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AXTOMATIC FOUNDATIONS OF BAYESIAN DECISION THEORY

by Roger B. Myverson

1. Basic definitions.

At some point, anyone who is interested in the mathematical social sciences
should ask the question, why should we expect that any simple quantitative
model can give a reasonable Aescription of people's behavior? The fundamental
results of decision theory directly address this question, by showing that
any decision-maker who satisfies certain intuitive axioms should always behave

so as to maximize the mathematical expected value of some utility function,

with respect to some subjective probability distribution. That is, any rational

decision-maker's behavior should be describable by a utility function, which
gives a quantitative characterization of his preferences for outcomes or prizes,
and a subjective probability distribution, which characterizes his beliefs
about all relevant unknown factors. This result may be called the subjective

expected utility theorem. A further result is that, when new information becomes

available to such a decision-maker, his subjective probabilities should be

£
revised in accordance with a mathematical equation known as Bayes formula.

There is a vast literature on axiomatic derivations of the subjective
expected utility theorem, beginning with von Neumann and Morgenstern [1947]
and Savage [1954]; for an overview, see Fishburn [1968] and [1970]. The goal
of this paper is to fill the need for a simple axiomatic derivation that treats
utility, subjective probability, and Bayesian updating together in a unified

way, so as to provide a short self-contained introduction to the basic results



of decision theory. There are relatively few new ideas or techniques introduced
here. The main pedagogical innovation may be the development of Baves' formula
together with utility and subjective-probability theory, in a way that may
offer a clearer conceptual foundation for the study of sequential rationality
in game theory (see Kreps and Wilson [1982]).

Decisions under uncertainty are commonly described in two ways: using a

probability model or a state-variable model. In each case, we speak of the

decision-maker as choosing among lotteries., but the two models differ in how
a lottery is defined. 1In a probability model, lotteries are probability
distributions over a set of prizes (for example, see Section 2.4 of Luce and
Raiffa [1957]1). In a state-variable model, lotteries are functions from a

set of possible states of nature into a set of prizes (for example, see Chapter

13 of Luce and Raiffa}.

The distinction between a probablility model and a state-variable model
is not simplyv a matter of mathematical style. A probability model is appropriate
to describe gambles in which the prizes will depend on events which have obvious

objective probabilities; we shall refer to such events as objective unknowns.

These gambles are the "roulette lotteries" of Anscombe and Aumann [1963], or
the "risks" of Knight [1921]. For example, gambles which depend on the toss
of a fair coin, the spin of a roulette wheel, or the blind draw of a ball out
of an urn containing a known population of identically sized but differently
colored balls. all could be adequately described in a probability model. An
important assumption being used here is that two objective unknowns with the
same probability are completely equivalent for decision-making purposes. For
example; if we describe a lottery by saying that it "offers a prize of $100

or $0, each with probability 1/2," we are assuming that it does not matter



whether the prize is determined by tossing a fair coin, or by drawing a ball
from an urn which contains 50 white and 50 black balls.

On the other hand, many events do not have obvious probabilities; the
result of a future sports event or the future course of the stock market are

good examples. We shall refer to such events as subjective unknowns. Gambles

which depend on subjective unknowns correspond to the "horse lotteries™ of
Anscombe and Aumann [1963] or the "uncertainties” of Knight [1921]. They are
more readily described in a state-variable model, because these models allow
us to describe how the prize will be determined by the unpredictable events,

without our having to specify any probabilities for these events.

In this paper, we define our lotteries so as to include both the probability
and the state-variable models as special cases. That is, we study lotteries
in which the prize may depend on both objective unknowns (which may be directly
described by probabilities) and subjective unknowns (which must be described
by a state-of-nature variable). (In the terminology of Fishburn [1970], we
are allowing extraneous probabilities in our model.)

