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1. Introduction

Recently, there has been a tremendous resurgence of interest in oligopoly
theory. The impetus for this resurgence stems from the consideration of
dynamic aspects of oligopolistic markets. Two particular topics that have
attracted a great deal of attention are the ability of firms to collude in a
repeated game setting and the role that the timing of decisions-—-especially
investment decisions~--plays in determining oligopolistic outcomes. Friedman
(1971) demonstrated that, provided the discount factor is not too low (and the
detection lags are not too long), collusive output levels can be supported by
a threat of all industry members to permanently revert to the static Nash
equilibrium if cheating is ever detected. Subsequent work by Green and Porter
(1983), Abreu (1983) and Abreu et al. (1986) extended Friedman's analysis by
introducing uncertainty and by developing credible threats that are more
appealing than his "grim trigger strategies,” either because they accomplish
the same objective with less punishment or because they support more
collusion., In addition, Brock and Scheinkman (1985) generalized Friedman's
analysis by examining the stability of collusive agreements in price-setting
games with capacity constraints (rather than quantity-setting games). In all
of the above papers, the capital stock is given exogenously at the outset of
the game; the choice of the scale of operation is thus not modelled
explicitly.

Recent papers by Spence (1977), Dixit (1980), Eaton and Lipsey (1981),
Gelman and Salop (1983), Kreps and Scheinkman (1983), and Fudenberg and
Tirole (1983) study the influence of the timing of investment decisions on
equilibrium outcomes in oligopolistic markets. Dixit, for example, shows that

if an incumbent can choose his capital stock before a potential entrant can



commit its resources, then by installing a large enough plant he may be able
to deter entry. This will be the case if capital has a low resale value (so
that it constitutes a commitment to the market). The large capacity makes it
easy and attractive for the incumbent to supply a large quantity to the market
if entry were to occur. Prospective entrants realize that they will face an
aggressive response on the part of the incumbent, and hence, stay out. Thus,
by precommitting in capacity a firm can deter entry. In a similar vein, Kreps
and Scheinkman emphasize the importance of precommitment by showing that when
firms can choose their capital levels before competing in prices, the outcome
of the game will (under certain conditions) be identical to the Cournot
outcome. In other words, the Cournot equilibrium can be viewed as the result
of price competition between firms provided that prices adjust more easily
than plant sizes. Note that in the above two models the authors assume that
long-run competition is conducted through capacity (or scale of operation)
while short-run competition is waged through prices and/or output, and that
collusion does not take place. These features are shared by other papers
dealing with the timing of investment decisions.

In this paper, we develop and analyze a model which integrates the
essential ideas of both strands of the literature. Our model involves firms
choosing a long term capacity level at the outset of the game. We do not
allow firms to adjust this capacity level in subsequent periods. Given these
initial capacity levels, firms then engage in a repeated game of price

competition.l

Our model should be viewed as an--admittedly extreme--
parametrization of a situation in which the technological scale of operation
is relatively inflexible in the short run but in which prices are relatively

flexible.2 Throughout this paper, we will assume that firms cannot collude in

capacity even though they may be colluding in price. The justification for



this assumption is that investment decisions are much more difficult to
coordinate than price or output decisions. Several examples of industries in
which firms colluded in price and/or output but not in investment are cited in
Scherer (1980, p. 370-71), and include the nitrogenous fertilizer and
synthetic fibers industries during the 1960s as well as the plastics and
aluminum industries during the 1950s. Furthermore, it is well known that even
in cases of overt collusion (such as the German cement cartel) firms find it

3

exceedingly difficult to collude in capacities, Since we are interested in
the relationship between excess capacity and the level of collusion that can
be sustained in a market, we assume that tacit collusion is the norm and that
firms charge the maximum price that can be sustained in a collusive

agreement. The agreement is enforced by a threat (by all industry members) to
permanently revert to the static Nash equilibrium as soon as anyone is caught
cheating. Thus, when a firm contemplates deviating from the agreement it
weighs the immediate gains from cheating against the capitalized value of
future losses due to retaliation. The maximum sustainable price is defined to
be the price that maximizes the "cartel welfare function” subject to the
constraint that all firms find it optimal to abide by the agreement.

Formally, we characterize the subgame perfect Nash equilibria of a two-stage
game in which firms first choose capacity levels and then, in a second stage,
the maximum price that can be sustained in a collusive agreement. Equilibrium
is calculated by first solving for the maximum sustainable price and profit
levels as a function of industry capacity levels. The reduced form payoff
functions then allow us to determine the Nash equilibria in capacities.4 In a
duopoly model with constant marginal and average cost of productionS (up to
the capacity constraint) and linear demand we find that all equilibria--except

the ones in which firms mimic the static Cournot-Nash equilibrium--involve



excess capacity. The sole purpose of this excess capacity is to punish

deviations from the collusive scheme, were these to occur. Furthermore, all
equilibria involve capacities at or above their static Cournot—-Nash
equivalent. We find that the type and number of equilibria in this model
depend upon two critical parameters--the cost of capacity and the discount
rate. All equilibria are symmetric and are characterized by the level of
capacity firms possess, the price they charge and the output they produce.
There are basically three types of equilibria: (a) equilibria in which firms
carry considerable excess capacity and charge the monopoly price (henceforth
referred to as unconstrained collusive equilibria (UCE)), (b) equilibria in
which excess capacity is not sufficient to support the monopoly price but is
large enough to support some price above the level that would be charged in
the static Nash equilibrium (constrained collusive equilibria (CCE)), and (c)
equilibria in which firms carry no excess capacity. In the latter type of
equilibrium the price and output levels in each period coincide with their
static Cournot-Nash equivalents. We refer to those equilibria as non-
collusive equilibria (NCE). Whenever UCE and NCE exist they are unique in the
sense that for a given unit cost of capacity and a given interest rate there
exists a unique capacity level that supports that type of equilibrium. In
contrast, there is generally a continuum of CCE. That is, there exists an
interval of equilibrium capacity choices that lead to CCE. In addition, two
or three different types of equilibria may coexist for the same parameter
values. If, however, attention is restricted to the set of equilibria which
are not Pareto dominated, then uniqueness obtains for almost all parameter
values.

