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ABSTRACT

This paper gives a new organization of the theoretical results
of the Generalized Transportation Problem with capacity constraints.
A graph-theoretic approach is utilized to define the basis as an one-
forest consisting of one-trees (a tree with an extra edge). Algorithmic
development of the pivot-step is presented by the representation of a
two-tree (a tree with two extra edges). Constructive procedures and
proofs leading to an efficient computer code are provided. The basic
definition of an operator theory which leads to the discugsion of various
operators is also given, 1In later papers we will present additional
results on the operator theory for the generalized transportation problem

based on the results in the present paper.






1. INTRODUCTION

The Generalized Transportation Problew was introduced as an extension
of the transportation problem by A. R. Ferguson and G. B, Dantzig [9, 12] in
their application to "The Problem of Routing Aircraft.'” This was further
applied by K. Eisemann and J. R. Lourie [11] for "The Machine Loading Problem,"
and also discussed and applied by A. Charnes and W. W. Cooper [8]. Formal
methods of solving the generalized transportation problem and relevant
theoretical insights are given in standard texts, for instance, A, Charnes
and W. W. Cooper [8], G. B. Dantzig [9], W. W. Garwin [13] and G. Hadley [17].
Extensions of the loop-technique of the stepping-stone algorithm and related
theoretical underpinnings are presented by E. Balas and P. L. Ivanescu [6].
Results similar to those by Balas and Ivanescu [6], and consideration of de-
generacy and upper bounds are presented by Y. Eisemann [10] while the topology
of the generalized transportation problem at the end of each iteration of the
stepping-stone method of soluticon was given by J. R. Lourie [19]; and two
together developed the original version of the computer code {11} for IBM 704.
Post-optimization and inclusion of additional constraints for the generalized
transportation problem were treated by E. Balas [5], utilizing the dual-method
and the poly-w technique,

An operator theory of parametric programming for the transportation
problem was developed by V. Srinivasan and G. L. Thompson in {21, 22]. 1In
the present aﬁd subsequent [1, 2, 3] papers we extend the parametric approach
to generalized transportation problems. The present paper develops the basic
theoretical framework, including a new approach to representing one-trees

(a tree with an extra edge) and two-trees (a tree with two extra edges) in
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a manner that is efficient for both theory and computation. The basic
definitions of operators are also included., The detailed development of
the various operators based on the results of the present paper is carried
out in [1, 2, 31.

Throughout this paper, our emphasis is on constructive procedures and
proofs since they lead directly to usable and hopefully efficient computer
programs. Our development of operator theory for the generalized transporta-
tion problem is straight forward and requires no reference to the parametric
programming theory for the general linear program [9, 19] for justification,
Our aim in this paper is to simultaneously provide new theoretical insights
and to give constructive procedure for obtaining the practical benefits of
the new results. This also facilitates easy application and interpretation

to certain management problems which are left for another paper,

The generalized transportation problem formulation arises in different
contexts [9, 11, 12], but the most familiar application is the machine loading

problem [11]. 1In this, m types of machines (rows) are available for the

production of n types of products {columns), The production process is

concerned with each unit of product being processed by a single machine and
not by a specific sequence of machines. Each product may be produced by any
one or more machines. The utilization of machine type 1 for product j
requires ei. hours per unit and costs Cij dollars per unit. During a

fixed time period, machines of type 1 have a maximum total capacity of a,

hours and product type j 1is required by an amount bj' The machine loading
problem is: In what amounts of Xij should products be allotted to machines
to attain production of required amounts within the available capacities of

minimum total cost? Formulated as a linear programming model, the problem is:



m n
Minimize v T ci.xi.
i=1 j=1 I
N . n / : .
(1) Subject to: R eijxij < a; (i=1,...,m)
j=1
T b, (j=1 )
z x,. =0Db, (j=1,...,n
i=1 )
x..>0
ij =

Due to similarity of (1) to the ordinary tramsportation problem and to
take advantage of the structure in the constraint matrix, this is treated as
a generalized transportation problem. In fact there can be weights similar

to eij for the columns as well. For instance, consider the following problem:

m n
Minimize % 5 f.lg.
i=1 j=1 )
jal / /
(2) Subject to: ¢ L.X, . < a,; i=1,...,m
. ijij— 1
j=1
Tb/.x/)., =b.,; j=1,...,n
1j 1) , ]
x,. >0
ij =
where the a.'s are non-negative, a_, b,, b’. are positive and c¢,, are arbit-
ij S R ij

rary. This problem (2) can be transformed to (1) (or with all column co-
efficients to be unity and arbitrary row coefficients or vice-versa). Without

any loss of generality we shall transform the problem so that the column ce-

efficients are unity as in (l). To do this we let xij = bgjxgj. Thus the
coefficients for the row equations become a£j/b{j = e . and the coefficients
of the objective function become <c../b/. = c... Thus (2) and (1) are equiva-

ij 1ij ij

lent since x{j > 0 implies Xij > 0 because b, is positive.

ij

Throughout the rest of this paper we shall concentrate on (1).