Let us now develop some basic notation. For any finite set Z, we let
A(Z) denote the set of probability distributions over the set Z. That is,

A(Z) = {q:Z - R| ¥ aq(y) =1 and g(z) 2 0, VzeZ}.
VEZ

Let X denote the set of possible prizes, and let Q denote the set of
possible states of nature. To simplify the mathematics, we assume that X and
Q are both finite sets. We define a lottery to be any function f which specifies
a nonnegative real number f(x|t), for every prize x in X and every state t
in Q, such that erX f(xjt) =1 for every t in Q. Let L denote the set of
all such lotteries. That is,

L = {£:Q - A(X)}.



For any state t in Q and any lottery f in L, f(e|t) denotes the probability
distribution over X designated by f in state t. That is,
£(eft) = (£(x]t)) o € A(X).

Each number f(x|t) here is to be interpreted as the (objective) probability
of getting prize x in lottery f if t is the true state of nature. For this
to make sense, the state must be defined broadly enough to summarize all
subjective unknowns which might influence the prize to be received. Then,
once a state has been specified, only objective probabilities will remain,
and an objective probability distribution over the possible prizes can be
calculated for any well-defined gamble. So our formal definition of a lottery
allows us to represent any gamble in which the prize may depend on both objective
and subjective unknowns.

A "prize" in our sense could be any commodity bundle or resource
allocation. We are assuming that the prizes in X have been defined so that
they are mutually exclusive and exhaust the possible consequences of the
decision-maker's decisions. Furthermore, we assume that each prize in X
represents a complete specification of all aspects that the decision-maker
cares about in the situation that results from his decisions. Thus, the
decision-maker should be able to assess a preference ordering over the set
of lotteries, given any information that he might have about the state of nature.

The information that the decision-maker might have about the true state
of nature can be described by an event, which is a nonempty subset of Q. We
let F denote the set of all such events, so that

F=({S] ScQ and S # &}.
For any two lotteries f and g in L, and any event S in F, we write f ZS g

if and only if the lottery f would be at least as desirable as g, in the opinion



of the decision-maker, if he learned that the true state of nature was in the
set S. That is, f ZS g iff the decision-maker would be willing to choose
the lottery f when he has to choose between f and g and he knows only that
the event S had occurred. Given this relation (ZS), we define relations (>S)
and (~S) so that

f ~g & iff f 2. g and g 2, f:

f >S g iff f 2. g and g +_ f.
That is, f ~g & means that the decision-maker would be indifferent between

f and g, if he had to choose between them after learning S; and f >_ g means

S
that he would strictly prefer f over g in this situation.

For any number <& such that 0 £ &« £ 1, and for any two lotteries f and g
in L, af + (1 - &)g denotes the lottery in L such that

(af + (1 - a)g)(x]t) = af(x|jt) + (1 - a)g(x]t), VxeX, VteQ.

To interpret this definition, suppose that a ball is going to be drawn from
an urn in which o is the proportion of black balls and 1 - a is the proportion
of white balls. Suppose that, if the ball is black then the decision-maker
will get to play lottery f, and if the ball is white then the decison-maker
will get to play lottery g. Then the decision-maker's ultimate probability
of getting prize x if t is the true state is af(x]|t) + (1 - a)g(x|t). Thus,
of + (1 - a)g represents the compound lottery which is built up from f and
g by this random lottery-selection process.

For any prize x, we let [x] denote the lottery that always gives prize
x for sure. That is, for every state t,

1, if v =x

[x](ylt) =
0, 1if v # x.



2. Axioms.

We now list some basic properties that a rational decision-maker's
preferences may be expected to satisfy. Unless otherwise stated, these axioms
are to hold for all lotteries e, f, g, and h in L, for all events S and T in
F. and for all numbers & and B between 0 and 1.

Axioms 1A and 1B assert that preferences should always form a complete

transitive order over the set of lotteries.

Axiom 1A (completeness). f zs g or g ;S f.