Exogenous changes in the cost of capacity and the interest rate affect

the collusive price level. When capital is relatively cheap firms find it



optimal to carry a great deal of excess capacity in order to deter cheating.
In this case, an UCE exists. This is also true if the interest rate is low
since even minor threats of retaliation would then deter players from
cheating, so that the monopoly price is sustainable. 1In fact, when capacity
is cheap or the interest rate low, the UCE is the unique equilibrium of our
two-stage game. Increasing the cost of capacity or the interest rate creates
equilibria of the CCE and NCE variety. 1In order to perform meaningful
comparative statics, we restrict our analysis to the set of equilibria that
are Pareto undominated (see Section 4). An increase in the cost of capacity
decreases a firms' willingness to expand, while an increase in the interest
rate leads it to discount the future more heavily. Thus, increasing either
parameter lowers the degree of collusion that can be sustained in equilibrium
(in moving us from an UCE to a CCE). As the cost of capacity or the interest
rate rise further, the level of collusion will continue to fall until the
equilibrium becomes noncollusive. We thus find that decreases in the level of
collusion are always accompanied by decreases in the amount of excess capacity
carried by the industry.

The paper divides into five sections. In Section 1 we compare our
results with the theoretical and empirical literature on the relationship
between excess capacity and collusion. In Section 2 we present the model and
define equilibrium. In Section 3, we solve for the equilibrium in the price
subgame (with fixed capacities), and in Section 4 we discuss the equilibrium

of the full game. We offer some concluding remarks in Section 5.

2. Excess Capacity and Collusion

In our model increases in the level of collusion (due to changes in an
exogenous parameter such as the interest rate) are always accompanied by

increases in the levels of industry capacity and excess capacity. This is



somewhat surprising since one of the well-known tenets of traditional
oligopoly theory holds that greater levels of excess capacity weaken collusive
agreements. It is argued that firms which carry a great deal of excess
capacity have a strong incentive to cheat because they can capture a large
share of the market by undercutting the collusive price. Firms with little or
no excess capacity have no incentive to undercut since it is technologically
infeasible (or extremely costly) for them to increase production. Thus, as
the amount of excess capacity grows any collusive agreement is weakened.6
This argument, however, is incomplete: it ignores the effect of excess
capacity on the ability of firms to retaliate when cheating occurs. After
all, when the level of excess capacity is substantial the threat of
retaliation looms large in the eyes of a potential cheater since firms can
(and will) easily dump a large amount of output on the market to punish any
chiseler. Similarly, when the level of excess capacity is relatively small a
cheater need not worry very much about retaliation since the industry cannot
cheaply expand production by any significant amount. Our results indicate
that the retaliation effect tends to dominate the traditional chiseling effect
and that excess capacity plays a prominent role in supporting collusive
agreements.

The empirical evidence on the relationship between excess capacity and
collusion is weak.’/ At best one can say that there exist conflicting views
and that most of the evidence cited in support of the traditional wisdom
derives from case studies. The rayon, cement and heavy electrical equipment
industries are examples of industries in which collusive agreements broke down

8 In each of these

in the presence of high levels of excess capacity.
instances, however, excess capacity arose because a sudden reduction in demand

made it difficult for firms to earn profits even at the collusive price.



Producers began to cut prices in the hope of surviving the recession by
driving others out of the market. We believe that it was the decline in
demand which led to overcapacity and price wars and that any conclusion that
excess capacity resulted in the dissolution of a collusive agreement is
unwarranted.

As an example of an industry in which behavior is consistent with the
predictions of our model we point to the steel industry in the 1950s and early
1960s. In this industry capacity utilization was rarely above 85% and often
went below 75%.9 Yet, prices remained high during this period in spite of
changes in demand. It is also well-known that members of OPEC carried high
levels of excess capacity during the time period that the cartel was
strongest.10 Perhaps the most convincing piece of evidence in favor of our
model concerns the United States' primary aluminum ingot market in the mid-
1950s and 1960s. For this industry, Rosenbaum (1985) presents evidence that
the price~cost margin was positively and significantly related to industry

excess capacity (as a percentage of total capacity).

2. The Model

Consider a market shielded from entry in which two firms produce a
homogeneous product and engage in the following two-stage infinite horizon
noncooperative game: in stage one (at time zero) each player simultaneously
and independently purchases and installs capacity at a cost of ¢ per unit.
Capacity is infinitely lived, does not depreciate and can only be bought at
time zero. In stage two (time periods one and beyond) firms compete in prices
and produce output to order. We assume that no plant can be pushed beyond its
capacity limits. Capacity thus serves as a proxy for the scale of production
by placing an upper bound on any firm's output level. Throughout this paper

we assume that the industry cannot collude in capacity even though it may be



colluding in price.