2. PRELIMINARY DEFINITIONS AND RESULTS.
The inequalities given in (1) for the row sums can be changed to

equalities by introducing slack variables X ntl for each 1, with an

associated weight e, =1 and c, = 0 for all 1i. However no
& i,n+l n C1,n+1

explicit constraint is imposed on the (n+l)st column sum (which can be
interpreted as the total idle machine time). To ensure an initial feasible
sclution and also to ensure sufficient machine capacity, a fictitious row

(machine type m+l) with very large machine capacity a is introduced.

m+l

By assigning very high per unit production costs =M (j£<n, and N

“m+1, ]

a large positive number) any allotment to this (high cost) machine is penalized.

In other words, if the optimal solution has a positive x (j # nt+l),

m+l,

then there is no feasible solution to the original problem. Also set ¢ 8,

n+l,ndl -

em+1’n+1 = 1. 1If upper limits Uij (capacity) for xij is imposed then the

capacitated generalized transportation problem can now be stated.

The following index sets are defined:
(3) I1=1{1,2,...,m, m¥11 the se% of machine types
3 1'=1{1,2,...,m} = 1 - {(m+l)}
(4) J=11,2,...,n, (n+1)}: the set of product types
(4 J'=1{1,2,...,n} = J - {(ntD)}
For iel and jeJ, define the following quantities (each with {its

machine loading interpretation)

xjj: amount of product type j to be allocated to machine type 1,
Cij: cost per unit of such allocation,
€5y production time of machine type i for product type j.

Uij: maximum amount of product j that can be allocated o machine i,

If there is no maximum then set Uij = N.
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a.: availability (supply)of total time for machine type 1.

b.: requirement (demand) of product j.

We will refer to c , a, and bj as the data of the problem,

2 . I
150 %150 Vip A

In particular the ai‘s and bj‘s will be referred to as 'rim conditions.'

Thus the capacitated generalized transportation problem (P) will be:

(5) Minimize %

2 Ci.Xi,
iel jesg 34

Subject to the following constraints:

(6) T oe,.X, . = for iel
o, iiTij i
je
(7) Y x,, =b, for jeJ’
ier Y
(8) 0 < X5 < Uij for ieI’, jeJ’

with the following assumptions
(Al) a,s bj’ eij’ Uij are positive real numbers for all iel’, and
(A2) the system (6-8) has a feasible solution. (due to construction).
(A3) non-degenerate solutions exist. If degeneracy occurs (primal
or dual) familiar methods [8, 10] could be used to prevent it.
REMARK 1. There is always a feasible solution to P due to construction
of (m+l)st row. (A2). Finiteness of xij is due to constraint (8). Multiple
optimal solutioms if any are due to (dual) degeneracy [10]. xm+1,j >0
(j # ntl) at the optimal solution is a sufficient condition that no feasible
solution to the original problem (1) exists. We also discuss how to find an
initial solution (which need not be optimal) later,
REMARK 2. For problem in which some or all of the x,. are not

ij

bounded from above, we take Uij = N where N 1is a large positive number.
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1f specific lower bounds are given viz 0 < Lij < xij < Uij for eI’ and jeJ’,

it is possible to effect the linear transformation x£j = xij - Lij so that
0< x/. ! where U/, = (U.., - 4,.). This will change the rim conditions
= ij = 7ij ij ij ij

(6) and (7) as follows:

(67) v x!. =b! for jeJ' where
. i j
iel
0<b, =b, - ¥ 4 . and
] 1 g M
) T e..x'. =a' for iel where
: ij7ij i
jed
0 S.ag =a; - T e 4.
j€J ] 1

Due to Assumption A2, there will be a feasible solution for x,, because the

13

mapping is linear and preserves all conditions cited in (Al). The objective (5)

will become

(39 = T c,.x'. + k where k is a constant and equals
. ij7ij
iel jeJ
= M ci.{i..
iel jey ‘3%
Since the transformation X' = X + b is linear and (Al) and (A2)

*

hold for the new problem, the optimal solution X  for the original problem will
. *I *I *

correspond to optimal solution X where X "=X - L= {xrj - {1j}'
Henceforth, we will tacitly assume that {1j = 0 for the generalized transports-
tion problem.

