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Abstract

Many assets have instantaneous rates of return which depend on how long they
have been held. This duration dependence can arise, for example, from
transaction cost considerations or tax rules. We first show that an investor
will care about the order in which different units of the same underlying
asset are sold. In particular, if the market value of an asset rises
deterministically, optimal portfolio management is LIFO in nature, that is,
when one sells an asset, the most recently purchased unit should be sold. We
characterize the nature of the optimal consumption and investment paths,
showing that in general the optimization problem is of very large dimension.
We show that for a reasonably large and interesting class of wage paths, one
can reduce the intractable general optimization problem to a one-dimensional
control problem. Using this reduction, we then give an intuitive algorithm
for the optimal consumption problem in that case and provide examples which
furthermore demonstrate that duration—-dependent returns can substantially

affect the nature of consumption patterns.



1. Introduction

Many assets held by individuals have rates of return which depend on how
long the asset is held. Tax regulations often impose such a structure on net
returns, with the tax deferral advantages of capital gains taxation being the
best known example. Some mutual funds also have duration-dependent returns
due to fee structures designed to encourage an investor to keep his money
invested in the fund. This paper addresses basic issues concerning the
management of portfolios with such assets and the implications of duration-
dependent returns for optimal consumption plans.

Despite the ubiquitous nature of assets with duration-dependent returns,
the implications of such return structures have not been systematically
examined. For example, in studies of capital gains taxation, the problems
caused by this feature are finessed. Constantinides (1983) assumes that
assets sold to finance consumption are liquidated at random, unrelated to
their vintagé and the vintage of other assets in the total portfolio. We find
that this behavior is strictly suboptimal.

This paper characterizes optimal trading rules and consumption patterns
in the presence of assets with duration-dependent returns without making ad
hoc or specialized assumptions concerning trading rules. We show that the
pattern of saving and consumption will be substantially affected by the
presence of duration-dependent returns. This is particularly apparent in the
case of capital gains taxation. Constantinides shows that his assumptions
concerning trading strategies and opportunities cause the capital gains tax to
be effectively a capital income tax, whereas we show that the impact of
capital gains taxation by realization on consumption patterns will differ
substantially from those of an income tax. Also, discussion of capital gains

taxation often speak of a lock-in effect. In contrast, we find that capital



gains taxation will cause some assets to be held for a very short period.

The importance of duration dependence in asset returns may vary with the
issues with which one is concerned. While these considerations may not be of
great importance to the positive analysis of security prices, the focus of the
finance literature, they may be important in other contexts. For example, one
such case is certainly the evaluation of capital gains taxation. Since the
welfare impact of a tax generally depends critically on the patterns of
distortion it creates, rigorous analysis of capital gains taxation and its
performance relative to capital income taxation cannot ignore duration
dependence, the key differentiating feature between the two taxes. Generally,
the analysis of any normative issue in finance will likely be sensitive to the
presence of duration dependence. Therefore, an analysis of intertemporal
consumer demand in the presence of duration-dependent returns is an important
problem. It is the focus of this paper.

Section 2 proves first the optimality of LIFO management of such assets
when returns are deterministic, and then determines the appropriate
generalization to random security prices when a capital gains tax generates
the duration dependence. Section 3 uses dynamic programming to examine the
nature of optimal consumption paths if utility is additively separable over
time and regulatory or market forces eliminate the arbitrage opportunities
that are otherwise endemic in the presence of duration-dependent asset
returns. Dynamic programming is unwieldy in any interesting case here.
Therefore Section 4 characterizes the optimal consumption path for one
particularly tractable path of endowment income. That example motivates a
general condition on endowment income which Section 5 demonstrates to be
sufficient to reduce the problem, which is generally of intractably large

dimension, to a one—-dimensional control problem. The latter leads to the



discussion in Section 6 of a tractable algorithm for computing consumption
paths similar in spirit to the shooting algorithm commonly used to solve more
standard intertemporal consumer demand problems. Development of a tractable
algorithm is important for anticipated future normative analysis of
alternative tax rules. Section 6 also provides examples of solutions to the
problem analyzed in Section 4, demonstrating that consumption paths can be
qualitatively different in the present of duration dependent assets. Section

7 concludes the paper.

2. Optimal Portfolio Management

First we will examine a model with one basic underlying security, such as
equity in one particular firm. Since we will find that duration dependence
will cause different units purchases at different times to be different
securities, it is appropriate to abstract from other diversification
possibilities to focus on the implications of duration dependence.

We therefore assume that an asset purchased for $1 at t returns $R(t,s)
if sold at s. Furthermore, we assume that R(t,s) = g(s - t), where g > O,
g(0) = 1, and g is continuous, implying a stationary structure to returns. We
will use both the R and g notation. We assume throughout this paper that no
dividends are paid. This is simplifying assumption in our analysis but not
essential for the central points. It is also true of many tax—-deferral
plans. For example, an IRA may receive dividends but no tax is paid until the
IRA is liquidated. Therefore, it essentially converts a dividend-paying asset
into a pure capital gain asset of the sort assumed here.

The assumption g(0) = 1 essentially rules out fixed transactions costs.
Fixed transactions costs affect the frequency of transactions and cause a

distinct class of problems, as illustrated for example in models of money

demand (see Baumol (1952)).



Theorem 1 proves the crucial feature of the optimal strategy assuming a
positive marginal utility of money at all times and a rate of return

increasing in duration.

Theorem 1: If the marginal utility of money is always positive and if &n g(t)
is convex and increasing in t, then any utility-maximizing policy of portfolio
management of an asset is LIFO, i.e., sell the most recently purchased unit

first. Generally, LIFO is optimal if and only if R(t,s')R(s,t') < R(t,t')R(s

|
,8 ) whenever t < s < t' <s'.

Proof: Suppose otherwise. In particular, suppose that a unit of an asset is
purchased at t and sold at t' and another is purchased at s and sold at s',
where t < s < £ < s'. We will demonstrate alternative feasible transactions
which will dominate such a policy. If at t' one instead sells the unit
purchased at s, receiving R(s,t'), and also sells (R(t,t') - R(s,t'))R(t,t')—1
of the unit purchased at t, receiving R(t,t') - R(s,t'), then he receives a
total of R(t,t') at t', the same result as selling the unit purchased at t.

If the remainder of the investment of time t is sold at s', the investor
receives R(t,s')R(s,t')/R(t,t') at s'. This income at s is to be compared to
R(s,s'), the income at s' under the non-LIFO policy. Our LIFO alternative

dominates if
\} | 1 \}
R(t,s )R(s,t ) > R(t,t )R(s,s )
which in turn holds if
(@D) n g(s' - t) + 4n g(t'\— s) > &n g(t' - t) + fn g(s' - s)

1 1
However, An g(x) is convex in x. Since (s -t) + (¢t = s) =

(t' -t) + (s' - 8), (1) is equivalent to comparing the expected value of a



convex function of two random variables, with the random variable of the LHS
being a mean-preserving spread of the RHS random variable. Hence, (1) holds
and our LIFO alternative dominates if the marginal utility of money at s' is

positive. N.E.D.

The convexity condition on in g is the exact condition needed for the
optimality of LIFO strategies. It is also satisifed in natural examples. For
example, if the rate of increase in the value of a unit of equity is r and the
tax on capital gains is 1, then R(t,s)k= (er(s-t) - 1(1 - %) +1 and
satisfies convexity in the log of totél return if v > 0. Also, IRAs have a
convex return structure as long as the early withdrawal penalty applies. We
therefore focus on return structures where fn g is convex in all of the
deterministic cases in the remainder of this study.

The convexity condition on fn g intuitively leads to the LIFO policy.
Convexity of An g implies that g'/g, the instantaneous rate of return to
holding an asset, is increasing in the time the asset has been held. If an
investor is about to sell a unit of the asset, one purchased recently and one
purchased long ago, the instantaneous return to holding the latter exceeds the
return to holding the former. Therefore, it is natural to expect that the
more recently purchased unit should be sold.

As discussed above, we ignore dividends in our analysis. For tax-
deferred investments where all returns are reinvested, this is an appropriate
assumption. However, the addition of dividends need not alter any
conclusions. If a $§1 investment at t = 0 yields a dividend flow of yert at t
and R(t,s) = (er(s—t) - 1D(1 - 1) + 1, then the switch to LIFO in the proof of

Theorem 1 does not reduce the dividend flow and Theorem 1 continues to apply.