It is well-known that in static or finite horizon models in which the
component games have a unique Nash equilibrium, collusive outcomes cannot
emerge in equilibrium as the result of a noncooperative game played by profit

maximizing firms.ll

The basic insight of the literature on repeated games is
that if a market situation is repeated infinitely, the industry may settle at
a collusive price even if firms are not explicitly colluding. Thus, in order
to ensure that collusive outcomes may arise, we assume that the price game is
repeated infinitely. 1In addition, since we are interested in the relationship
between excess capacity and the degree of collusion, we assume that tacit
collusion is the norm and that firms charge the maximum price sustainable in
any collusive agreement.

The types of strategies that support collusion in supergames were
sketched briefly in the introduction. In this paper we restrict attention to
collusive agreements enforced by "grim trigger strategies.” These strategies
specify that firms remain at the collusive point unless someone cheats. If at
any time anyone is detected cheating, players revert to the static Nash
equilibrium and remain there forever.12 Firms will cheat if and only if their
immediate gains from cheating dominate the capitalized value of losses due to
retaliation. We assume that when the industry chooses a collusive price
vector it is aware of the problems inherent in maintaining a collusive
agreement. Thus, it always chooses the price vector which maximizes the
"cartel welfare function” subject to the constraint that no cheating is ever
induced.

To summarize and formalize the model presented thus far let n% denote the
ch

profits earned by firm i at the cartel point (pl,pz); T3

i the profits earned

by firm i when cheating optimally against (pl,pz); n? the profits earned by



firm i in the static Nash equilibrium, and r the interest rate. The net gains
from cheating are given by :
1 N

_ ey _l, ¢
(1) Zi = (ﬂi ni) r(ni s

)

(In (1) and below, we suppress the arguments Py» Py, and r, of Z; and Q.)
Firm i cheats if Z; > 0. Let Q denote the set of prices that can be supported

in a collusive agreement:

2 = HEVARES Z. <

(2) Q {(pl,pz) < 0and Z 0}

Finally, if we let F(n%,n%) denote the cartel welfare function (with F1 > 0,
Fy > 0) then the optimal sustainable price vector is given by the solution to

the following maximization problem:

(3) max F(n?,ng), subject to (pl,pz) € Q
(py»py)

The solution to (3) depends on the capacities chosen by firms in the
first stage of the game. Let ET(KI,KZ) and E;(Kl,Kz) represent the cartel
profits evaluated at the price vector that solves (3) and let p%(Kl,Kz) and
p%(KI,KZ) denote those prices. We are now in a position to define equilibrium

in the two-stage game (for a fixed value of the interest rate r):

* *

* *
Definition: (KI’KZ’pl’pZ) is an equilibrium of the two-stage game if:

x % c, * % c, * %

-, * % * - *
(b) nl(KI,KZ) - ¢cK, » nl(KI,Kz) - ¢K

1 for all K

1? 1
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—c %
> —_
nz(Kl,Kz) cK for all K

—-C X * *
Ty (K),Ky) = K 2 2

2

(a) simply states that pT and pz solve (3) given KT and K;. The conditions in

x %
(b) guarantee that (KI’KZ) constitutes a Nash equilibrium in capacities.

3. Equilibrium in the Price Subgames

In this section we compute the price vector that solves (3), as a
function of the capacities in the industry. Let D(p) denote the market demand
curve and P(x) its inverse. P(0), the choke price, is assumed finite. In
addition, we assume that P(x) is strictly positive on some bounded interval
[0,x), on which it is twice continuously differentiable and strictly
increasing (for x » X, P(x) = 0). Moreover, we assume that the revenue
function (xP(x)) is single peaked, attaining a unique maximum at X, and that
this function is strictly concave on [O,xm]. Each firm can produce output at
zero cost as long as capacity is not exceeded. These assumptions imply the
existence of a unique pure-strategy Cournot-Nash equilibrium and allow us to
characterize, in Theorem 1, the (possibly mixed strategy) Bertrand-Nash
equilibria which serve as a threat point for the collusive agreements.

In price-setting games firms may choose to charge different prices. If
they do, we assume that customers first buy from the cheapest supplier. When
the lowest priced supplier cannot satisfy all demand at that price, some
customers will be left for the remaining firm. How much this firm will
actually sell depends upon the pool of customers that remains to be served.
We make the following simplifying assumption: the low priced firm serves the
consumers with the highest reservation prices. Thus, if p; < P3 firm j faces

a contingent demand of:
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(&) q(p;) = max(0, D(p;) - Ki)
and earns the following profits

nj(Pi,leKl,Kz) = pj min[max(O,D(pj) - Ki)’Kj]
Firm i's profits are given by

m; (pyp5 [k K)) = py min(D(p,),K))

When p; = pj, firms share the market in some appropriate fashion (to be made
precise below).

In order to solve program (3), we must calculate =€, 7N and %N for both
firms. This task is simplified by Theorem 2, which proves that in any
collusive agreement, firms must charge identical prices. First, we must
introduce some additional notation. Let B(x) = max[p(D(p) - x)], and let

p
Vi(Ki’Kj) denote firm i's minmax payoff. That is,

vi(Ki’Kj) inf sup ni(pi,pj|Ki,Kj)

Pj Py

arg max {zP(z + x)} so that R(x) is the Cournot best
z
reply function. Some elementary calculations yield

Finally, define R(x)

B(K.) if K, » R(K.)
vi(Ki’K') = { J * J
KiP(Ki + K].) if K < R(Kj)

From Kreps and Scheinkman (1983), we can now extract the following

theorem which relates expected profits in the static-Nash equilibrium to the
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minmax payoffs (observe that firms may use mixed strategies in equilibrium).