Axiom 1B (transitivity). If f 28 g and g 28 h then f£ 2g h.

It is straightforward to check that Axiom 1B implies a number of other
transitivity results, such as: if f ~s € and g ~g h then £ ~g h: and
if f >s g and g ZS h then £ >S h.

Axiom 2 asserts that only possible states are relevant to the

decision-maker, so that, given an event S, he would be indifferent between

two lotteries that differ only in states outside of S.

Axiom_2 (relevance). If f(e[t) = g(e]jt) VYt €S, then f ~5 €-

Axiom 3 asserts that a higher probability of getting a better lottery

is always better.

Axiom 3 (monotonicity). If f >gh and 0 =g <a<1, then

ocf+(1—a)h>ssf+(1—s)h,

Building on Axiom 3, Axiom 4 asserts that ¥f + (1 - ¥Y)h gets better

in a continuous manner as ¥ increases, so that any lottery that is ranked between



f and h is just as good as some randomization between f and h.

Axiom 4 (continuity). If f ZS g and g zs h then there exists some

number ¥ such that 0 £ ¥y <1 and g ~g vt + (1 - ¥Y)h.

The substitution axioms (also known as independence or sure-thing axioms)
are probably the most important axioms in our system, in the sense that they
generate strong restrictions on what the decision-maker's preferences must
look like even without the other axioms. They should also be very intuitive
axioms. The idea that they express is that, if the decision-maker must choose
between two alternatives, and if there are two mutually exclusive events, one
of which must occur, such that in each event he would prefer the first
alternative, then he must prefer the first alternative before he learns which
event occurs. (Otherwise, he would be expressing a preference that he would
be sure to want to reverse after learning which of these events was true!)

In Axioms 5A and 5B, these events are objective randomizations in a random
lottery-selection process, as discussed in the preceding section. In Axioms

6A and 6B, these events are subjective unknowns, subsets of .

Axiom 5A (objective substitution). If e 2, f and g 2. h and 0<a< 1,

then e + (1 - a)g zs af + (1 - a)h.

Axiom 5B (strict objective substitution). If e >S f and g 2, h and

0<a <1, then <o + (1 - a)g >S oaf + (1 - a)h.

Axiom 6A (subjective substitution). If £ zs g and f zT g and

1 >
SNT=@, then f 2qur &



g and

Axiom 6B (strict subjective substitution). If f >S g and f >p

SNT-=@, then f >SUT g.

Axiom 7 asserts that the decision-maker is never indifferent between all
prizes. This is just a regularity condition, to make sure that there is

something of interest that could happen in each state.

Axiom 7 (interest). For every state t in Q, there exist prizes y and z

in X such that {[y] >{t} {z].

Axiom 8 is optional in our analysis, in the sense that we can state a
version of our main result with or without this axiom. It asserts that the
decision-maker has the same preference ordering over objective gambles in all
states of nature. If this axiom fails, it is because the same prize might

be valued differently in different states.

Axiom 8 (state-neutrality). For any two states r and t in , if

f(ejr) = f(«|t) and g(es|r) = g(+|t) and f 2 then f 2

{ry & {ty &

3. The main representation theorem.

A conditional-probability function on Q is any function p:F - A(Q), that

specifies conditional probabilities p(t|S), for every state t in Q and every
event S, such that

¥ p(t|sS) =1, VS e F.
teS

Given any such conditional-probability function, we may write

p(R|S) = ¥ p(r|S), VRESQ, VS e€F.
rerR



A utility function can be any function from X X into the real numbers

R. We say that a utility function u:X XxQ - R is state-independent iff it

does not actually depend on the state, so that there exists some function
U:X » R such that u(x,t) = U(x) for all x and t.