The assumption of one asset was not essential to the analysis. TIf there
were two assets with deterministic but different returns Rl and RZ, then we
could take R(t,s) to be the maximum of Rl(t,s) and Rz(t,s). One such case
would be debt and equity issued by a firm. If the firm is to be indifferent,
then the investor must absorb all taxes, both corporate and personal. Equity
enjoys an advantage over debt since the growth in equity value is sheltered by
the deferral nature of capital gains taxation at the personal level, but is
disadvantaged since debt payments are deductible at the corporate level. For
long-term investment, the deferral advantage of equity may dominate, but over
the short term the deferral advantage will disappear and debt will dominate.
Hence LIFO implies an intrapersonal clientele effect: an individual first
buys equity, then buys debt, followed later by a dissaving stage where he
first sells debt, then sells equity. 1In the interest of brevity, the
implications of this for financial theory is left for a later paper.

Although we concentrate on the case of certain returns, Theorem 1 may
hold if returns are random. Since Theorem 1 can be applied to any realized
path of security prices, it implies that a LIFO strategy is optimal if the An
g is convex in the holding time for all possible realizations.

We next examine a two-asset case, one risky with returns subject to
capital gains taxation, and the other risk-free subject only to accrual
taxes. Therefore, the net return on a unit of the risky asset depends on the
date of its purchase. 1In this case, we have a particular form of duration
dependence, but we can prove a more general result concerning optimal
portfolio management with uncertain asset prices. Instead of LIFO, a "high
basis, first out” policy, denoted HIFO, is optimal. HIFO states that if units
of some asset are to be sold, one should sell those with the highest basis

first. If asset prices are monotonically increasing, HIFO and LIFO are



identical. Randomness in prices, however, will imply that the ranking of
assets according to date of purchase may differ from ranking according to
basis value. We next show that if the risk-free asset has a positive return,

then the optimal policy must be HIFO.

Theorem 2: If the asset price is random, the marginal value of cash flow is
always positive, and there is a risk—free asset with a nonnegative return,
then optimal management is HIFO in the presence of a constant positive capital

gains tax.

Proof: Suppose a non-HIFO policy is followed. Assume w(t) is a stochastic
process and S, the asset price, is measurable with respect to w. Then there
is some unit of the asset with basis B;, sold at t in some state of the world,
0, and some other unit with basis By > By sold at some later random time S >t

{wlw(s) = w(s) ¥s < t}. The unit with

conditional on the information set It
basis B; yields a net cash flow of 5t - 1(5? - Bl) at t whereas the unit with
basis B, yields 5~ - T(SN - B,) at S. 1If

1- (B, - Bl)T/(Si - T(S: - B,)) units of the higher basis unit are sold at t
instead of the lower basis unit, cash flow at t is preserved. If the

remaining fractional unit with the high basis is sold along with the low basis

unit at §, then cash flow at S is augmented by

(B, - B)w(l - r)(S§ - p,)

pt(l -x) + rBz

Since By > By > 0 and 0 < 7 < 1, expected value is increased by the switch to

HIFO if and only if

(2) E{X (p_-p)|L} >0
t'g'g t't



where Xt is the marginal value of cash flow at t énd is measurable with
respect to w. If there were a risk-free asset returning r > 0, then one
alternative to holding the high basis asset from t to S would be to sell it at
t and invest the proceeds in the risk-free asset to finance consumption at

S. Therefore, holding the high basis asset is optimal only if

r(S-t) _ r(5-t) _

(3) 0> E{X_[(p.e p_)(1 = 1) + By(e D1}

S S
where the expression in the square brackets is the change in cash flow at S
from the liquidation alternative. Since t, B9 > 0, r > 0, and © < 1, (3)

implies (2). Therefore, in the presence of a risk-free asset with nonnegative

return, HIFO is a feature of the optimal portfolio policy. Q.E.D.

The dominance of LIFO and HIFO strategies is not surprising. First of
all, they are myopic tax-minimizing strategies in the case of tax—-deferred
investments. However, it is important to note the weak nature of the
assumptions. We assume in Theorem 2 only that a risk-free bond with positive
return may be purchased. We rely only on this ability to go long in bonds.

Theorems 1 and 2 indicate one feature of any optimal policy in the
presence of these types of duration-dependent returns. This feature certainly
does not completely determine the optimal saving and consumption path of an
investor. It is however the most crucial feature leading to drastic
simplifications in the determination of intertemporal choices. This is seen
clearly when we turn our attention to the determination of consumption when

utility is separable,



3: Optimal Consumption Paths

We next examine the nature of the optimal consumption path under the
common assumption that utility is additively separable over time. We assume
that asset returns are deterministic, a case which is sufficiently complex and
novel in this context that it merits detailed examination. This section first
describes the nature of the constraints which must be imposed on the agent if
consumption in the optimal program is to be finite. We then establish the
crucial continuity properties of an optimal consumption path under such
constraints. This information is used in the following sections to show how

to compute an optimal consumption plan for some wage income paths.

The Model: Tastes and Restrictions on Trading
We assume that an individual wants to maximize the additively separable

discounted utility functional

foe PFutee))at

where p > 0 is the constant pure rate of time preference, u(+) is a C2 concave
increasing instantaneous utility function, and c(t) is the path of
consumption. We also assume the Inada condition at ¢ = 0, that is,
u'(0+) = », This agent can invest in one security, with a purchase price of
p(t) per unit at t with p(0) normalized to unity. A unit purchased at t will
generate p(t)R(t,s) in net cash flow at s if sold at s > t. w(t) is any
noninvestment income at t, but for expository purposes we will call it the
wage income.

Before we proceed with the formal examination of the optimal consumption
path, we should discuss the differences between our problem and the usual

problem where
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—ftr(z)dz
R(s,t) = e °

and the budget constraint is a bound on a linear functional of w(t) - c(t),
T
fOR(o,t)(w(t) - c(t))dt > O

In that case, the optimal consumption path is characterized completely by
local conditions. If a path c(+) is optimal at t, then the consumer must be
indifferent between a marginal unit of consumption at t yielding u' (e(t)) and
the marginal return to saving at t and consuming the initial saving and its
return at t + dt yielding u'(c(t + dt))er(t)dt. The assumption of complete
markets is a logical possibility since returns are independent of churning,
i.e., R(s,t) = R(s,t'")R(t',t) for all s, t', and t. Therefore, the consumer
can save at t for consumption at t + dt or borrow at t at the same rate
against income at t + dt in order to augment consumption at t. The exact
indifference implies that c(t) obeys ¢ = u'(c)(p - r)/u"(c), a differential
equation which represents the local arbitrage conditions for utility
maximization.

The convenient feature of this representation is that a value of c(0)
together with the arbitrage conditions determines the consumption path. This
is the basis of the shooting algorithms standardly used to numerically solve
the consumer's problem, as described in Lipton, et al. 1In these algorithms,
one guesses c(0), solves the arbitrage differential equation, determines if
the present value of consumption is greater or less than the present value of
income, and suitably adjusts c(0) for the next iteration. Since consumption
at t = 0 is a normal good, these iterations will converge to the correct c(0).

We cannot proceed so directly in the case of assets with duration-
dependent returns. First, the local arbitrage argument is not adequate.

While it still must not be the case that utility can be increased by saving $1
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at t and liquidating that asset at t + dt and consuming R(t, t + dt) more at

t + dt, it need not be true that this is the best way to effect such a shift
in consumption.. It could be that a superior way to transfer consumption from
t to t + dt would be to invest $1 at t, liquidating the resulting asset at

s > t yielding R(t,s), and then at t + dt reduce by R(t,s)R(t + dt, s)—1 units
the purchase of assets which were planned to be liquidated at s. If

R(t, t + dt)R(t + dt, s) < R(t,s), then it would be a strictly better
strategy. Therefore, the solution of our problem will generally depend on
global considerations.

In further contrast to the usual case, the feturn structure with
duration-dependent returns implies the need to restrict markets to prevent
arbitrage. Therefore, when making arbitrage arguments we will have to take
care that the hypothesized transactions could indeed take place.

For an example of the arbitrage opportunities, suppose R(0,1) = R(1,2) =
1.5, but R(0,2) = 2.5. This would arise if an asset doubled in value each
period and a capital gains tax of 50 percent with full loss offset were
imposed upon realization. In this case, an individual with access td perfect
markets, short sales included, would have the following three-period arbitrage
strategy. In period 0, both invest one dollar long and sell short one dollar
of the security. In period 1, close out the original short position and open
two dollars worth of new short positions plus invest fifty cents long. In
period 2, close all positions. 1In period 1, there is no cash flow due to the
equal long and short positions. In the second period, closing the old short
position causes a loss of $1.50 which, together with the $.50 investment,
yields a $2.00 cash outflow financed by shorting $2.00 worth of the asset. In
period 2, the period 1 long position produces $2.50 which, together with the

$.75 earned from the sale of the period 2 investment generates $3.25, more



than enough to cover the $3.00 cost of closing out the $2.00 period 2 short
sale. Essentially, this strategy allows an individual to borrow for two
periods at 50 percent per period, or 125 percent for two periods, but lend for
two periods at 150 percent.