Theorem 1:

static-Nash
(a) 1If

(b) If

(c) 1If

Proof: The
(K LK) >
assume K; >
equilibrium,
b(Ky)R(Kp) =
case in whic
n?(Kl,Kz) =
lowest point
must exceed
over the int

independentl

For each pair (KI’KZ) with K; < Ky, there exists a unique pair of

equilibrium payoffs n?(KI,KZ) satisfying:

N - -
Ky € R(RD), m (R LK) = RP(K) + K)) = v (K LK)

K, > R(Kl) and K, < D(0),
N(K K,) = B(K.,) = v.(X,,K,)
TotBRy/ = 17T V2t
N(K K,) » v (K, ,K.,)
TR Vit %2

N - -
K, 2 D(0), ni(Kl,Kz) = Vi(Kl’KZ) = 0.

only part of this theorem not covered by Kreps and Scheinkman is
vl(Kl’KZ) in (b). We prove this assertion in two steps. First,
R(Kp). By charging b(Kjp) = P(Ky + R(Kz)), a feasible action in
firm one earns at least: b(Ky) min (Ky, D(b(Kj)) - Kj) =
B(Ky) = vi(K|,Kp). Thus n)(Ky,Ky) > v{(K{,Ky). Now turn to the
h Ky < R(Kp). We then have v;(Ky,Ky) = K{P(K{,Ky) whereas
EKI > KIP(KI’KZ) = Vl(Kl’Kz)‘ Here we used the fact that P, the
in the support of the mixed strategy equilibrium distribution,
P(Kl,Kz). If this were not the case, profits would be increasing
erval [E’P(KI’KZ))] as each firm would be selling at capacity

y of whether the other firm underpriced it or not. 1

We are now ready to establish the following result.

Corollary:

agreement.

Let P% denote the price charged by firm i in a collusive

c N

Then if pf + p% it follows that either nj < my or n% < ng.



Proof: If pi # p;, say pi < p;, then firm two earns at most his minmax

profits:

N0

c c c
n, = nz(pl,plel,Kz) < sup nz(pl,plel,K% < sup (O,p2|K1,K2) = VZ(KI’KZ)
c p,>0
p2>pl 2

Theorem 1 implies VZ(KI,KZ) < ng(Kl,Kz), yielding the desired result. A
similar argument can be applied for the case pg < pi, completing the

proof. N
We can now state:
Theorem 2: If (py,pp) € O, then py = pjp.

Proof: Suppose to the contrary that (pi’pi) € O satisfies p; < Py From the

Corollary to Theorem 1 this implies that either ng < n? or n? < n?. We can
. . c N , . . ch c
immediately rule out the case my < 7y, since p; < P; implies 7y > mf (the low

priced firm can gain from cheating by raising its price slightly),

contradicting Zi < 0.

Assume then that n% < n?. Since Zj is nonpositive by assumption, we must
have n%h = ng. Now if n% = ﬂ?, we will reach our desired contradiction since

(1) ﬂgh > ng would imply Z; > O, and (ii) ﬂ%h = ﬂ% would imply that capacities
are such that we are in the pure strategy region of Theorem 1, i.e.,
K; < R(KZ) and K, < R(Kl). and that p; = p, = P(Kl + KZ)’ i.e., that both
firms are selling at capacity. Thus, ﬂ% > n?.

To complete the proof let p denote the lowest price in the support of the

Bertrand-Nash equilibrium distributions implicit in Theorem 1. Kreps and

Scheinkman show that

N N
TSR min(D(Q),Kj) and m, = p min(D(p),K ).
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N

Since n§ > my, it must be that p; > p. Firm j can cheat on the agreement by

charging a price B such that p < ; < pj. This yields:

h ~ ~ N
n§ > min(D(p),Kj) >p min(D(B),Kj) = “j
contradicting ngh = n% < n?. [

Our consumer allocation rule (see equation (4) above) did not specify how
market shares are determined when firms charge identical prices. The most
natural assumption is that consumers sort in such a way that each firm's sales
volume is proportional to the size of its plant. However, this sharing rule
loses its intuitive appeal when plants become too large. For example, when
each firm has a plant large enough to serve the entire market, it seems
natural to assume that sales become independent of capacities. Also, in case
(b) of Theorem 1 Nash profits and prices are independent of K,, and thus there
is no real sense in which further increasing K, makes firm 2 any larger. 1In
order to adequately deal with these problems, we suggest a slightly different

sharing rule:

mln(Ki,l)

(5 85; = mIn(R ;1) + min(K; ;1)

where S; denotes firm i's market share. This sharing rule has two nice
properties. First, sales are proportional to capacity when capacity

matters. There is a significant body of evidence that cartels use such a rule
in setting output quotas (see Brander and Harris (1984) and Osborne and
Pitchik (1983)). Secondly, when a firm becomes large enough to supply the

entire market, market shares become independent of that firm's capacity.13
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The use of sharing rule (5) and the fact that both firms must charge the
same price at any point in @ greatly simplifies the characterization of the
solution to program (3). First of all, observe that for any p in @ collusive

profits are given by
c _ .
(6) ni(Ki,Kj,p) = p min(S;D(p), K;)