Given any such conditional-probability function p and any utility function
u, and given any lottery f in L and any event S in F, we let Ep(u(f)lS) denote
the expected utility value of the prize determined by f, when p(s|S) is the
probability distribution for the true state of nature. That is,

Ep(u(f)IS) = ¥ p(tis) ¥ u(x,t) f(x|t).
tes XEX

Theorem 1. Axioms 1AB, 2, 3, 4, 5AB, 6AB, and 7 are jointly satisfied

if and only if there exists a utility function uw:X xQ - R and a

conditional-probability function ©p:F = A(Q) such that

(1) max u(x,t) =1 and min u(x,t) = 0, vt € Q;
xeX xeX
(2) p(R|T) = p(R|S) p(S|T), VR, ¥S, and VYT such that

RecSeceTcQ and S #g;
(3) f ZS g if and only if Ep(u(f)IS) > Ep(u(g)IS), vf,.g € L,

VS € F.
Furthermore, given these Axioms 1AB - 7, Axiom 8 is also satisfied if and only
if conditions (1)-(3) here can be satisfied with a state-independent utility

function.

In this theorem, condition (1) is a normalization condition, asserting
that we can choose our utility functions to range between 0 and 1 in every
state. (Recall that X and Q are assumed to be finite.) Condition (2) is a

version of Bayes' formula, which establishes how the conditional probabilities



~

_1U-

assessed in one event must be related to conditional probabilities assessed
in another. The most important part of the theorem is condition (3), however,
which asserts that the decision-maker always prefers lotteries with higher
expected utility. By condition (3), once we have assessed u and p, we can
predict the decision-maker's optimal choice in any decision-making situation.
(He will choose the lottery with the highest expected utility among those
available to him, using his subjective probabilities conditioned on whatever
event in Q he has observed.) Furthermore, with X and Q finite, there are only
finitely many utility and probability numbers to assess. Thus, the
decision-maker's preferences over all of the infinitely many lotteries in L
can be completely characterized by finitely many numbers.

To apply this result in practice, we need a procedure for assessing the
utilities u(x,t) and the probabilities p(t|S), for all x, t, and S. As Raiffa
[1968] has emphasized, such procedures do exist, and form the basis of practical
decision analysis. To define one such assessment procedure, and to prove
Theorem 1, we begin by defining some special lotteries, using the assumption
that the decision-maker's preferences satisfy axioms 1AB - 7.

Let a, be a lottery that gives the decision-maker one of the best prizes
in every state; and let a0 be a lottery that gives him one of the worst prizes
in every state. That is, for every state t, al(ylt) =1 = ao(z|t) for some
prizes y and z such that, for every x in X, vy

) z{t} X z{t} Z.

worst prizes can be found in every state because the preference relation (2

Such best and

(ty)

forms a transitive ordering over the finite set X.
For any event S in F, let bS denote the lottery such that
a,(s|t) if t es,

bg(=]t) =
ag(«{t) if t £S.
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That is, bS is a "bet on S" which gives the best possible prize if S occurs
and gives the worst possible prize otherwise.

For any prize x and any state t, let cx t be the lottery such that

[x](=]t) if r = t.

c (s|r) =
x,t ao(-lr) if r #t.

That is, cx,t is the lottery that always gives the worst prize, except in state
t, when it gives prize x.

We can now define a procedure to assess the utilities and probabilities
that satisfy the theorem, given preferences that satisfy the axioms. For each
x and t, first ask the decision-maker "for what number B would you be indifferent
between [x] and Ba1 + (1 - B)ao, if you knew that t were the true state of
nature?” By the continuity axiom, such a number must exist. Then let u(x,t}
equal the number that he specifies, so that

[x] ~(t) u(x,t) a, + (1 - u(x,t)) ag-

For each t and S, ask the decision-maker "for what number ¥ would you
be indifferent between b{t} and Val + (1 - '}’)a0 if yvou knew that the true
state was in S?" Again, such a number must exist, by the continuity axiom.