To avoid this problem we rule out all short sales for two reasons.

First, if the duration dependence of returns is due to taxes, then such short
sales are for tax reasons only and therefore supposedly not eligible for
advantageous tax treatment. Second, if fees for short sales rise to a level
which eliminates pure arbitrage, then short sales have no net value for
investors in this deterministic world and prohibition of short sales will not
affect investor utility. This is a common way to deal with such arbitrage
opportunities. In particular, our assumption is equivalent to Constantinides’
treatment of potential arbitrage opportunities in the present context.

Since we are concerned with developing the basic analysis of the
investor's optimization problem, it is appropriate that we assume no short
sales are allowed. Such a focus is also appropriate if one is interested in
the implications of a leak-proof capital gains tax. Such an analysis could
determine whether it would be better to crack down on tax evasion related to
capital gains taxation, or to eliminate capital gains taxation altogether in
favor of some other less distortionary tax. Such is the focus of Balcer and
Judd(1985).

However, this model includes some less restrictive situations. If one is
limited to a level of allowable arbitrage profits with the limit independent
of one's asset holdings, then this limitation is equivalent to augmenting
endowment income since any agent is assumed to exhaust arbitrage
opportunities. If, on the other hand, limitations are related to the size of

a portfolio, then this can often be incorporated in the return function,
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R(*,*). For example, if a $1 investment at t generates an income at s of
R(t,s) but also generates 50 cents of arbitrage profits at t, then the true
cost of the investment is 50 cents and R(t,s) can be replaced by R = 2R.

Given these considerations, our formulation includes many kinds of regulations

which limit short sales as well as the case of absolutely no short sales.

Existence and Uniqueness:

We first prove the existence and uniqueness of an optimal consumption
plan. Since the vintage of an agent's portfolio is important to his
‘decumulation choices and the determination of the binding arbitrage
conditions, the nature of his portfolio at any one moment cannot be summarized
by a low-dimensional statistic such as the market value of the portfolio. The
state of an agent's portfolio is of dimension equal to the number of time
periods passed. In a continuous-time world, this implies that the problem is
inherently infinite-dimensional and that we cannot apply the usual optimal
control theory. We therefore take a different approach. We first formulate a
dynamic programming approach to the problem for a discrete time world. This
yields direct and intuitive existence and uniqueness results for the
optimum. However, results arising from such a heavy-handed approach reveals
little precise knowledge. Also, such an analysis would be of little practical
value for interesting problems since dynamic programming is an extremely
costly computational aPproach.

To get more refined and useful characterizations of the optimal
consumption path, we then turn to nonstandard analysis to analyze the limit as
we take the time interval to zero. Since continuous-time results should be
limits of discrete-time analysis, this approach is in fact preferable to a
direct continuous—-time analysis. If the nonstandard choice of a consumption

path is infinitesimally close to a standard one, then this approach yields
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sensible solutions. The objective therefore is to examine the nonstandard
solution for infinitesimal time periods and show that it does represent a
standard consumption path and determine a tractable representation of and
algorithm for computing the optimal consumption path. (The interested reader
is referred to Keisler (1976) for the necessary elements of nonstandard
analysis.)

Suppose that time were discrete with t € {6,26,...,N6} =Aand B =e”P

where NS = T, The utility function is approximated by

Ugleg(*) = T BSuley(£))5
teA

if cy(t) is the rate of consumption at time t. Let At e ®1 represent the
portfolio at t = L6, where Aﬁ is the number of units of the asset purchased at
kb and held at least until 28, k < £. For the N-period approximation we
define Wﬁ(Al) to be the maximal utility discounted to period 26, from
consumption during and after time 26, if, at the beginning of period 16, the
consumer holds Aﬁ units of the asset purchased in period k& and during pariod
26 the consumer earns wN(t), which is defined to be the minimum wage over the
interval [&8, (&+1)8]. By the principle of optimality of dynamic programming,

for £ < N,
(4) oty = (rwthat

E max {ute)s + BW§+1(LIFO(A1,1,C))}
e<6' ) ArP(SKIR(SK, 50 4wy (51)

where LIFO (Al,l,c) € ®® is formed from A% by the LIFO rule; that is, sell
the most recently acquired assets until consumption is financed if ¢ exceeds

wy, otherwise buy (wy - c:)p"1 units of the asset. For L = N, clearly



- 15 -

-1

Wty = su(s! R(t,T)p(t)A? + g (6W))

teA
Existence of an optimal cN(o) follows from the fact that at each stage we are
maximizing a continuous function over a set with a closed and bounded
intersection with the positive orthant of RN, Theorem 3 proves the uniqueness
of the optimal consumption path and the concavity of the intermediate value

functions.

Theorem 3: For all N, (4) has a unique solution and the value functien is
concave in the portfolio at each time. Furthermore, Wg(o), Wﬁ(O) < W%M(O) and
there is a uniform bound on the W%. In particular, if N is an infinite

integer, there is a unique nonstandard consumption path.

Proof: The concavity of each W follows from standard manipulations., wN ig
obviously concave. Suppose A% and A% are two possible period & portfolios and
that Wl+1 is concave. Let BCX(AX) denote the set of feasible choices for c¢ at

26 if the portfolio is A, If a € [0,1],
W= Gl (8) + (1 - W)

=q Max {u(cl)6 + 6WZ+I(LIFO(A§:,£,C1))}

clesc"(A“)

+ (1-a)  Mx {u(c2)6 + Bl«le(Lm(A';,l,cZ))}

CZEBCR(A'Q)

= (aule)) + (1 - au(e;))d + o+ (LIFO(AT,2,e 7)) + (1 = @)@ (LIFO (AL, 2,cp))

* *
where c; and c, are the optimal choices of the period % maximization problems

given A%and A%, respectively. The portfolio KK = aAf + (1 - a)Aé could
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finance a consumption of ¢ = ac; + (1 - a)cy since aAf can finance acy.
- - * *
Hence, ¢ € BCl(Al). u(e) > au(cl) + (1 - a)u(cz) follows from the strict

%
concavity of u. Since one way of financing c; given Af resulted in a period 2%

+ 1 portfolio of LIFO(A%,X,C;), i=1,2, one way of financing ¢ given A* would

leave the portfolio of Kl+1

L * L LI
@ LIFO(A],2,c]) + (1 = &) LIFO(A;,2,c,) in
period +l. Therefore, concavity of W' implies that W < u(c)§ + BW1+1(KX+1).

However, we know that LIFO(Al,l,E) is the optimal choice for ALY, Therefore,

W< u(e)d + BW1+1(LIFO(K1,1,E))

¢ Max {ue)s + Bwl+1(LIFO(Al,£,c))}
cEBC(AY)

w2

proving strict concavity. Strict concavity of W and u(e«) implies a unique
consumption choice any AL, By induction, these properties hold for all
L =1,...,N.

Notice that the wage profile is nondecreasing as we move to successive
refinements in the interval of time and that such refinements do not restrict
any flexible in investment decisions.  Therefore, anything possible in the N-
period problem is also possible in the NM-period problem and similarly for the
M-period problem. Hence, the total lifetime values in the N- and M-period
problems are bounded by the total lifetime value in the NM-period problem.
There is obviously a uniform upper bound over the values of all such
problems. Hence they form a convergent net and converge to a common value,
which must be infinitesimally close to the total lifetime value of any
nonstandard infinite-period problem.

Q.E.D.
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Theorem 3 showed that there is a unique optimal consumption whenever time
is discrete. This result is not satisfactory for many reasons. First of all,
some intuitive properties, such as smoothness of consumption, cannot be
discussed in a discrete-time model. Second, the characterization of the
optimal consumption path as a solution of dynamic programming problems of
successfully larger dimensionality makes application of this analysis
extremely costly.