Both profits functions are increasing over the interval [0,p™] and decreasing
over the interval [p™,P(0)], where p™ = max{P(x™), P(Ky + Kz)} is the price
that a monopolist with capacity K; + Ky and no cost of production would charge
if capacity costs were sunk. Because these functions are single-peaked and
reach their maximum at the same price p®, the solution to program (3) is
independent of F(e¢,*). Moreover, since optimal cheating is accomplished by
undercutting the collusive price by an arbitrarily small amount, cheating

profits are given by

(7) R{M(K; K ,p) = suply min(D(y),K)] = p min(D(p),K,)

y<p
(6), (7) and Theorem 1 provide the necessary information to describe @, the
set of sustainable prices, for any given value of K;, K, and r. If Q@ is
empty, we assume that firms resort to randomization, and revert to the static
Nash equilibrium described in Theorem 1. If p™ € @, then p™ solves (3). This
is because both 7§ and n% attain their maximum at p® = p®. Finally, if Q is
nonempty and p® ¢ Q, Q will consist of an interval to the left of pT (when pm
is not sustainable, then no price above pm is sustainable either). The

solution to program (3) then coincides with the right endpoint of this

interval. 1In order to calculate the maximal sustainable price as a function
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of Ky ,K9 and r we need an analytic expression for n?, the static Bertrand-Nash
equilibrium profits. Theorem 1 provides this information, except in case (b)
where only a lower bound on n? is given. 1In general, an analytic expression
for nT is not available. Furthermore, even if such an expression were
available, determining the maximal sustainable price would be difficult, as
the equations Z; = 0 are highly nonlinear. For the remainder of the paper, we

will confine attention to the analytically tractable case of linear demand,

which can be written as

(8) D(p) =1-p

after a suitable choice of units. The static Bertrand-Nash equilibrium
profits for the linear demand case were derived in Davidson and Deneckere
(1983), Kreps and Scheinkman (1983), and Osborne and Pitchik (1986). Their
results are collected in Theorem 3, which is the analogue of Theorem 1 for the
linear demand case (note that when the equilibrium occurs in mixed strategies,
the equilibrium distribution functions are not given, since they are not

needed here. The interested reader is referred to any of the above papers.)

Theorem 3: For each pair (KI’KZ) with K; < Ky, the static price-setting game

with capacity constraints has a unique static Nash equilibrium:

a If Ky » 1 the equilibrium is in pure strategies, both firms charge
) 1
p = 0 and earn zero profits.
(b) If Ky € (1/2)(1 - Ky) the equilibrium is in pure strategies, both
2 1

firms charge p = 1 - K| - K, and profits are given by

N_ _ _ P
T = Ki(l K1 K2) for i 1,2.

(c¢) If (1/2)(1 - Kl) < K2 < (1/2D]1 + /ﬁ;(f_; Kli] the equilibrium is in



(d)

Some
noting:
l.

2.

- 17 -
mixed strategies, and profits are given by ng = (K;/4K9)(1 - Kl)z
if K2 > (1/2)]1 + VKliZ - K15] and K € 1 the equilibrium is in mixed

strategies, profits are given by ng = (1/4)(1 - Kl)2 and

N ———
no= (K1/2)[1 - /KIZ - Klf].

important features of the static Bertrand-Nash equilibrium are worth

Profits are continuous in Kl and Ko.

The solution approaches the monopoly solution for firm 2 as Ky
approaches zero and K, remains constant.

If we set K = Ky = K and let K vary, then at one endpoint of the
mixed strategy region the Cournot solution appears, while at the
other endpoint the Bertrand solution emerges.

When KZ becomes sufficiently large (cases a and d) profits become
independent of K.

In case b firms are selling at capacity and thus cannot increase

sales by lowering prices.

Theorem 3 calculates the maximum sustainable price as a function of K,

Ko and r.

The theorem is more easily interpreted when the following

properties are kept in mind:

l.

The equilibrium price and profit functions take on different
functional forms in different parts of the parameter space.
Partitioning the parameter space into the same four sets used in
Theorem 3 greatly simplifies the statement of the theorem.

In all four cases there exists a critical interest rate r such that

if r < r the monopoly price (calculated on the assumption that all

capital costs are sunk) is sustainable. Intuitively, when the



interest rate is low firms do not discount the future heavily and
the threat of retaliation is sufficient to keep them from chiseling
on the agreement.
3. In all four cases there exists a critical interest rate T such that if
r > T then either no price above the static Bertrand-Nash level is

14 or 0 is empty. When the interest rate is high firms

sustainable
discount the future heavily. The immediate gains from cheating then
dominate the capitalized value of the losses due to retaliation.

4, For r < r <1 there exists a price pC(KI,KZ,r) that describes the
maximum sustainable price in any collusive agreement. p® is a
decreasing function of r. Thus, as the interest rate rises it
becomes more difficult to support any collusive agreement.

5. The level of collusion that can be sustained is a decreasing
function of the difference between Ky and Ky. 1In other words, when
the industry becomes more symmetric higher prices can be
supported. The driving force behind this result is as follows: as
Ky rises firm two's share of collusive profits rise and firm one's
drops. It then becomes more difficult to keep firm one from
cheating.