By a cell (i,j) we mean an ordered index pair with row (machine type iel
and column (product type ) jeJ. We will use a tableau similar to that of the

ordinary transportation problem. A cell of the tableau (matrix) contains the

following information.



elJ xi_]
con
..... L
... 7 u..
ij. ij
eij: in the north-west corner
xij: in the north-east corner (0 if left blank)
Cij: in the center; if circled it implies cell (i,}) is im
the basis
{ij: in the southwest corner (if Lij = 0 then it is gmitted;
if 4., > O the transformation x/, = x - & should
ij ij 1] ij
be made as an initial step.)
Uij: in the southeast corner = N if no upper bound is speci fied.

The following two propositions are valid.

Proposition 1. The optimal solution will be unaltered if a constant

cost 6j (j=1,2,...,n) 1is subtracted :rom (or added to) all the cost elements

of a specified column, say j = k. (jeJ').

Proof. Let the new costs be c¢.. =c., - & (for kth col.)
—_— ik ik k
so that ¢/, = ¢, j # k; iel
1] 1}
Then T L oce/x.= T T ¢ iXi m TG
iel jeJ 1M der je3 MY iex k
= L I c¢,.,Xx,, -8 T x,
iel jey T3 kg ik
= ¥ ¥ c¢,.x,. - b § .
iel jeJ r)td kk
Since bkék is constant, the optimal solution Xij of problem (P) given by

equations (5)-(8) will be optimal if cij is replaced by c;j (iel, jeJ)

in equation (5); also the optimal solution found with costs ¢,, 1is also

1]

optimal with costs Cij'



PROPOSITION 2. The optimal solution is unaltered if a cost aieij

is subtracted from (or added to) all the cost elements cij of a specified

row 1 = h

/ - - o
PROOF. Let Chj Chj ehjo

[
(g}

(for hth row) and C{j

for i # h and jeJ.

7

Then by PN Ci'xi'
iel jed 3]
= 7 T oc.,X., ~ & r e .%, .
- = j hi"h
iel jey ) h yey PIH]
= ¥ ¥ c..x., =~ &.a, .
iel jed ) h'h
Since éhah is constant, the optimal solution of problem (P) given by
equations (5)-(8) will be the same with costs being either cij or cij

(iel, jsJ') in equation (5).

We now discuss some basic concepts of graph theory. In what follows a
line refers to a row or column of the tableau.

DEFINITION 1. Let {1 denote a collection of cells (i,j) of the tableau,
Line g is connected to line h in Q, if and only if there exists a path
(sequence) S of distinct cells belonging to

(9) S = {(i1,37)s (iy,d,) «ven (iy,3 )} such that

(a) (il,jl) is a cell of S in line g, and (ik,jk) is a cell of 8
in line h;
(b) for every 1< t < k, either it-l = it ¥ tt+1 and Jt-l # i, - jt+1’

or i g Fi =iy oand T3 Fiy

(c) If jt = n+l, then t=k or t=1 but not both;

(d) If the number of distinct lines between g and h, excluding g



and h in the path S 1is r, then the length of the path
connecting lines g and h is 4(g,h) = r+l. If no path
exists then 4(g,h) = o,

REMARK 3. The above definition ensures a sequence of cells forming an
alternating path, alternating between columns and rows or vice versa along
connected lines,

DEFINITION 2. A cycle of order 4 1is a path C containing 24 cells
(4> 2) such that

(i) Every line of the matrix contains either O or 2 cells of C;

(ii) Cc = Sa U SS where each set Sa and SB contains 4 cells

such that
(a) if a line has two cells of C, then one belongs to Sa
and the other to S and

8

(b) @ = 11 e, . > 11 e . = B.
(i,i)es, > (i,j)es,

DEFINITION 3. The circulaticn factor of a cycle C is p = af(a~-B).

REMARK 4, Sometimes, while pivoting, a c¢losed path is created which
satisfies all the requirements of Definition 2, except (ii) (b); i.e., we have
@ = 8 for the closed path. 1In this case it is possible to alter xij around
the path and remove a cell thus breaking the path. (See the discussion of
symmetric loops in Balas and Ivanescu [6], or Eisemann [10].) Moreover, no
slack cell, i.e. a cell in column (n+l), can be a member of a cycle by condition
(c) of Definition 1.