When we analyze in more detail the nonstandard solutions of Theorem 3 for
infinite integers N, we can rectify both shortcomings of the dynamic
programming formulation. When N is infinite the discrete units of time are
infinitesimal. This suggests that these nonstandard, infinitesimally discrete
solutions are infinitesimally close approximations of the continuous-—time
problem when the latter is formulated properly. We have not and will not
formulate a continuous-time formulation. If we were to formulate the
continuous-time problem in such a fashion as to make it inconsistent with the
limit of discrete-time problems, then we would argue that the continuous-time
formulation was wrong. Instead, we offer the nonstandard solution, which is
by construction the limit of the discrete-time problems, as the appropriate
object to study. To make the nonstandard solutions compelling as
approximations to continuous time, we need to show that they are not just
abstract and artificial constructions, but rather a approximations of standard
continuous—-time consumption paths. 1In the following lemmas we let c(t) be the
optimal solution for (4) for some infinite N and for t € A. We will see that
the choice of N is immaterial. 1In the sequel, x » y will mean that x - y is

positive and noninfinitesimal.
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We next introduce a correspondence which will be crucial to making the
analysis tractable. For the optimal consumption path, let S(t) be the
correspondence such that assets purchased at t are sold at some time in
S(t). 1If no assets are purchased at t, S(t) = f. Since the optimal trading
strategy obeys LIFO, if t < t' and s € s(t), s' € S(t') then s > s .
Throughout the sequel, whenever we make a statement about S(t), we mean it to
hold for all elements of S{t) unless otherwise indicated.

In any optimization analysis, the critical step is the determination of
arbitrage conditions. When the budget constraint is linear, this is
relatively easy. In this model, the structure of arbitrage relations is much
more complex since these are suboptimal ways of managing the portfolio and
there are restrictions on short sales. The correspondence S efficiently
represents the arbitrage structure in this case. This is seen in Theorem 4,
where we determine which arbitrage conditions must hold at an optimum and a

condition implying that the diameter of S(t) is infinitesimal.
Theorem 4: Along an optimal consumption path when N is an infinite integer,
' -ps '
i. u (c(t)) > e R(t,s)u (c(s)), ¥s >t
.. ! -p(s=t) !
ii. w(t) > e(t) = ¥s € S(t)(u (c(t)) = e R(t,s)u (c(s)))

iii. if s,s' € S(t) for some t and for all s ¢ (s,sf), c(s") »

" .
w(s ), then s = s ,

Proof: Condition (i) holds simply because otherwise utility would be
increased by reducing c(t), investing the extra savings to be liquidated at

t + s for consumption. Condition (ii) holds since otherwise utility would be
increased by reducing savings at t by dc and consumption at s € S(t) by

R(0,s)dc. Condition (iii) follows from the observation that if ¢ - w is
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noninfinitesimal and positive on (s,s') then by LIFO all the dissaving during
(s,s') comes from saving at t. Savings at t are at most some finite multiple
of dt, an infinitesimal, implying that total dissaving during (s,s') must also
be order dt. If the rate of dissaving, ¢ - w, is noninfinitesimal during

(s,s'), s -~ s must be infinitesimal. Q.E.D.

The consumption path c(t) is a nonstandard object defined only at points
t on an infinite collection of discrete points, A. In order to find a
corresponding standard real object, we must use an appropriate concept of

continuity. We will say that c(t) is hypercontinuous at t € A if and only if

c(t) = c(t') for all t =~ t. The importahce of hypercontinuity is indicated

in the following result from nonstandard analysis. If *t is the standard part

of t, i.e., the nearest standard real number of a finite nonstandard real t,
and f(t) is a function in a nonstandard model of analysis from finite
nonstandard reals to finite nonstandard reals, then the correspondence g,

defined on standard real numbers,
g(s) = {x € B3t = s(£(t) = x)}

is a continuous function at *t if f is hypercontinuous at t. g is then called

the standard part of f and denoted *f.

Since c(*) is constructed by the application of hyperfinite induction and
standard functions, it is a function in any nonstandard model of analysis.
Therefore, by determining hypercontinuity properties of ¢, we can determine if
there is a standard consumption path infinitesimally close to it. These
smoothness properties are important for two reasons. First, continuity of
consumption is a common result in optimal consumption models with continuous
returns and concave utility. It usually follows from the first-order

conditions of dynamic optimization. Those arguments depend strongly on the
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completeness of markets and the resulting two—way instantaneous arbitrage
arguments. We are restricted in the types of transactions permitted and
therefore must be much more careful in the application of arbitrage
arguments. Second, the determination of the smoothness of ¢ allows us to
determine the degree of smoothness of S(t), a correspondence of critical
importance in determining an equivalent optimal control problem below.

In the following, we define t~ = t - § and tt = t + & whenever t € A.

We first show that any discontinuity in consumption must be an upward

jump when regarding consumption as a function of time.
Lemma 1: If c(+) fails to be hypercontinous at t, then c(t™) < c(t+).

Proof: Suppose otherwise. Then c(th) < c(t™) - 3¢ for some infinitesimal 4t
and noninfinitesimal positive £. We will show that utility can be improved by
reducing consumption at t, saving more at t, and consuming the return at tt.

c(t™) - £ and E(t+) = c(th + eR(t™, t+), i.e.,

Suppose ¢ = ¢ except c(t™)
we reduce consumption at t~ by e, invest £ in an asset for duration 2dt, and
consume the return on that investment at tV. Utility is changed by an amount

proportional to
u(e(e) + e 7P uet™)) - ule) - e PP uce™y)
> - (e(t e +u (e(t™) er(t™, tHe 2T
The inequality follows from the concavity of u. The right side is positive

since ¢(t™) - & > E(t+), u is strictly concave and since R(t~, tHye2pdt -

by the continuity of g at 0 and g(0) = 1. Q.E.D.

The calculation performed in Lemma 1 is basic to our analysis. It is the
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building block for the next four lemmas which continue our examination of the
smoothness of c(+). We next show that if an asset is held for only a short
period at t then consumption differs only infinitesimally between the dates of

purchase and sale.
Lemma 2: If t = s for some s € S(t) and c(t) < w(t), then c(t) = c(s).

Proof: Suppose otherwise. Then by Lemma 1 there is a noninfinitesimal £ > 0
such that c(t) + 3¢ < c(s) for some s € S(t) such that s ~ t. Since the
assets'purchased at t are sold at s, if we consume £ more at t, reducing
receipts and consumption at s by =R(t,s), then all other consumption decisions
are unaffected and utility rises as in Lemma 1l since t =~ s implies that

R(t,s) = 1. Q.E.D.

We next show that if consumption equals wages at some time t, then

consumption does not jump at nearby times if the wage path is smooth.

1

Lemma 3: If c(t) = w(t) for some t such that t < t and t = t and

w(t) ~ w(t'), then c(t) ~ c(t').

Proof: Suppose otherwise. Then by Lemma 1 c(t') > e(t) + 3e » w(t') + 3¢ for
some noninfinitesimal € > 0, Then the assets sold to finance the last ¢ of

consumption at t' can be sold at t, yielding sR(S_l(t'),t) R(S_l(t:'),t:')"1 >
more consumption at t and ¢ less consumption at t'. This increases utility by

an argument similar to that in Lemma 1.

The next two lemmas show that if consumption is either below or above

wages locally then consumption is smooth.



- 22 -

Lemma 4: If t < t', t < t', c(t) < w(t), and c(t') < w(t'), then

e(t) = e(t').

Proof: Suppose otherwise. Then by Lemma 1, c(t) < c(t') - 3¢ for some
noninfinitesimal € > 0. One could increase consumption at t by g, finance the
eR(t, S(t)) in sales at S(t) by reducing consumption at t' by

1 _1 . .
eR(t,S(t)) R(t , S(t)) = g, leaving all other consumption unchanged and

increasing utility as in Lemma 1. Q.E.D.

] " " ”
Lemma 5: If t <t and t =t and c(t ) > w(t ) for all t ¢ [t,t'), then

e(t) ~ e(t)).

1
Proof: Otherwise, by selling some of the assets earmarked for sale at t at t
instead, utility would be increased as in Lemma 1. We know that this is
1
possible since by LIFO no assets were purchased between t and t and therefore

1]
those assets that were to be sold at t were on hand at t. Q.E.D.

From Lemmas 1 through 5 we can determine that the optimal consumption is
hypercontinuous except possibly at times when the wage path displays an upward

discontinuity.

Theorem 5: When N is infinite, the optimal consumption path is hyper-
continuous except possibly at times when w(t) is not hypercontinuous and w(t™)
< w(t+). Hence, there exists a standard consumption path which is

infinitesimally cose to the optimal nonstandard consumption path.

1] 1
Proof: Suppose w(t) is hypercontinuous at t. Suppose B = {t 't = t}. If
¢ < w on B then ¢ is hypercontinuous at t by Lemma 4. If ¢ > w on B, it is
hypercontinuous at t by Lemma 5. Next suppose ¢ crosses w from below, say at

s = t, i.e., c(s8) < w(s) but c(s + §) > w(s + §). ¢ is hypercontinuous by
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Lemma 2 if the inequalities are strict since LIFO would imply that s = s +

dt € S(s). If c(t) = w(t), then Lemma 3 implies that c(t) = c(t')

for t‘ Z t since if w is hypercontinuous at t, ¢ is also. If ¢ is decreasing
on B, it is hypercontinuous by Lemma 1. This exhausts all the possibilities
if w is hypercontinuous at t.