In each case the equilibrium is completely characterized by the

boundaries of the parameter region, the values of r, T and pC(Kl,KZ,r . To

facilitate the statement of the theorem, we introduce the following notation:

R
]
—
|
a
N
|
=~
N
1l

2(K1 + min(KZ,l)) -1

Tf%—;[l + r - r(K1 + K2)], o =2[1 +r - r(K1 + min(KZ,l))]

D
]
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2
-—-~;—(1 - Kl) (K1 + KZ)’ ¢ = 8a(l + r)(K1 + KZ)

Theorem 4: For each triple (K;,K,,r) with K; < K, and for every F(-,*)

satisfying the property F,F, > O there is a unique solution to program (3)

with sharing rule (5), given by:

1/2 if r<r

PC(KI,KZ,r) if r<r< r

and when r > ¥ the equilibrium is as in Theorem 3. Moreover,
(a) if Xy > 1 thenr =T = 1
- 2 c K1+ %
1Ky > 172 -1y SRR Ieh e L B A
if Ky < 1/2 - Xy the static Nash equilibrium price is equal to the

monopoly price. That is, ¥ = r = 0.

P |
(c) |if 5(1 - Kl) < K<

5 [1 + /RT(Z"—“‘K’I)‘] then

N j—

K
1.2 2 . 1
(i;) [Ky(2 - K) - (1 - kD] if K >
r={
Lk, - (1 - kDOAK, + K] if K, < &
2z 2 1 1 2 1 2
-_ 5
K



- 20 -

c 1 /2
P (Kl’KZ’r) = E{e + 78 - 6}

(d) if K2 > =[1 + /KI(Z = K;T] and K1 < 1 then

1
2

max{O, ((z + DO - a)/z) - 1} if K, €
r -

max{0, R (1 - a(l + z))/min(Kz,l)} if K, »

—
BN —

1 -« - [a® + 2a(K, + min(K,,1) - 1y1t/2

1) - (1 - o) + [a? + 2a(K, + min(K,,1) - 1t

a}
]

38
[+V)
i
o)
I

/2}
c
P (Kl’Kr’r) = Z(T“;—;7[¢ + 797 - ¢]

Theorem 4 and equations (5) and (6) can be used to obtain the equilibrium
profits in the price subgame (as a function of K, and Kz). These reduced form
payoff functions allow us to compute the subgame perfect Nash equilibria of

the full two-stage game.

4, Equilibrium in the Two-Stage Game

How much capacity should firm i purchase at time zero when it expects
firm j to install capacity Kj? To answer this question, observe that for any

value of Kj its profits are given by:

C C R C
Vi(KilKj) = n (K ,K,) = cK, = p min($;(1 = p ), K) - cK;

where p® is as in Theorem 4. Let Ki(Kj) denote the value of K; that maximizes
Vi(KiIKj)' Ki(Kj) is called firm i's reaction function or best reply
function. Firm j's reaction function is obtained in a similar way. (KT,K;)

then constitute a Nash equilibrium in capacities if and only if ii(K;) = K;.
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A typical reaction function for firm 2, when the cost of capacity and the
interest rate are low, is shown in Figure 1. The reaction function lies
completely above the 45° line except at the point (1,1). Thus, (1,1) is the
unique equilibrium for this case. From Theorem 4 we know that when the
interest rate is low (i.e., r < 1) both firms will charge the monopoly price.

The reaction function in Figure 1 has an unusual shape; its slope changes
sign at point a and it includes concave, convex and linear segments. These
properties are most pronounced when the cost of capacity and the interest rate
are low and thus, we will focus mostly on this case. When capacity is cheap a
firm ignores, for the most part, the cost of capacity. It thus chooses a
capacity level that will support collusion and provide it with a large share
of collusive profits. Let us examine firm two's best reply to a value such as
Ky in Figure 1. Since r is low the monopoly price will be sustainable at Ky =
Ki. As K, rises above K| firm two's profits improve (because its share of
collusive profits increases). At the same time, however, firm one's share
falls, thereby making that firm more inclined to cheat. Eventually firm one
becomes indifferent between cheating and remaining at the collusive point.
Further increases in Ky must then be accompanied by a reduction in the
collusive price. From this point on, increases in K, increase firm two's
profits because its share of collusive profits rises yet, at the same time,
lower its profits due to the fall in the maximum sustainable price. The
optimal value of K, is the value that just balances these two countervailing
forces. That value is denoted by K;(Kl).

Suppose now that Kl increases to Ki. Clearly, at the point (Ki’KE(K1>>
higher prices are sustainable. (Since firm one's share of collusive profits
rises, its temptation to cheat declines. Thus, the collusive price can

increase without inducing firm one to cheat.) This implies that the optimal



value of K, rises along with K; and explains why the reaction function is
upward sloping beyond point a. It also provides an explanation for why the
reaction function lies above the 45° line at all points except (1,1) (at (1,1)
firm two cannot increase its share of collusive profits by increasing
capacity. Moreover (1,1) is the only symmetric point with that property).

In region oa the reaction function is downward sloping. In this region
Ky is small and thus Ky must be small if collusion is to be sustained
(otherwise firm one's share of collusive profits is so small that it
cheats). Theorem 4, case (b), shows that when K; and K, are both small the
static Nash and collusive equilibria coincide; each firm sells at capacity and
charges the market clearing price. Thus, ﬂ%(Kl,Kz) = Ko(1 - K - K2) which
reaches a maximum at Ky = (1/2)(1 - Kl)' When the cost of capacity is small
enough to be ignored, this is also the profit maximizing value of Ko. As Ky
increases (1/2)(1 - K;) falls, explaining the negative slope in region oa.
This property is thus inherited from the static Cournot-Nash reaction
functions.