DEFINITION 4. A loop is defined to be a slack cell (i,n+l). We define
the circulation factor of a loop to be infinity.

DEFINITION 5. Let {2 be a set of cells. The span S(Q) 1is the set

of all lines excluding column (n+l) that contain at least one cell in (1.
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We say that (i 1is a counected ser i7 vvery paivr of Llins: v the span

S(2) is connected.

-

DEFINITION 6. A one-tree s a maximal connzcied s&t of cells such that either
(1) it is acyclic (does not contain 4 cveled and thers is exactly
one cell from column o+l i.e., it contains & lonp, or

1

(ii) it contains no cell from celumn ntl,

-p
ot
-
)
@©
2
T
—
o
-
o
e
4
el
[
o
.

DEFINITLIoN 7. A basis B for problem ¥ iz 2 cne-forsst; a cef of
(m+n+1) cells (callad basis cells) which is the union of one-trees T

=l,...,k (2 < k < w+n+l) such that

(i) S(T,) 1 S(T,y =& it i # 3 and
1

1
REMARK 5. The mtutl cells forming & basis are identified in the

tableau (Fig. 3) by those cells where Cii 5 are circled,

PEFINITION 8. A basic sclution X = {» _; corrospending to a basis B

her x,., =0
1]

)} s satisfied for (i,j) e B, the basic solution

"~
=

satisfies (6) and (7) and is such that (i,3i) implies that eit

co

= U,.. If{ in addition ¢(

or x,, ..
1] 1]

is called primal feasible. We define LE and Uk az the sets of nonbasic

variables that are at their lower or upper bounds respectively. We define

(B, LB, UB) as a basis structure, it is known |6, 8] thar given a problem and

unique,

[0

its basis structure, the associated primal scluticn 1

DEFINITION 9. A solution is said tc¢ be primal non-degencrats if

< < or (1,3 5
0 Xij Uij for (i,j) e L.

DEFINITION 10. The cell {(a+l, n+ti) is called the absorbing cell.

REMARK 6. 1t is shown by Eisemarw [10} that the absorbing c2ll is
always in the basis,

EXAMPLE. Consider a machine lozding problem with the data given in a
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tableau form of Fig. 1. 1In this, there are 3 (m) machine tvpes and 4 (n)
product types. The vows correspond to machine types with available time units
of 300, 225 and 140 respectively. Product types correspond to cclumns and they
are required in an amocunt of 170, 60, 35 and 60 respectively, The utilization
of machine type i for product j requires eij time units per unit of
product and is given in the northwest corner of the cell (i,3). The cost cij'
the lower bound Lij and upper bound Uij are given in the center, southwest
corner and southeast corner respectively by the cell (i,j). These are coni-
sidered as the data of the problem. Figure 2 gives the same problem of Fig. 1

=1, = 0 = {15 and “14 = N a large

but with a slack column 5 with ei5

positive number for i=1,2,3 and an extra machine type, (row 4) introduced

c,
i5

= 4 = = N = a 1 a1 i
where ebj 1; 45 0, U&j N and CAj 100, a reiatively large positive
cost for j = 1 to 4. A large positive time unit, 1000, is chozen o7 2. Ro

value for b5 is assigned since there is no constraint corresponding to the

slack column.

Solution techniques for solving problem P are discussed in Balas and
Ivanescu [6], Eisemann [10] and in other text books [&, 3, 13]. Fowever the
following algorithm for finding an initial primal feasible solution has been
found to be efficient.

Algorithm Al, For finding an initial feasible solution X = [xij} and

an initial basis structure (B, LB, UB).
0) Start with all xij = 0 and all cells (i,}) ¢ LB.
Let SR =1 and SC = J'., Let j = 1.
(1) 1If SC =0 go to 7. Else go to 2.
(2) If j = ntl set j = 1; if j # SC set j = j+l and go to 2.

Else go to 3.
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tableau form of Fig. 1. 1In this, there are 3 (m) machine types and 4 (n)
product types. The rows correspond to machine types with available time units
of 300, 225 and 140 respectively. Product types correspond to columns and they
are required in an amount of 170, 60, 35 and 60 respectively. The utilization
of machine type i for preduct j requires eij time units per unit of
product and is given in the northwest corner of the cell (i,j). The cost Cij’
the lower bcund Lij and upper bound Uij are given in the center, southwest
corner and southeast corner respectively by the cell (i,j). These are con-
sidercd as the data of the problem. Figure 2 gives the same problem of Fig, 1

but with a slack column 5 with €5 = 1, ¢ = 0= 4 _ and Ui =N a large

5 i5 i5 4

positive number for 1=1,2,3 and an extra machine type, (row 4} introduced

1; {hj = (, UAj = N and CAj = 106G, a relatively large positive

1 to 4. A large positive time unit, 1000, is chosen for a,. No

where eAj

cost for j
value for b5 is assigned since there is no constraint corresponding to the
slack column.