Next suppose that w drops noninfinitesimally at t. If ¢ is not hyper-—
continuous, it must increase by Lemma 1. By Lemmas 4 and 5, c(t) < w(t) and
c(t +68) > w(t + 8). This would imply t = t + dt € S(t). Lemma 2 then
implies that c(t) = c(t + 8). Consumption is therefore hypercontinuous at t
since it is hypercontinuous to the left of t, to the right of t + 6, and

between t and t + §. Q.E.D.

Theorem 5 shows that the consumption path may be continuous as it is in
the usual case of linear returns, but that there is one kind of discontinuity
which is possible. Figure 1 displays such a possibility. In this example,
the wage path jumps upward discontinuously at £. We have drawn c to be
discontinuous also. The key fact is that if c(t™) > w(¥") and c(EY) < w(Eh
then c must be discontinuous at . this is seen by consideration of the
arbitrage condition. Suppose t € S(sl) and sy € S(t), i.e., savings at s; are
consumed at (really just before) t, and savings just after T are consumed at

Soe From Theorem 4, we conclude that

)
1 R(sl,E)

. L —p(E—s
u (c(t )) e

u' (e(s)))

-p(sz—E)

u (e(@H) = u (els,))e R(E,s,)

Furthermore, LIFO implies that as soon as the savings from t+ are consumed,

the next savings consumed at 55 come from sI. Therefore, since the continuity
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of ¢ at s and sy follows from that of w,

. -p(sz—s )
u (C(sl)) = e u (C(sz))R(sl,sz)

If ¢ were continuous at T, these arbitrage conditions would imply that
R(sl,f)R(E,sz) = R(SI’SZ)’ which contradicts the convexity of fn R(0,x)

in x. Therefore, ¢ is discontinuous at E.

c(t)

w(t)

Sy E Sy t

Fiﬂufe 1

In this section, we have demonstrated that the optimal consumption path
exists, is unique, and is continuous except at one possible kind of
discontinuity in wages. We next move on to a more detailed examination of one
kind of wage path. This examination will show us what kind of consumption
paths are possible. It will also suggest a simplifying condition which will

motivate a general condition which leads to the determination of an equivalent
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optimal control problem.

4. Optimal Consumption in a Simple Case

The properties of the optimal consumption path shown in the previous
section will now be used to give more complete characterizations of those
paths. In this section we examine c(t) for a very simple, but somewhat
realistic, wage paths. This analysis will show how one can use the LIFO
property to help determine the nature of the optimal consumption path,

In this section we assume that wages are positive until some retirement
date, that is, there is some Ty < T such that w(t) > 0 for t < Ty and w(t) =0
for t > Tg. This is a realistic assumption corresponding to retirement. In
this model, the retirement date is exogenous, but it is clear that if
retirement were endogenous, then the optimal consumption pattern given the
retirement date would reduce to this problem.

Theorem 6 shows that there are four qualitatively different consumption
paths. The individual may be initially constrained by the inability to borrow
against future earnings, after which he saves until retirement and dissaves
thereafter. The individual initially could initially save, then enter a
period of consuming his wage, and finally dissaving. The individual could
initially save, consume his wage, then save again, and dissave in
retirement. Finally, the individual could always consume less than his wage
before retirement. We will see in section 6 that they all may occur in the

simple case which Theorem 6 examines formally.

Theorem 6: Let N be an infinite integer. If w(t) is constant and equal to W
on [0,Tg] and 0 on [Tg,T], for some Ty € (0,T), and c(t) is the optimal
consumption path in the N-period problem, then there are four critical times,

< < <
0 T0 < T1 T2 T3 < TR’ such that
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c(t) K w(t), t € [0,Tj)
c(t) = w(t), t € [T,T;)
c(t) K w(t), for almost all t € (TI’TZ)
c(t) =w(t), t € (Ty,Ty)
c(t) » w(t), for almost all t € (T3,T]

Furthermore, either T; = 0, or Ty = Tq = Tp and w(Ty) > c(Tg).
1 2 3 R R R

Proof: ‘Since w(t) is nonincreasing, c(t) is hypercontinuous by Lemma 1.
Since w(t) is 0 for t > Tgs the Inada condition on u(+) implies thét there is
a T3 < Tg such that w(t) < c(t) for all t > T4, but that w(t) > c(t) for a set
of t < T3 of positive measure. Formally, T3 = inf{t,V s » t{e(s) < w(s))}.
Intuitively T4 is the first date after which the agent is always decumulating
assets.

First, suppose either Ty < T, or T3 = Tp and c(T3) ~ w. Let T2 be the
last date that the agent saves. Therefore, T2 = max{t < T3‘c(t) < w(t)}. T,
must be less than Tq and exceed 0 since there must be some savings to finance
consumption after Ty. By hypercontinuity of ¢ and w at t < Ty,
c(T2) = W s c(T3). This definition implies that ¢ = W on (T2,T3).

Define D = sup{tle_ptR(O,t) < 1}, where sup f is understood to be O.
D is that duration of time over which the total return equals the total
discount factor, uniqueness following from the convexity of g(+). If there is
no such time, D = T. If T3 - To > D, then u'(c(Tz)) = u'(ﬁ)

r
Ke R(O0,T, - T2)u (w), implying that for small e > 0, utility can be

3
improved by increasing savings at T - ¢ in order to increase consumption at
T3+€o

If T3 - Tp < D, then the assets accumulated at T, - dt are sold at some

time in S(T, - dt), which is less than T, + D since some assets purchased at
2 2
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Ty - dt are sold at T3 or T4 + dt by the LIFO rule. But then

a' (e(T,)) =u @) =u ((T)) > e R(T,,Ty)u (e(T,)) since D > Ty - Ty,

\i -—
implying that u (c(T2 -8)) >e ptR(TZ, S(T., - 8)), violating the arbitrage

2
condition between T, - 6 and S(T9 - ). Hence, Ty = T3 — D. (Note that D may
be so large that it is inconsistent with the condition T4 < Ty defining this

case).

For t & Ty, c(t) K w since t < T3 - D implies that

. —p(T3—t)
u (c(t)) > e

] | - -
R(t,T3) u (c(T3)) >u (w), the first inequality following
from (i) of Theorem 4 and the second from the definition of S and c(T3) =~ w.
Therefore, whenever either T4 < Tg or T4 = Tg and c(TR) ~ W, we can set

T1=O-

If, on the other hand, T3 = Tp and ¢(T3) K w, then Ty = T3, Define

T

1] v -
, = sup{t < T3|3 E»0 ¥t € (t-e,t) (et ) >w}, that is, T, is the

last time such that the agent is saving neither at that time and nor
immediately before. There are three possibilities: either c(t) = w for all
t KTy, c(t) K w for some t K T}, or c(t) » w for some t K T;. We will rule
out the last case, leaving the desired possibilities.

If c(t) » w for some t K Tl’ let E be the infimum of dates of local

dissaving by the agent. Formally,
A 1 1 . 1]
t=inflt < [3e>0%t (E-e<t <t +e=>c(t)>w)]

Then c(t) = w for any t = t by hypercontinuity of c(e+). For all sufficiently
small noninfinitesimal e, c(E + €) » w and therefore all elements in

S—I(E + g£) are infinitesimally close by Theorem 4. As a result, we must have
(] _1 S __pt [} A _1 A ~
u (c(s "(t +€))) =e "u (c(t + €)R(S (t + ), t + €)

Since there is no dissaving before E, c(s~I(th)) < @. If there
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were any noninfinitesimal saving between S'l(E) and €, then there

would also be some dissaving by LIFO and hypercontinuity of c(e),
contradicting the definition of t. Hence, c(S—l(E)) =~ W. Since ¢ is
continuous, c(S_1(€+)) =~ Ww. Taking € to zero implies that

u @) = e PEr(sHe™), ) u (). Also

a (e(s7HENY) < ePPR(sTHEY), Tu (e(T))) since T) > £. This violates
arbitrage since utility would be improved by saving at S(€+) for consumption
at T;. Hence c(t) < W for t < T;.

