3 (Leontief Matrix)

A matrix with exactly one positive element per column and

non-trivial rows is termed a Leontief Matrix.



A pre-Leontief matrix with all its rows trivial is called a sub-Leontief
matrix. Veinott [ 15] has shown that a pre-Leontief constraint set may
first be permuted and partitioned to the form
/ \
A A
101 2 \ SN
/ /x1 \ fbl\
Ax = ! : |
5 A ' /
i P AX, / b, J
1 2 24
\\O Ag / \ 2/ \

where Al is Leontief, A, is sub-Leontief, and A  has its positive elements

3 2
above trivial columns of A2. Then, the constraint set is equivalent to:
Xy = 0
A x, =b.
171 L
x, =0
1

Tnat is, the original pre-Leontiei constraint set is equivalent to a
smaller Leontief constraint set.

Now by the definition of a Leontief matrix, it is readily apparent
tnat a square Leontief matrix, suitably permuted, belongs to class K. Using
duality theoxry, it 1is also clear that the transpose of a square Leontief
matrix belongs to class K. Consider a square pre-Leontief matrix with no
vanishing rows. Veinott nas shown tnat if such a matrix has lineariy
independent columns then it is equivalent to & square Leontief matrix. Since
a basis must have linearly indepencdent columns, it is clear that every
feasible basis of a Leontief constraint set is a square Leontief matrix
{hence, A3 € K). Thus, the iterative procedure of Section II can be used

to solve pre-Leontief constrained linear programs



The extension of class K optimization techrniques to Leontief Substitution
Systems 1is significant since many typically large problems have pre-Leontief
constraint sets. Such problems include input-output problems with substitution
[4], deterministic inventory problems and certain network problems [16].

Anoithier well known feature oi Leontief Substitutions Systems is that
if the final Leontcief constraint set is reduciblie, then the problem may
be solved as a sequence of smaller Leontief problems [1]. This observation
offers considerable computational advantages.

The Leontief Substitution System is useful in relating other optimization
problems to class K optimization problems. If an optimization problem can
be shown to be equivalent to a Leontief Substitution System by an appropriate
non-singuiar transformation, then that problem can be solved by class K
optimization methods. For example, Nanda [8] has given algorithms for
converting integer programs to equivalent Leontief Substitutions Systems
(with possible bounded variables). Xoehler, Whinston, and Wright [7] have
presented a problem category which can be converted to Leontief Substitution
Systems.

The last observation to be made concerning the Leontief Substitution
System is that many problems have a partial Leontief Substitution System
with other side constraints {such as bounds on variables). For such cases,
the Dantzig-Wolfe decomposition method (2], using the Leontief Substitution
constraint set as the sub-problem, is particularly efficient because of the

ease of solution of the sub-problem.



IV. Computational Example

Consider the foilowing linear program:

Max o 100x2 - ¥g - ZOOx4
subject to
+ - - 0.8%x, = 0.

X, X, xq 0 8<4 0.5

- - . -+ -+ =

X, 0 8x2 Xq X, 0.5

Xl’XZ’X3’X4 = 0
The constraint set is pre-Leontiei. Feasible basis are

N o= (1,4), (2,3), (2,4);

Notice that AJ for J = (1,3) 1is rot Leontief due to the linear

dependence of its columns. {(Other criteria for detecting square Leontief

/
- class K - matrices are given by Fiedler and Ptak [5]).
The above probiem illustrates a propevty observed by Totten [12] that

if ¢ 2 0 and the optimal basis AJ is Leoncief, then the iterative procedure

of Section il still converges to v* even if some A& are pre-Leontief but

not Leontief. Hence, letting
N = (1,50, (1,4), (2,3), (2,4)]

will not discurb the computational procedure ior this probiem.
To illustrate the computational procedure of Section 1I, coasider

the following linear program:

Max 2x1 + 3x2 -+ 1.6x3 + 1.7x4

subject to



O.bx1 g 1.UX2 - l.Ox3 - 0.8x4 = 2.0
-O.4xl - O.2x2 + O.7x3 -+ O.Sx4 = 3.0

xl, XZ’ x3, xa,g 0

let
r h
N= (L3, (1L,6), (2,3), (2,4))
§ = 0.00001
M=1
0 0
v = (0)
rurthermore, a Gauss-Seicel split with B = I will be used. The steps of
the algorithm are:
Step &4:
//2
! 0.8 = 2.50
1 \
v, = Max 4
1 J
/3.0
k\‘l.o s 3.00
1 0. . ;
—{1.6 + 3. =6.
O.7Ll 0 3.00% 6.571
v1 = Max <

2 \
LO—]‘—S-{IJ +0.8(3.00)] = 8.200

\
. [3.00)
voo= J =(2,4)
8.20
Step 5:
‘vl - v05 > e



Sctep 2:

Step 3:

In the initial stages of computation,

3

v =

1
£=0

3,
v is computed recursively as

2 -1 1 -1
= +
v RJ SJ v RJ cJ
3 a1 2 -1
v =R SJ v+ RJ CJ
1 ,
v o=t (3.00 + 0.2 (8.20))
1.0
2 _L (1.70 + 0.8 (4.640))
V2 0‘5 1. . .
V=1 3.0+ 0.2 (10.824))
=, O . .
3.1 (170 + 0.8 (5.165))
Vo To.s Mt : :

-1 2 1 -1 L -
+
(RJ SJ) v 2 (RJ SJ) RJ cJ

11

1

11.664

bounds on v* are not

usually tignt enougi ¢o permit thelr useage It & worthwhile manner.

Step &4:

(L (2,00 + 0.4 (11.664))

4
=M
V1 Max {
i
i
{
~

L (3.00 + 0.2 (11.664))

&.332

5.333

{45y (1.60 +8.332) = 14.189
e <
vy = Max ‘
tplé (1.70 + 0.8 (8.332)) = 16.731
/8.332\\
4
or v -

i
. 189/

J = (1,4)
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