Solution techniques for solving problem P are discussed in Balas and
Ivanescu [6], Eisemann [10] and in other text books [8, 9, 13]. However the

following algorithm for finding an initial primal feasible solution has been

found to be efficient.

Algorithm Al. For finding an initial feasible solution X = {xij} and
an initial basis structure (B, LB, UB).

(0) Start with all X5 = 0 and all cells (i,j) ¢ LB.

Let SR =1 and SC =J'. Let j = 1.
(1) If SC =@ go to 7. Else go to 2.
(2) If j = n+l set j = 1; if j ¢ SC set i = j+1 and go to 2.

Else go to 3.
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(3) Find h such that Ch’ = min ¢,, and X, < Ui.. Let
J iesr J ]
a
“"h ‘
x = min — b U .
h 2 ’ 2y h . J .
i Lehj ] 3
] = - e w , - - v = -
(4) Let ay a Chjhhj and bj bj khj' If a, bj 0

go to 6, Else go to 5.

(5) (a) If b, =0, let SC=S5C- {i}; ,3) & B, § = j+l.
Go to 1
(b) If a =0; let SR = SR - {h}; (h,j) ¢ B and j = j+l.
Go to 1
(c) 1If th = Uhj; let (h,j) ¢ UB,j = j+l and go to 1.
(6) Here a = bj =0, 1If ‘SRl <2 (number of elements in set SR)

let sC =sc - {j}, (h,j) € B, j = j+*l,and go to 1. Else
(i.e. |SR| > 2), find lsc}. 1f [sC| > 2, let SC = sC - {31,
(h,j) € B, j = j+l,and go to 1. Else (i.e. |SC| < 2) let

SR = SR -{h}, (h,j) € B, j = j+l,and go to 1.

(7) For each i ¢ SR, set Xiopa1 T & and (i,n+l) e B, STOP.

Figure 3 gives a starting primal feasible solution for the problem
given in Figure 2. (Ignore, for the present the numbers given as row and
column headings.) This solution is obtained by applying algorithm Al, The
following give the steps of Al and the results due to application of these
steps sequentially,

Step No. Result due to this step.

(0) x.,. =0 and (i,j) ¢ LB for all (i,j).

i
SR = {1,2,3,4%; sCc = {1,2,3,4}. 3 = 1.



Step No.
(2)
(3)
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Result due to this step.

j ¢ SC. Go to 3.

€y is minimum. Xyq = 35 = 33/e31.

= 0; b1 = 135,

SR = SR - {3}; j=2; (3,1) ¢ B. Go to 1,

c is minimum and x = 60 = b,_.

SC =sC - {2}. j =3; (2,2) ¢ B, go to1l

c is minimum. x =60 =b

11 11~ “11

(1,1) ¢ UB; j = 2, go to 1.

j=2; 3=3; 3=4; j=25; 80 j=1. Go to 3.

. = 45 =

X1 +5 az/e21

a2 = 0; b1 = 75,

SR = SR - {2}, i =2; (2,1) ¢ B; go to 1.

j=2; 3J=3; j=4; j=5s03i=1. Go to 3,

|
~
(9, ]

i}
o

C41 1S minimum. X41 1°

= 925; b1 = 0,

SC =SC - {1} = @; j

it}
t

i

2; (4,1) € B; go to 1,

1,5 2 %45 7 925; (1,5), (4,5) ¢ B. STOP.
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The circled cij in Fig. 3 indicate that cell (i,j) = B. xij is
written in the northeast corner of cell (i,j). It can be verified that this
basis structure is primal feasible.

The following theorem has been proved. [6, 9, 10].

Theorem 1. The simplex algorithm for a nondegenerate generalized

transportation problem involves at each pivot step a primal feasible solution

X = {xijl and a basis structure (B, LB, UB) such that

2

. < 5 . )
(a) (i,j) ¢ B then O hij < Uij
(b) (i,j) ¢ B then either
(i) xij = 0 and (i,j) ¢ LB or
(ii) xij = Uij and (i,j) e UB.