If there is a t < T| such that e(t) < w, then by the definition of T,
there is a Ty < T; such that c(t) > w on [TO’TI]' Furthermore, since we have
just shown that c(t) < w for t < T, we know that c(t) =w on [T,,T;],
implying that S(Ty) = S(T;) since there is neither saving nor dissaving

between t and Tl' Therefore, arbitrage between Ty and s = S(TO) and between

1 —p(S—T ) 1
Ty and s implies both u (c(TO)) = e u (c(s))R(TO,s) and

—p(Tl_t) '
u (c(s))R(Tl,s), implying that R(Tg,s) = R(Tp,s) since

u (e(T))) = e
c(Ty) = (Ty) = W

In order to conclude ¢ < w on [O,TO), we need to rule out the existence
of another pair of times, tgy < t; < Tp, such that c(t) =W for t € [tg,t;],

allowing us to conclude that c(t) < w on [O,To). Suppose there were such

times ty, t;. Since there would be no savings between to and ty»

N -p(;-to) N -p(;—t )

S(t;) = S(ty) = s. This implies that e R(tO,S) = e !

R(tl,s).
However, LIFO implies that assets purchased before Ty are sold after s.
Therefore, g > s since assets sold at s are purchased around tg or t;, before
Recall that

Tqe This implies that s - t0 >s —-t, >s - T0 >s ~-T

1 1°

R(x,y) £ g(y - x) and g is convex. In particular, if x > z and

e PXg(x) = e PYg(y), then e P¥g(y) increasing at all y > x. Hence,
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—p(s-to) - -p(s-t,) .
e g(s - to) > e g(s ~ tl), contradicting

—p(s—to) - —p(s-t,) -
e R(to,s) = e R(tl,s). Therefore, there are no such ty and t,
and ¢ < W on [O,TO). Q.E.D.

Theorem 6 enumerated the possible features of the consumption path for a
simple wage path. There appear to be many more possibilities than exist in
the absence of duration dependence in the returns. 1In the absence of duration
dependence, the return on an asset is constant and the consumption path in
this case would be monotonic. If an individual is not able to borrow against
future, then there would be an initial interval where consumption equals the
wage. One would not observe diéconnected intervals of saving nor nontrivial
intervals where consumption equals the wage but assets are nonzero. These
possibilities for the case of duration-dependent returns are verified in

section 6.

5. An Equivalent Control Problem

The previous section showed how complex consumption behavior could be
with duration-dependent returns for a very simple specification of endowment
income. In this section we examine a more general collection of endowment
income paths and show that there is a one-dimensional control problem which
will yield the optimal consumption for our continuous-time problem. This is a
significant simplification since the initial dynamic programming approach used
to prove existence and uniqueness indicated that the problem was infinite-
dimensional. The simplification is achieved by using S, the variable
indiecating the arbitrage structure, as the state variable, not any aggregate
index of the value of the portfolio.

One of the features that holds in Theorem 6 is that all savings precedes

all dissavings. We find that to be a crucial feature and next give a more



- 30 -

general sufficient condition which yields this property.

Theorem 7: Define D = sup{tle_ptR(O,t) < 1}. If w(t) is positive for T < T

and zero for t > Ty, and if

(i) D . %% > 0 for t < TR’ and

\

Loy d ' (D)
(1) elan w (w(e))) > p - Egs?
then once dissaving begins it continues, i.e., if w(t) < c(t) then w(s) < c(s)

for almost all s > t.

Proof: There are two distinct cases being ruled out. We are saying that
there are no periods of dissaving between periods of saving and that once
dissaving occurs, consumption will strictly exceed the wage except at possibly
a finite number of points. TFirst consider the possibility of dissaving
periods between saving periods.

The optimal consumption path is continous since w has no upward
discontinuities. If some dissavings occurred between periods of saving, then
the difference between wages and consumption follows a path such as displayed
in Figure 2. 1In particular, there are times t;, i=1,...6, such that
consumpton equals wage at t,, t3, t;, and tg, savings at t; finance
consumption at (or more precisely, infinitesimally before) ty, savings at tg
finance consumption at tg, there is dissaving between t3 and t,, and
consumption equals wage between tg and t, if they are distinct. Our arbitrage

arguments imply that

-p(t4-t1)

ue(e)) = e glt, - t)u (e(t,)),

but
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. )

-p(ts )

u'(c(tl)) > e g(t5 - tl)u'(c(ts)).

First, we show that t, # tg. Since savings at t; finance consumption at

-t )

—p(t6 5

u'(e(t)) = e g(t, - tu (e(ty))

If t4 = tg, then combining arbitrage between t; and t, and between tg and tg,

we have

-t )

-p(t6 )

u'(c(tl)) - e g(t, - t e, - ta)u'(c(t6)).

However, this states that the individual is indifferent between consumption at
ty and investing a dollar, selling that investment at t, but reinvesting the
proceeds at t,, and finally liquidating the investment at tge Such churning is
strictly inferior to holding on to the asset until tg, implying that saving at
t; for consumption at tg can raise utility, violating the assumption that c(e)
is an optimal path. Hence t, # ts.

Next note that division of the arbitrage conditions between t; and t, and
between t; and tg implies that

' _p(ta_tl)
u (w(ts)) e g(t4 - tl)

<
! —-p(t _~t.)
u (w(ta)) o 571 g(ts _ tl)

. ' Blt, — &)
=> 0 u (w(£)) - g u (W(t,)) < -plt, - t.) + ln(gzg;“:*gzy

Since An g is strictly convex, then

|

- - - - £ _
in g(t4 tl) in g(t5 tl) < (t5 t4) P (t4 tl)
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If D=0, then t, - t; > D. If w(t) is increasing in t, then t; - t; > D,
since arbitrage between t; and tg (which holds exactly since LIFO implies that

dissaving at t; is financed by saving at tE),

' . —p(t3-t2)
u (W(tz)) =u (w(t3))e g(t3 - t2)
—p(tyty)
implies e g(t3 - t2) > 1, and hence t; - t; > D. Therefore, by the
convexity of Zn g,
1
- g D), _
glt, - t) (D) (tg t,)
gE. -ty e -
5 1

Combining these inequalities and taking logs shows that

'
gnw (w(e)) - dnu' (w(t,)) < (o - %T%?l)(ts - €,)
which contradicts (ii).

We also want to rule out the possibility of a nontrivial period of
consumption equalling the wage between dissaving periods. This however is
also inconsistent with the growth condition on the wage since that situation
is represented above by the relationship posited between t; and the interval
[t4, t5] since saving at t; financed consumption at t, but consumption
equalled the wage during [t,;, tg]. We saw that if t, and tg were not equal
thén the growth condition was violated. This, together with the continuity of
w(t) and c(t) before Ty, implies that once dissaving begins, the consumption

strictly exceeds the wage except at a discrete set of points. Q.E.D.

The critical condition in Theorem 7 is (ii) which puts an upper bound on
the growth of the wage since u'' is negative. If D = 0, then any decreasing

path satisfies conditions (i) and (ii). The critical element in the proof of



Theorem 7 was the observation that it is appears odd to save at t; and tj for
consumption at some later date tg but not at some intermediate times, since
the return on savings at t; and those intermediate times exceed the return to
saving at tg for consumption at tg. This can be reconciled only if the wage
is growing rapidly during some of those intermediate times and during the
relatively low income periods the consumer prefers to consume and resume
saving later. Condition (ii) puts a growth condition on wages which rules out
this possibility. It is clear from the slackness of the inequalities in the
proof of Theorem 7 that these are not the tightest possible conditions which
will give the desired property of no saving after dissaving begins, but in the
interest of brevity we next demonstrate the importance of this property.

From the properties of the optimal consumption path deduced in Theorems 6
and 7, we may now give a more standard characterization of the optimum for
cases such as those posited in Theorem 7 using standard optimal control.

Since c(t) is hypercontinuous on A, there is a standard consumption path which
is only negligibly different. We can therefore use "c(t)” to also represent
both the nonstandard path and its standard part without generating confusion.

Recall our S function which maps saving periods to their corresponding
dissaving periods. The important implication of all savings preceding
dissavings is that S(t) can be used as the state variable in forming an
equivalent one-dimensional control problem. When all savings precede all
dissavings, the domain of S is in [0,T5] and the range of S is in [T3,T], for
some T3. Given a choice of T3 and a nonincreasing function S: [O,T3] > [T3,T]
with S(0) = T we will see that we can construct uniquely a consumption path
over [0,T] which is consistent with the arbitrage conditions and budget
balance. This observation indicates that we can reduce the problem to a one-

dimensional control problem using S as the state variable. However, in order
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to do this we need to show that S is piecewise smooth, a necessary condition

for using it as a state variable in an optimal control problem.

Theorem 8: 1If there is a Tg such that for all t < Tj, S(t) > T3 and
c(t) >w(t) for almost all t > T3, then *S, the standard part of the
correspondence S, is a continous and piecewise continuously differentiable

function.