Increases in the interest rate or the cost of capacity affect firm two's
reaction function in a similar manner. An increase in the interest rate
reduces the capitalized value of the losses due to retaliation, and thus makes
it more difficult to support collusion. The industry must then become more
symmetric if collusive prices are to continue to characterize equilibrium.
Thus, the optimal value of Kj falls as r rises (except in region oa). An
increase in the cost of capacity also causes the reaction function to shift
down because it becomes more costly for a firm to increase its share of
collusive profits. 1In addition, increases in r or c cause the sign reversal
of the slope of the reaction function to occur later (point a moves down and

to the right).



Figure 1 exhibits a unique equilibrium in which both firms charge the
monopoly price. However, because increases in c and/or r cause the reaction
function to shift down toward the 45° line, additional equilibria will be
created when these parameter values become sufficiently high. For any given
r (c) there exists a critical value of ¢ (r) denoted ¢ (;) such that if ¢ > é
(r > ;) the linear segment of the reaction function——(bc)-—coincides with the
45° line, creating a continuum of additional equilibria. 1In this type of
equilibrium, firms charge a price above the static Bertrand-Nash level but

below the monopoly price. Thus, we refer to it as a constrained collusive

equilibrium (CCE). All equilibria in which firms charge the monopoly price

will be called unconstrained collusive equilibria (UCE). Once ¢ (r) reaches

; (;), further increases in ¢ (r) expand the set of CCE by shifting additional
portions of the reaction function down to the 45° line. Reaction functions
for three different values of ¢ are depicted in Figure 2. Lower reaction
functions correspond to higher costs of capacity.

Referring to the same figure, a third type of equilibrium emerges when c
and/or r rise even further. This type appears whenever the reaction
function's downward sloping portion reaches the 45° line before its slope
changes sign. For any given r (c) there thus exists a critical vlue of ¢ (r)
denoted é (i) such that if ¢ > ¢ (r > i) such an equilibrium will be

present. In these equilibria no price above the static Bertrand-Nash level is

supportable. We will therefore refer to them as noncollusive equilibria

(NCE). When a NCE exists it is unique in the sense that for any given value
of r and ¢ there exists a unique capacity level that supports an equilibrium
of that type.

To summarize, three types of equilibria may occur: unconstrained

collusive equilibria in which the monopoly price is charged, constrained



collusive equilibria in which a price above the static Bertrand-Nash level but
below the monopoly level is charged, and noncollusive equilibria in which no
price above the static Bertand-Nash level is supportable. Equilibria of the
UCE type are characterized by high levels of capacity and excess capacity
while equilibria of the NCE variety are characterized by low levels of
capacity and no excess capacity. 1In the UCE case the excess capacity provides
firms with a powerful weapon for retaliation and thus facilitates collusion.
Whenever equilibria of the UCE and NCE variety exist they are unique.

Constrained collusive equilibria are characterized by smaller capacity
and excess capacity levels than UCE. 1In addition, there is a continuum of CCE
whenever they are present. Raising r or ¢ creates more equilibria of the CCE
variety when the level of ¢ is not too high. However, for large values of ¢
increases in ¢ and r tend to reduce the number of CCE.

In Figure 3 the values of ¢ and r which are consistent with equilibria of
each type are shown. It is clear from the figure that more than one type of
equilibrium may be present at any one time. On the other hand, equilibria can
always be Pareto ranked. 1If we restrict our attention to the set of
undominated equilibria, we are left with unique capacity levels for most
values of the parameters. Figure 4 illustrates, for given values of ¢ and r,
the price charged in the Pareto superior equilibrium. As is evident from this
figure, increases in ¢ or r may, ceteris paribus, reduce the level of
collusion and hence of equilibrium prices. Such reductions are always
accompanied by a fall in the levels of capacity and excess capacity. In other

words, lower levels of excess capacity coincide with lower levels of

collusion.
At this point, it is instructive to reflect on what properties (if any)

of the linear demand example carry over to a more general setting. In Theorem
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5 of the Appendix, it is proven that in any symmetric equilibrium of the two-
stage game in which firms do not implement the static Cournot-Nash
equilibrium, there is excess capacity. Moreover, it is clear that the
comparative static properties of our model (the relationship between the
degree of collusion and the amount of excess capacity held by an industry)
will generalize. On the other hand, we have been unable to generalize the
result that all equilibria must involve capacity choices no lower than the

static Cournot-Nash level (taking into account the cost of capacity).

6. Conclusion

In this paper we presented a model of oligopolistic competition in which
firms' capital decisions play a crucial role in determining the level of
collusion that can be supported in equilibrium. We found that if firms
precommit in capacity and then compete in prices the level of collusion will
be positively related to the amount of excess capacity producers choose to
carry in equilibrium.

In our model collusive agreements are supported by credible threats of
retaliation against cheaters. Since there are immediate gains from cheating
on such agreements, and since all retaliation occurs in the future, the rate
at which firms discount future profits plays a critical role in determining
the maximum level of collusion that can be sustained. Excess capacity also
plays a critical role by limiting the damage an industry can inflict on a
cheater. Thus, as the interest rate falls or the level of excess capacity
grows, collusive agreements become easier to support. These are the economic
forces that drive our main results.

When the interest rate is low and/or capacity is cheap firms choose a
scale of operation large enough to support the monopoly price. As the

interest rate or the cost of capital rise, it becomes too costly for firms to
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carry enough excess capacity to support the monopoly price. Equilibrium
capacities and the level of collusion thus fall. If either of these two
parameters rise further, it may eventually become impossible to support any

collusion at all.
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Footnotes

1The component games of the ensuing supergame are just Edgeworth's price-
setting games with capacity constraints. This game has been analyzed in
detail by Kreps and Scheinkman (1983), Davidson and Deneckere (1983), and
Osborne and Pitchik (1986).