(The subjective substitution axiom guarantees that Then

> >
3 2g bryy 2g 35-)
let p(t}S) equal the number that he specifies, so that

b{t} ~s p(t]S) a; + (1 - p(tls)) a-

Thus, finitely many questions suffice to assess the probabilities and utilities
which completely characterize the decision-maker's preferences. We must now
show that defining u and p in this way does satisfy the conditions of the
theoren.

Derivation of condition (3) from the axioms. The relevance axiom and

the definition of u{x,t) impies that, for every state r,
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cx,t ~{r} u(x,t) b{t} + (1 - u(x,t)) a,-

Then subjective substitution implies that, for every event S,

Ce.t ”s u(x,t) b{t} + (1 - u(x,t)) a,.

Axioms 5A and 5B together imply that f ZS g if and only if

(1/101) £ + (1 - (1/190)) ay 2g (1/1Q]) g + (1 - (1/]Q])) a,.

{Here, |Q] denotes the number of states in the set ©Q.) Notice that

(1719]) £ + (1 - (1/1Q])) a, = (1/1Q) & L f(x]t) c, .
ted xe€X ’

But, by repeated application of the objective substitution axiom,

(1712}) L r f(x|t) c
ted xeX Xt

~o (1/712]) ¥ r f(x|{t)(u(x,t) b + (1 - u(x,t)) a,)
S teQ? xeX {t) 0

1

~«T&T L L f(xjt)(u(x,t)(p(tis)a +(1-p(t|S))a,)+(1-u(x,t))a,)
s 1 teQ) xeX 1 0 0

1

ol r r f(x|t) u(x,t) p(t]s) a, +
teQ? xeX

1

(1 - Q] r ¥ p(t]s) u(x,t) p(t]s)) a,

teQ) xeX

(1/19]) Ep(u(f)ls) a, + (1 - (1/1Q) Ep(u(f)ls)) a,.

Similarly.
(1/19D)g + (1 - (1/]01)a,

~s (1/191) E (u(g)I8) a; + (1 - (1/101) E (u(2)]$)) ay.

Thus, by transitivity, f ZS g if and only if

(1/1Q1) E_(u(£)]S) ag + (1 ~ (1/]90) E (u(£)]8)) ay.
x5 (1/191) E (u(g)[S) ay + (1 - (1/]Q]) E (u(g)]8)) ay.
But by monotonicity,

this final relation holds if and only if

Ep(u(f)IS) 2 Ep(u(g)IS),
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because interest and strict subjective substitution guarantee that a, >_ a..

1°8 70

Thus, condition (3) is satisfied.

Derivation of condition (2) from the axioms. For any events R and S,

I S 1

IR] PR b

{r}

- =) ay - L
IR’ %0 T TRT .

1
s TRr I (PEIS) ap ¢ (1 - p(xlS) ag)

= (/IR (p(RIS) a) + (1 - p(RIS)) ag) + (1 - (1/IR]) ag.
by objective substitution. (]JR] is the number of states in the set R.) Then,
using Axioms 5A and 5B, we get

b (R[S) a, + (1 - p(R|S)) a,-

R s P

By the relevance axiom, b a and, for any r not in S, b{r} ~

s s 1 s 2o

So the above formula implies (using monotonicity and interest) that p(r|S) =0
if r ¢S, and p(S|S) = 1. Thus, p is a conditional-probability function,
as defined above.

Now, suppose that R € S € T. Using bS ~g 2y again, we get

bR ~s p(R}S) bS + (1 - p(R]|S)) ag-

Furthermore, since bR’ b.. and a

S * 0 all give the same worst prize outside S,

relevance also implies

b (RIS) bg + (1 - P(R|S)) a,.

R T\s P

So, by subjective and objective substitution,
~p P(RIS)(p(S[T) a; + (1 - p(S[T)) ay) + (1 - p(R|S)) a,.
= P(RIS) p(SIT) a;, + (1 - p(RIS) p(S|T)) a,.