Proof: First, LIFO implies that S is a nonincreasing éorrespondence, i.e.,

t >t implies that all s € S(t) are no greater than any s € S(t').
Furthermore, we will show that S must be hypercontinuous in the sense that if
s; € S(ty), i=1,2, and t; = ty, then s; = sy. LIFO implies that any
discontinuity is downward, since S is a nonincreasing correspondence. If there

were such a discontinuity at ty € A, let ty, tg9 € A be infinitesimally close

times such that t; < tg < ty, and let s; € S(tl) and sy € S(tz), and

(5) R(t),8(8 ) (t, = £ W25 > (5(t)) - 5(t,)) d™

1

where d™* is the maximum dissaving rate over [S(t,),S(t;)] and w™@X is the

maximum wage rate. 4m@%

is positive and noninfinitesimal since ¢ » w for

t > T3. It is clear now that this is impossible since by the definition of S,
all consumption between sy and s, must be financed from savings between t; and
tg. However, (5) implies that if the consumer saved all his wages and
invested them at a total return of R(t;, sj), a rate which is the best
possible during [tl,tz], then the resulting income would not be great enough
to finance consumption during [sz,sl]. This contradiction then shows that *S
is in fact a continuous function.

Next, let 6.5 be the fraction of savings at t < T3 which finances

consumption at s € S(t), and beg be the fraction of dissavings at s which is
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financed by savings at t. Since all savings at t is dissaved at some

s € S(t), we know

) (w(t) - C(t))et R(t,s) = ) (c(s) - W(S))¢tS
s€S(t) s sES(t)

Furthermore, for any t €A, £ > 0,

& ) ) (w(t) - c(t))6,__R(t,s)
© o<t<t SE8(H) *®
=& ) Y (c(s) - W(S))¢ts
o<t<t SES(E)

By Theorem 4, for most t, s = s' for all s,s' € S(t). Since consumption is
hypercontinuous, c(s) = c(s') also. Therefore, for almost all t,

R(t,s) = R(t,s') for all s,s' € S(t), and since EsES(t)ets =1,

] ) - e(6))e R(E,8) = (w(t) - e(£)IR(E,s )
;es(t)

for all s' € S(t)). Therefore, the left hand side of (6) can be replaced
by dt 20<t<g(w(t) - c(t))R(t,S(t)) with only infinitesimal error. Since *S is

a continuous function, the standard part of the left hand side of (6) becomes
*t
[ Gat) = c(E)R(t,*s(t))dt.

Turning to the right hand side of (6), note that it can be rewritten by

changing the order of summation as

i\
o

& ) ) (e(s) = w(s))o, ) (e(s) - w(s))
s>S(E) tes 1(s) s>S(E)

with the equality following from E = 1. Combining these facts

- ¢
tes 1(s) ts
implies
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7 [50(2) = c(2)R(2,58(2))dz = [yo  \(c(2) = w(z))dz

The left side of (7) is piecewise continuously differentiable since w, ¢, R,
and *S are all continuous functions of their arguments and c(t) - w(t) > 0
for almost all t > Tj3. Therefore, the right side is piecewise continuously
differentiable. Since c¢c - w > 0 almost everywhere on (Tq,T], *S(t) must also

be piecewise continuously differentiable. Q.E.D.

Now that we know that *S is smooth, we will use S to refer to both S and

*S, We can also differentiate (7) to yield

2 _ (w(t) - c(t))R(t, S(t))
(8 S(8) = =Sy = wiste)

This formula for é is intuitive since it states that if savings during

(t, t + dt) equals (w(t) - c(t))dt and the rate of consumption at S(t) is
c(S(t)) - w(s(t)), then that savings at t can finance the dissaving during
(s(t), Ss(t) + é(t)dt) where é equals the value at S(t) of the assets purchased
during (t, t + dt) divided by the rate of consumption at S(t).

We can now determine the equivalent one—~dimensional control problem. To
formulate our problem as an optimal control problem using S as the state
variable, we write the objective in a fashion which emphasizes the connection
between consumption at t and S(t) for t < Ty. We introduce a new variable,
cg(t), for t < Tq which is intended to represent consumption at S(t). By a

change of variable, note that if cg(t) = c(S(t))

T - T3 _os .
fT3e PPaCe(e)dt = [ e P uleg(£))8dt

With these definitions, it is straightforward to state the the equivalent
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optimal control problem. We need only find that piecewise continuously
differentiable S which describes the optimal arbitrage structure for our
problem. From S and its time derivative, we determine uniquely the
consumption at t and S(t), yielding the consumption for all times between O
and T. Since any piecewise continuously differentiable S has a nonstandard
representation, the optimal standard S cannot yield a lifetime utility greater
than that computed above for the nonstandard problem. However, since the
optimum for the nonstandard representation of the problem yields an arbitrage
structure infinitesimally close to a piecewise cl S, then the optimal standard
S must yield a lifetime utility infinitesimally close to the nonstandard

solution. These arguments have demonstrated Theorem 9.

Theorem 9: If c®(t) is an optimal consumption path given the wage path w(t),
and there is a time'T3 such that consumption exceeds only after and almost
everywhere after T3, then c¢®(t) can also be derived from the solution to the
following single dimension control problem:
T
Max .f03(e_ptu(c(t)) + xe—rsu(cs(t)))dt

T3,c,cS,x

S =x

c(t) < w(t)

e(t) = w(t) - x(cg(t) - w(S))/R(t,S)

x<0

S(0) = T, S(T3) = T3

where c®(t) is determined by
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c(t), t < T3
() =
CS(T), t € S(1)

In this problem, a time, T3, is chosen to divide time between savings and
dissavings. Given a choice of T4, we choose an S path governing arbitrage
matchings. At each time t, given S(t), we choose consumption at t, c(t), the
rate of change in S, x, and cS(t), which represents consumption at S. We use
(8) to impose a relationship between x, cg, ¢, w(S), and w(t). Since S is
nonincreasing, x < 0. Since no dissaving occurs before T3, c(t) < w(t). The
boundary conditions on S arise from the LIFO property and the assumption that
the consumer is dissaving always after Tj.

This problem imposes the basic necessary conditions on an optimal
consumption path. These conditions are also sufficient since we showed that
the optimal S is piecewise continuously differentiable, the domain of choice
implicit in optimal control problems. Therefore, this problem will produce

the optimal consumption path.

6. An Algorithmic Solution and An Example

In the previous sections, we have given a sufficient condition for our
problem to reduce to a relatively straightforward one-dimensional optimal
control problem. Such problems can be computed by standard techniques since
such problems reduce to the solution of boundary value problems (see Roberts
and Shipman). In this section we will return to the example focused on in
section 4. We do this to highlight the straightforward economic logic behind
the computation of the optimal consumption paths.

Recall from section 4 that thé wage is constant for t € [0,Tg), and zero
thereafter. Let D be sup{tle_ptR(O,t) < 1}. We will first focus on the case

where D = 0 and then indicate adjustments for D > O.
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Appendix I contains an algorithm which computes computes the optimal
consumption path when D = 0. The logic is that of a shooting algorithm as we
start in Step O with a guess of c¢(0), first period consumption. Since any
marginal dollar saved in period O is consumed in period T, the final period,
we know that the controlling arbitrage condition for savings at t = 0 is that

between periods 0 and T,

u (c(0)) = R(0,Tu (c(T)) e °T

which yields a unique value for c(T) given our c(0) guess. Generally, we let
t denote a saving period and S a period in which savings at t.are

liquidated. Hence we have t = 0 and S = T initially. I will denote the
amount of saving in the current saving period, t, which has not yet been
allocated to some future period for consumption, and J is the amount of
dissaving at the current dissaving period under examination, S, which has yet
to be financed by some allocated saving. Therefore, I = w(0) - ¢(0) and J =
c(T) - w(T) initially.

Suppose that we have reached some stage in the recursive calculation
where there are unallocated savings at t equal to I, unfinanced dissaving at S
equal to J, where t < S and c(t) and c(S) are known. We ask whether the
unallocated savings at t can finance the unfinanced dissavings at S. The
savings at t will bring a total return n = IR(t,S) at time S. If = < J then
by LIFO, the returns included in © are all spent at S since that is the last
period that has not yet been financed. However, if w < J, there is some
planned consumption for period S which is not financed by savings in period
t. Therefore, we decrease J by m since J is to represent consumption at S yet

to be financed, and increase t to t + 1.
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Now we know that some money saved at t + 1 will be dissaved in period
S. Therefore, at the margin one must be indifferent between an extra unit of
consumption at t + 1 and investing it, consuming the proceeds at S. Since we
already know consumption at S, arbitrage between S and t + 1 determines
consumption at t + 1, c(t+l). Now set I equal to the savings at t + 1,
w(t+l) - c(t+1). We next ask if the proceeds of that saving will cover J, the
consumption at S still unfinanced. If IR(t+1, S) does not exceed J, then
decrease J by IR(t+l, §), and move to t + 2, repeating what we did at t + 1.