Define a maximal connected subset of a basis as a component. It has
been proved that the basis of any basic solution to a generalized transporta-
tion problem consists of mutually disconnected components where each component
is a one-tree [6, 10]. Thus the bavis is a one-forest.

From the algorithm for starcing solution, it is easy to see that the
starting solution is a one-forest consisting of one-trees with loops. Since

choice of a will ‘absorb' any possible

m+l LS arbitrary,

xm+1,n+1
imbalances either in the rows or columns,
Before proceeding further, let us present the graph associated with a ome-
forest corresponding to a basis B.
For a general reference to graph theory see C. Berge [7] or F. Harary [18].
For a discussion of the tree-index labelling method, definitions, terminologies

and algorithms for the ordinary transportation problem, see V. Srinivasan and

G. L. Thompson [23] and S. Glicksman, L. Johnson and L. Eselson [14].
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The graph G = (V,E) of a basic solution consists of the nodes
V=1UUJ’' and the edges E = B where B is the set of basis cells. An
edge (i,n+l) is a loop connecting to itself. It was seen from

definition 7, that the graph G = (V,E)

i

k
(1 JyJ,B)y= U G(T,), is a
h=1 :
one-forest', where the sub-graph G(Th) = (Vh’Eh) = [Ih U Jh’ Bh}. The

graph G(Th) has certain properties. Each sub-graph G(Th) has either a

cycle Ch or a loop (slack cell), but not both., It has two classes of nodes

I and Jé and every path in the sub-graph T, makes alternate use of one,

then the other kind of node.

DEFINITION 11. A rooted-one-tree G(Th) = {I_ U Jé, Bb} is a one-tree

h

satisfying conditions (a) to (d)

with a distance function dk(v) for vth

given below:
Choose an edge (r,s) as follows:

(1) if there is a loop = {(r,n+1)} then let (r,s) = (r,n+l) or

o

(ii) if there is a cycle , let (r,s) be any edge (basic cell) in

h

Ch such that (r,s) ¢ Sah (see Definition 2); then

(a) G_ = (I_UJ

h h B

é, Y - {r,s}) is a tree.
(b) r is the root of Gh'

(c) dh(v) = 0 for all veS(Ch).

(d) if u 1is any node in Gh - Ch then dh(u) is defined as

dh(u) = min L(v,u);
veS(Ch)

In Ch € G(Th) there is a unique path from the root r to any other

distinct node veGh, since Gh is a tree. Associated with a roeted-one-tree

G(Th);he following predecessor function ph(u) for any node uel, U J; is

h

defined.
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DEFINITION 12. The predecessor function ph(u) for every node

uel, U Jé

(a)

h

(b)

satisfies the following:

# where r 1is the root of G

ph(r) h

]

u if f(u,v) € E and r connected to u in

ph(V) h

B, - {x,9)} - {(u,m}.

The following algorithm determines the distance and predecessor function

in the tree

*
= ¢ - .
Gh = (Ih U Jh’ Bh {(r,s)}) for the starting solution,

ALGORITHM A2. Algorithm for finding root, distance and predecessor

functions for the initial basis produced by algorithm Al.

(0)
(1)

{2)

(3)

(4)

(5)

(6)
(7)

Set r=1; 1i = 0.

If r > m+l, STOP. Else go to (2).

Check to see if (r,n+l) ¢ B. If yes go to (3). If no, r = r+l,
Go to (1).

Set i = i+l. Let r be the root of Ti; pi(r) = @

di(r) = 0 M= {r}; 4 = 0. s =5 = 8.

For each u ¢ Mr

(a) find the set Dc(u) = {vlveJ'-SC and (u,v) € Bh}

(b) for each v ¢ Dc(u) let di(v) = di(u) + 1 and pi(v) =y,

Replace Sr by Sr U Mr and MC by U Dc(u).
ueMr

If M= @, set r = r+1 and go to (1). Else go to (7).

For each v ¢ MC

(a) find the set D _(v) = {uluex-sr and (u,v) ¢ B, ]

This algorithm A2 is only for the initial basis. For any general basis en
algorithm similar to A2 (but long) is given in [4]. Further, later on [1]
we will define ph(r) = s and # @ where (r,s) is given in Definition 11,
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(b) for each u ¢ Dr(u) let di(u) = di(v) + 1 and pi(u) = v,

(8) Replace SC by SC U Mc and Mr by U Dr(v).
veMC

(9) If Mr =@, set r = r+l and go to (1), Else go to (4).