But bR ~T pP(R|T) bS + (1 - p(R|T)) ag- If bS >r 3 then monotonicity implies

that p(R|T) = p(R|S) p(S|{T). On the other hand, if b then bR ~o a

s 7T 3 T 20

also (using subjective substitution and transitivity), so that



_14_

P(R|T) = p(S]T) = 0 and p(R|T) = p(R}S)p(S|T) again. Thus, Bayes' formula
(2) follows from the axioms.

If vy is the best prize and z is the worst prize in state t, then
{v] ~{t} a, and [z] ~(t) a,. SO that u(y,t) =1 and u(z,t) = 0 by
monotonicity. So the range condition (1) is also satisfied by the utility
function that we have constructed.

If state-neutrality is also given, then the decision-maker will give us
the same answer when we assess u(x,t) as when we assess u(x,r) for any other
state r (since [x] ~(t) pa;, + (1 - B)a0 implies ([x] ~(r} pa, + {1 - B)ao,
and monotonicity and interest guarantee that his answer is unique). So Axiom 8
implies that u is state-independent.

To complete the proof of the theorem, it remains to show that the existence
of functions u and p that satisfy conditions (1) - (3) in the theorem is
sufficient to imply all the axioms (using state-independence only for axiom 8).
Using the basic mathematical properties of the expected-utility formula, the
axioms are all straightforward to verify. To illustrate, we show the proof
of one axiom, subjective substitution, and leave the rest as an exercise for
the reader.

Suppose that f zs g and f zT g and SNT-=@&. By (3),

Ep(u(f)ls) > Ep(u(g)ls) and Ep(u(f)lT) > Ep(u(g)lT). But Bayes formula (2)
implies that

E (u(f)|sur) = % L p(t]sUT) £(x|t) u(x,t)
p teSUT xeX

L Iop(tis)p(s|sunif(x|tiu(x,t) + L L p(tiT)p(T{SUT)f(x|t)u(x,t)
tes xeX teT xeX

p(S]|sUT) Ej(u(£)18) + p(TISUT) E (u(f)]s)

[}

an Ep(U(g)ISUT) = P(S|SUT) E (u(g)ls) + p(T|SUT) Ep(U(g)lS)-
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So Ep(u(f)ISUT) > Ep(u(g)lSUT) and f 2 Q.E.D.

sur &:

4. Eguivalent representations.

When we drop the range condition (1), there can be more than one pair
of utility and conditional-probability functions that represent the same
decision-maker's preferences, in the sense of condition (3). Such equivalent
representations are completely indistinguishable in terms of their
decision-theoretic properties, and so we should be suspicious of any theory
of economic behavior that requires distinguishing between such equivalent
representations. Thus, it may be theoretically important to be able to recognize

such equivalent representations.

Given any subjective event S, when we say that a utility function v and
a conditional-probability function q represent the preference ordering ZS,
we mean that, for every pair of lotteries f and g, Eq(v(f)ls) > Eq(v(g)IS)

if and only if f ZS g.

Theorem 2. Let S in F be any given subjective event. Suppose that the
decision-maker's preferences satisfy Axioms 1AB through 7, and let u and p
be utility and conditional-probability functions satisfying (1) - (3) in

Theorem 1. Then v and q represent the preference ordering 2_ if and only if

S
thére exists a positive number A and a function B:S - R such that

q(t]s) v(x,t) = A p(t|S) u(x,t) + B(t), V¥Vt e S, Vx €X.

Proof. Suppose first that A and B(e) exist as described in the theorem.
Then, for any lottery f,

Eq(V(f)IS) = 1 r f(xjt) a(t]s) v(x,t)
tesS xeX
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r T f(xit)(A p(t]s) u(x,t) + B(t))
teS xe€X

A T I f(x|t) p(t|s) u(x,t) + ¥ B(t) I f£f(x|t)
tes xeX tes x€X

A E (u(f)|s) + ¥ B(t),
p tes

because erx f(x|t) = 1. So expected v-utility with respect to q is an
increasing linear function of expected u-utility with respect to p, since
A > 0. Thus Eq(v(f)lS) > Eq(v(g)lS) if and only if Ep(u(f)IS) > Ep(u(g)ls),
and so v and q together represent the same preference ordering over lotteries
as u and p.