If, on the other hand, IR(t+l, S) exceeds J, then we have some savings
from t + 1 remaining after we have accounted for period S consumption.
Therefore, we proceed to examine period S - 1. I, the unallocated savings at
t + 1, equals w(t+l) - c(t+1) - J/R(t+l, S). By LIFO, this savings must go at
least partially to consumption at S — 1, since all later periods have been
financed by earlier savings. The arbitrage condition must hold between t + 1
and S - 1. Since we know c(t+1), arbitrage determines c(S-1). J = c(§8-1) -
w(S-1) is the amount of consumption at S - 1 that needs to be financed out of
savings. We have now come full circle, since I and J will determine if there
are enough unallocated funds at t + 1 to cover J or if we must turn to period
t + 2 savings.

These back and forth arbitrage calculations will yield the optimal
consumption path if the initial guess of c(0) is accurate. To make the
algorithm operational, we must determine how to detect and respond to wrong
guesses, as our initial guess will surely be wrong. First note that the
content of D = 0 is that the average rate of return on holding an asset
exceeds the rate of utility discount and that consumption must therefore rise
monotonically. If our initial guess for c(0) is large then there is little

savings but arbitrage between O and T imply much dissavings at T.
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Monotonicity of consumption implies that there will be little savings in early
life to finance the high rates of consumption in retirement. In this case our
algorithm will find that consumption at some early t exceeds the wage. Also,
the value of S at that time will exceed t. Such a condition indicates a wrong
guess for c(0) since monotonicity.of consumption would imply that dissaving
should occur between periods t and S, but all the savings from period O to t
has been allocated to finance dissaving after S.

If, on the other hand, our initial guess of ¢(0) is very low, there will
be much saving originally but little consumption later. Hence, our algorithm
will reach a point where c(S) < w(S) even though the value of t is less than
S. Such a situation will indicate a wrong guess for c(0) since S is supposed
to represent dissaving periods but the computed path implies saving at S.

If ¢(0) is correctly guessed then.neither of these conditions will
arise. Therefore, we want an algorithm to proceed until t = S — 1 and
I =J =0, at which point t will be the last period of saving and S the first
period of dissaving. Also, if our algorithm produces such a consumption path,
then the necessary conditions for a maximum are satisfied. Due to the
concavity of u(+) and Wl, 2=1,...,N, these are also sufficient.

Therefore, our algorithm proceeds until one of these things occur. If
c(t) Dw(t) but t <8 -1, or if t =S - 1but I =0 < J (implying that we
have no funds to cover the remaining J units of consumption at S) then we
retry with a smaller c(0). If c¢(8) < w(S) but t <SS -1, or t =8-1and I >
0 = J, we retry with a larger c(0). We stop if we reach a point where

t

S -1and I, J < ¢ where ¢ is some small number. (e cannot be zero
because of the roundoff errors.)
If D # 0, the algorithm becomes more intricate, but follows the same

logic as the D = 0 case. Theorem 6 shows that we have only a finite number of
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possible types of optimal consumption paths, and hence provides sufficient
information to limit our search for the correct c(0). The major difference is
that consumption can rise to the wage and stay there for a nontrivial interval
of time before falling below the wage or rising above it. By Theorem 6, once
consumption exceeds the wage, dissaving continues and the lag is D. If
consumption falls below the wage then the lag is determined by arbitrage since
arbitrage holds exactly at both ends of the interval. Since there can only be
one such interval, we can track down both possiblilities. Since the essential
feature is still the back-and-forth arbitrage, we do not elaborate any further
on the details here.

Once we have the consumption path many values of importance can be

T

t=1 e Pt u(c(t)). If the

computed. For example, utility is approximated by Z
duration dependence is due to taxation, revenues can be calculated from our
consumption path along with the specified wage and return structure.

To illustrate the importance of duration-dependence, we next examine a
series of consumption paths that arise when our agent faces a capital
gains tax. Figure 3 presents an example of how duration dependence will
affect consumption paths and intertemporal marginal rates of substitution. In
these examples we assume that utility is the natural log, i.e.,
cu“(c)/u'(c) = -1. Also we assume that the asset increases in value six
percent per year, the agent discounts utility at four percent, and the wage is
unity for 45 years and zero for the 15 remaining years of life. This
essentially assumes that an individual begins work at age 20, retires at 65,
and lives until 80. The consumption paths correspond to capital gains tax

rates of t = .10, .40, .55, .85, and .95.
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When 1 = .10, the consumption path is monotonically rising and Ty = Tj3.
Also there is initially saving and then, immediately, dissaving. When
T = .40, the agent initially saves, then spends some time with consumption
equal to wages, and then begins to dissave before retirement.

When T = .55 or .85 the agent initially saves, then consumes his wage,
but then starts to save again, only dissaving in retirement. Also in these
cases, consumption in retirement first falls, then rises. This kind of
pattern would never occur if the agent faced a constantly rising asset values
which did not generate duration dependence in returms. If the after-tax
returns were constant, say equal to r, then & = c(r ~ p), implying a monotonic
consumption path. Hence, we see that consumption paths may be qualitatively
different under these conditions.

Finally, when © = .95, consumption first equals wage because of the
borrowing constraint, but then falls in order to accommodate savings needs for
retirement, and continues to fall because of the very high tax rate. Note how
all the cases discussed in Theorem 6 are represented here, showing Theorem 6
to be the best possible characterization.

While the examples are extreme, They were chosen to highlight the point
that under duration-dependent returns, consumption paths and, hence, the
intertemporal marginal rates of substitution behave in a fashion substantially
different from the case of duration-independent returns. This is particularly
relevant in considering the estimation of utility functions from Euler
equations. This approach (e.g., see Hansen and Singleton) assumes that the
marginal decision involves investment in some short-term securities. By
additionally assuming identical homothetic preferences, they can aggregate and
estimate intertemporal elasticities of substitution in consumption from

aggregate consumption. TIf, on the other hand, the marginal decisions involve
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duration—-dependent returns, it is clear that these procedures would be in
error. First, aggregation is not valid. Second, one cannot know the marginal
return to investment without knowing the vintage structure of an agent's
portfolio. Since Figure 2 shows that consumption patterns can be
substantially altered even at moderate tax levels, these errors are plausibly

significant.

7. Summary and Conclusions

This paper has developed the theory of investment and consumption when
asset returns are duration—dependent. We found that when returns are convex
in holding period, LIFO was the optimal liquidation strategy. This fact leads
to several properties of the optimal consumption path. These properties
together with other conditions implied that the often intractable dynamic
programming problem reduced to a one—dimensional optimal control problem,
making applications of this model much more tractable. For one simple case of
wage income, we also developed a shooting-like algorithm for computing the
optimallconsumption path.

One important application is the analysis of capital gains taxation.
Previous work has ignored the duration dependence induced by capital gains
taxation, even though that is the crucial feature which differentiates it from
other forms of capital taxation. Balcer and Judd (1985) conducts a normative
examination of capital gains taxation. Further work will examine the
implications of capital gains taxation for security prices. This paper's
analysis of assets with duration dependent returns forms the necessary basis

for these analyses of important public policy and finamcial issues.
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Appendix I: Algorithm
Step O: Pick an arbitrary c(0) € (0, w(0)) and set t = 0, S(0) = T.

Step 1: Solve for ¢(T) in
R(0, T)e PTu'(c(T)) = u'(c(0))
Set I =w(0) - ¢(0), J = c(T) - w(T).

Step 2: If T<O0or J< 0, then go to Step 3

7 = IR(t,S)

If = > J, then
I = (n - JR(,S)7L;
S=8-1
Solve for c(S) from

R(t, $(t))e P(S(E))y"(e(s(t)) = u'(e(t))

J = w(8) - c(8)
If S =t then go to Step 3 else go to Step 2

else
J=J - 7;
t=t +1
Compute c(t) from
R(t,$)e P58y " (c(8)) = u'(c(t))
I =w(t) - c(t)
If S = t then go to Step 3 else go to Step 2.

Step 3: If I>J+ ¢

Chin = €(0), e(0) = (epin + cpax)/2

t =0, S(0) =T

go to Step 1

else

if J> I + €, then
Cpax = €(0), c(0) = (cpyp + cmax)/z
t =20, S(0) =T
go to Step 1

else
STOP
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