EXAMPLE (continued): Let us now consider how this algorithm A2 is
used for the starting solution given as Figure 3 to obtain the root, distance

and predecessor function for the initial basis:

Steps of A2 Result due to this step of A2
(0) r=1; 1i=0; ntl =25
(2) (1,5) ¢ B
3) i = 1; row 1 is the root of one tree T1
py(row 1) = #; d (row 1) = 0; M_= {1}; M_ = 8.
S.=8.=¢ '
(4) (a) Dc(l) = (columns 3 and &)
(b) dl(col. 3) = 1; dl(col. 4y = 1;
Pl(C01-3) = pl(col. 4) = row 1
(s s_= {rowll; M = (col. 3, col. &)
(7) Dr(col. 3) = Dr(col. 4) = @
(8) S, = (col. 3, col. 4); M_= )
(9) r =2,
(1) 2, 3, 4 are not greater than 4
(2) (4,5) ¢ B
(3> i = 2; Row 4 is the root of one tree Tz

pz(row 4)y = @; dz(row 4) = 0; Mr = {r}; Mc = g,

(%) (a) Dc(row 4) = (col, 1)

(b) d7(col. 1) = 1 p2(col. 1) = row 4
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Steps of A2 Result due to this step of A2
(5) S = {row 4}; M = (col. 1)
r c
(7) (a) Dr(col. 1) = (row 2, row 3)

(b) dz(row 2) = dz(row 3) = 2 pz(row 2)

= pz(row 3) = col, 1

(8) SC = (col. 1) and Mr = (row 2, row 3)
(%) (a) Dc(row 2) = col., 2
Dc(row 3) = ¢

(b) dz(col. 2) = 3 and pz(col. 2) = row 2

(5) Sr = (rows 2, 3, 4) and MC = col. 2
7 Dr(col. 2) =9
(8) SC = (col. 2); Mr =0
9) M =0; r=25
r
(1) 5> 4: STOP.

The starting solution consists of a basis whose graph is a one-forest
consisting of one-trees each having a loop. Since a loop has just one cell
(r, nt+l), the specification of the root of the l-tree is obvious, yiz T
However it will be seen that when a new cell enters the basis a two-tree

is created which may contain a cycle Ch of 2 (4 > 2) cells. It is necessary

to identify the two sets Sah SBh and determine its circulation factor for
3 b

finding the new basis. The following algorithm provides this,
ALGORITHM A3, Algorithm for determining the sets Sdh’ SBh associated

with a cycle Ch and calculation of Pp

(0) Choose any edge (r,s) ¢ Ch' Store $; we now construct a tree with

r being the root. Set A =e_ ; A_= 1;
I— o4 rs B

Sen = {(r,s)}; SBh =@ and v = s, .
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(1) Let u = p(v); if u # r go to 2 and if u = r go to 4.

(2)  Sg =S5 {(u,v)}; hg = Ag * e,

(3) Let v = p(u); Sdh = Sah U {,v)};
Ad = Aa * ey and go to 1.

(4) Ay = AB fe . th = S U {(r,v)}. 1f Ay = AB go to 6, 1If
Aa < A8 interchange SOrh and SBh; also AOr and AB.

Set s = v in the stored edge (r,s). Go to 5.

(5) Aa/(Aa - A), STOP.

3

(6) This is a symmetric closed loop which can be eliminated by an

Ph

ordinary pivot step, thus changing the two-tree into a one-tree,
see Remark &4,
EXAMPLE (continued): Let us now apply algorithm (A3) for the cycle
{(2,1), (2,2), (3,1), (3,2)} given in Figure & to find Sy sB and p. (Sub-

script h 1is dropped for convenience here.)

Let (2,1) be the edge chosen. Column 1 is stored; Row 2 is the root;

Aa = ey = 1; A5 =1, Sa = {(2,1)}; SB = @; col. v = col. 1.
Step Result due to this step of A3
(1) row 3 = p(col. 1); row 3 # row 2
(2) SB= (3,1); AB= 1 xe31 = 4
(3) col. 2 = p(row 3); Sa = {(2,1), (3,2)}
AQ'=AQ'xe32-2‘
(1) row 2 = p(col. 2); row 2 = row 2
(4) AB = AB x e, =4 x3 =12 sB = {(3,1), (2,2)}
Since A, = 2 < AB = 12 interchange S, and SB and s = col, 2

and thus (2,2) is the edge removed. Thus Sa = {(3,1), (2,2)}

SB = {(2,1), (3,2)} and p = Aa/(Ad - AB) = 12/10 = 6/5. STOP.
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REMARK 7. Let Tl’T7""’Th" Tk. be the omne-trees of a basis B and
let Cl’CZ""’Ch""’Ck be their respective cycles or loops such that