Conversely, suppose now that v and g represent the same preference ordering
as u and p. Pick any prize x and state t, and let

A= (B (vle, )IS) - B (v(ag)18))/(E (v(a,)]8) - E (v(ay)Is)).

Then, by the linearity of the expected-value operator,

E(vay + (1 - Nag)is) = E (v(ag)[S) + A (E (v(ay)[s) - E (v(ay)Is)

= E,(v(c, ()18),

SO C,.  ~g Aal + (1 - A)ao. In the proof of Theorem 1, we constructed u and
p so that
®x,t Ts MY Proy b (1 - u(x0) a

~g u(x, t)(p(tS) a; + (1 - p(t]S)) ajy) + (1 - u(x,t)) a,
~S p(tlS) u(xrt) al + (1 - p(t|s) u(xvt)) ao-

The monotonicity axiom guarantees that only one randomization between a1 and

a,. can be just as good as Cy

0 SO

A
A= p(t]s) u(x,t).

But cx differs from a, only in state t, where it gives prize x instead of

.t 0

the worst prize, so
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E (V(cx,t)ls) - Eq(V(aO)IS) = q(t]S)(v(x,t) - min v(iz,t)).

q
Thus, going back to the definition of )\, we get

z€X

p(t]S) u(x,t) = q(t[S)(v(x,t) - minZGX V(z,t))/(Eq(V(al)IS) - E_(v(ay)[8)).

q
Now let

A = (Eq(v(al)IS) - Eq(v(aO)IS)),
and let

B(t) = q(t{S) min v(z,t).

z€X
Then
A p(t]S) u(x,t) + B(t) = q(t|sS) v(x,t).

Notice that A is independent of x and t, and B(t) is independent of x.

Furthermore, A > 0 because a_, >

1 a

implies Eq(v(al)ls) > Eq(v(ao)ls).

S 0

Q.E.D.

It is easy to see from Theorem 2 that more than one probability distribution
can represent the decision-maker's beliefs given some event S. 1In fact, we
can make the probability distribution g(e|S) almost anything and still satisfy
the equation in Theorem 2, as long as we make reciprocal changes in v, so as
to keep the left-hand side of the equation the same. The way to eliminate
this indeferminacy is to assume Axiom 8 and require utility functions to be

state-independent.

Theorem 3. Let S in F be any given subjective event. Suppose that the
decision-maker's preferences satisfy Axioms 1AB through 8, and let u and p
be the state-independent utility function and conditional-probability function
that satisfy (1) - (8) in Theorem 1. Let v be a state-independent utility
function, let g be a conditional-probability function, and suppose that v and

g represent the preference ordering Zs. Then
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q(t]s) = p(t]s), VYt e s,

and there exist numbers A and C such that A > 0 and
v(x) = A u(x) + C, Vx € X.
(For simplicity, we can write v(x) and u(x) here, instead of v(x,t) and u(x,t),

because both functions are state-independent.)

Proof. Let A = (Eq(v(al)ls) - Eq(v(ao)ls)), and let C = mi v(z).

Daex
Then, from the proof of Theorem 2,

A p(t]S) u(x) + q{t}]S) € = q(t]sS) v(x), Vx € X, Vt €S,
Summing this equation over all t in S, we get A u(x) + C = v(x). Then,
substituting this equation back, and letting x be the best prize, so that .
u(x) =1, we get

A p(t]s) + q(t|S) C = A qg(t]s) + q(t]|s) C.

Since A > 0, the theorem follows. Q.E.D.



C.

H.
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