2The results of our model will approximate closely those of a model in
which firms have limited flexibility in adjusting their capital levels after
the initial capacity choice, and wide flexibility in adjusting their prices
over time (flexibility, of course, is not an absolute concept; it is defined
relative to the discount factor). For example, one might parametrize
flexibility by assuming that there is an upper bound AK to the amount with
which the capital stock can be adjusted from one period to the next, and
similarly for price (AP). 1If AK is small and AP is large (with respect to the
discount factor), the equilibria of the resulting model will be “close” to
ours (see Benoit and Krishna (1985)).

31n his description of the German cartels, Scherer (1980, pp. 370-71)
writes / " In Germany during the 1920s and 1930s, shares were allocated on the
basis of production capacity. Cartel members therefore raced to increase
their sales quotas by building more capacity. . . . Even when market shares
are not linked formally to capacity, a cartel member's bargaining power
depends upon its fighting reserves--the amount of output it can dump on the
market, depressing the market, if others hold out for unacceptably high
quotas."”

4Our model is a synthesis of Kreps and Scheinkman (1983) and Brock and
Scheinkman (1985). We extend the Brock and Scheinkman paper by allowing
capacity constraints to be determined endogenously and we extend the Kreps and
Scheinkman analysis by allowing the price game to be repeated infinitely so
that collusive outcomes can be supported in equilibrium.

>We also assume a constant marginal cost of capacity for ease of
computation; the results would be similar, however, for a more general cost
function.

6See Scherer (1980), especially pages 209-211.

7See, for example, Esposito and Esposito (1974) and Mann, Meehan and
Ramsey (1979).

8See Scherer (1980), pages 209-211.

9See the U.S. Congress, Senate Subcommittee on Antitrust and Monopoly
Report No. 1387 (1958), pp. 45-51, 81-85.
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10g5ee Scherer (1980).
11See, for example, Friedman (1977) and Benoit and Krishna (1984).
P

12pbreu (1983) has shown that in quantity-setting games firms may do
better (i.e., support more collusion) when they use strategies other than grim
trigger strategies. He does so by proving that an optimal punishment scheme
exists (optimal in the sense that it supports the highest level of collusive
profits), and that such a scheme requires firms to produce above the Cournot-
Nash output level when punishing. Although Abreu's punishments seem
attractive, they are quite difficult to characterize because in asymmetric
games, they require nonstationary punishment paths (the two-phase punishment
schemes which are easily computed for symmetric games work only if the
discount factor is sufficiently high). Thus, it is highly unlikely that such
strategies would ever be implemented in the real world. On the other hand,
standard trigger strategies require only simple calculations and are easily
understood by industry participants. It is more readily imagined that firms
will use these simple punishments to support tacit agreements.

There are two other reasons why we make use of grim trigger strategies in
our analysis. (i) It is easily proved that our punishments are optimal over
regions (a) and (b) of Theorem 1. Thus, our analysis differs from Abreu's
only over regions (c) and (d). (ii) Abreu's proofs depend on the continuity
of payoff functions. Since payoff functions are discontinuous in price games
it is unclear whether his results generalize.

13 1wo papers that focus on the sharing rule and its effects on collusion
are Osborne and Pitchik (1983) and Brander and Harris (1984). Both models are
static and do not provide an explanation of how collusion is supported.

14When K; and Ky are such that the static Bertrand-Nash equilibrium
occurs in mixed strategies (case ¢ and d of Theorem 3), this statement should
be interpreted as follows: firms charge a price below the monopoly price, but
high enough so that each earns profits above the static Bertrand-Nash level.

15Similar arguments appear in Benoit and Krishna (1985).
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Appendix

Let Rc(x) = arg max[z(P(z + x) - %] be the Cournot—-Nash best reply
function in a game wﬁere the marginal (and average) cost of output, including
per period capital cost, is c¢/r. Denote the solution to the equation
x = Rc(x) by ;(c). ;(c) is thus the static Nash equilibrium in a Cournot game
with constant marginal cost c¢/r. Finally, let ;(c) = RC(O), the static

monopoly capacity. We may now state:15

Theorem 5: In any symmetric equilibrium of the two-stage game involving
capacity choices of k and a collusive price of p, 2k > ;(c). Moreoever, if

(k,p) # (x(c), P(2x(c))), then D(p) < 2k.

Proof: If 2k < ;(c), the most lucrative equilibrium in the subame (k,k)
yields firms profits of [P(2k) - c/rlk. If firm i expands capacity to Rc(k),
it will earn at least its minmax profits in the subgame (k, Rc(k)), namely
[P(k + R.(k)) - c/r]RC(k), which exceeds [P(2k) - c¢/r]k. This proves

2k > ;(C). To prove the second part of the theorem, observe that if k = §(c)
and p > P(ZQ(C)) we are done. Since feasibility requires D(p) < 2k, we are
left with the case k # ;(c) and p = P(2k). 1In that case, firms earn, per
period, [P(2k) - c¢/r]k which is strictly less than [P(k + Rc(k)) - c/r]RC(k)
by the definition of R (+). The latter payoff is the payoff a firm would
receive if rather than choosing k it chose Rc(k), and if it were subsequently
minmaxed in the subgame (k, Rc(k)). Since any collusive equilibrium in that
subgame must yield that firm at least its minmax profits, it would choose to
deviate to the capacity level R.(k), contradicting the fact that (k,p) was an

equilibrium. 0
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