CE c Th. Consider a specific one-tree Th, and the rooted one-tree

) with (r,s) €S, being the edge removed from Bh to

G(Th) = (Ih U Jh, B h

h

form the tree Gh (Definition 11). The distance function dh(v) and pre-

decessor function ph(v) for v ¢ Ih U Jé are known from algorithm A2,

)

7
Let ‘Ih‘ and ‘Jh‘ represent the number of elements in Ih and Jg
respectively, It follows from Definition 7 that I = U Ih and J'= U Jé
h=1 h=1

with |I| = m+l and |J’| = n. Moreover I, NI, =3/ NJ =8 forh#tct.

Let (e,f) be a cell not in B, Then (e,f) is either in LB or in UB.
The basic pivot step of the simplex method, or of the operator theory to be
developed here, involves inserting (e,f) into B. When (e,f) is added to B
two cases arise:

(a) e el and f e Jé where h # t;

(b) e el and f ¢ Jé with h = t,

Since e € I, in either case ph(e) = j 1is a column which is connected in Th

h

to Ch' Let Dh consist of the cell (e,f) together with the unique path in

Th that connects j to u where u ¢ S(Ch) and 4(u,j) is minimum. (If

3 = u then Dh = {(e,f)}). We call Dh the row path.
Similarly, since f ¢ Jt in either case, pt(f) = 1 1is a row which is
connected in Tt to Ct’ Let Dt consist of the cell (e,f) together with

the unique path in Tt that connects i to v where v ¢ S(Ct) and 4(i,v)

is minimum, (If 1 = v then Dr = {(e,f)1). We call Dt the column path,

Hence, due to the introduction of the cell (e,f) # B, into the basis,
a set of cells [ can be determined, where

(1) I = (RS Dh) U (D, U Ct)'

C e ———
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In this, (Ch v Dh) is called the row segment of [ while (Dt U Ct) is

called the column segment of [. The graph associated with the edges given

by T and the nodes in the span of the cells of T(S(I')) 1is called a
two-tree.

It has been proved that this graph contains exactly two cycles (lemma 9
of [6]). 1t is possible that both the row segment and the column segment
are identical.

Let us consider changes in x_ .. It can be shown [6, 10] that such
changes can be compensated for by changing only xij for (i,j) ¢ I'. In the
next algorithm (A4), we shall assume that (e,f) ¢ LB, (the alternate case of
(e,f) ¢ UB is covered in Remark ), so that initially Xof = 0 and we want

to make it positive.

DEFINITION 13. 1f «x

of is changed, then I can be partitioned into twe

sets Fl and Fz such that xij must be increased by an amount pmij for

(i,3) e Fl and xij must be decreased by an amount umij for (i,j) ¢ FZ’

The following algorithm (A4) determines Fl and FZ’ the cell (e,f) e T

to leave the basis, and also finds the coefficients mij by which the xi1's must
be revised for (i,j) € I, for the case when (e,f) e LB.

ALGORITHM A4. For finding L Fl, FZ’ wy X for (u,v) ¢ I' and the

outgoing cell (el,fl) when cell (e,f) ¢ LB is added to B. (If (e,f) ¢ UB

make the changes indicated in Remark 8.)

(0) Let me S 0 for (u,v) ¢ I'. Let (e,f) ¢ Fl, x = 1, and me " +1.

Let (u,v) = (e,f). Set Fl = 0 indicating we are evaluating a
row segment. Let the span of the cycle S(C) = SR U SC.

(1) If ue SR, i.e., d(u) = 0 go to (5), else go to (2).

e
i = = - __L_I! =
(2) Let j p(u). Let x X euj s muj muj + x., If B h >0, let

(u,j) e Ty, else (u,j) ¢ I, Let v = j.



(5)

(6)

(7)

(8)

9

(10)
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I[L v e SC, i.e., d(v) = 0, go to (B8); els
Let i = p(v). Let x = -x, m,__=m,__ + Xx;
iv iv
(i,v) ¢ Tl; else (i,v) e TZ. Let u =1
j = . If j=n =
Let j p(u) i n+l, let mu,u+1
mu’n+1 - e vy If F1 = 1 go to (11). 1If

(u,v) = (e,f), x =

uv
let x = -xp EJ—, moso=m o +
uj ]

X. Ifm . >
uj —

else (u,v) ¢ 1| Let SC =8SC - {j}. and v

5
If SR = @ and F1 = 0, let (u,v) = (e,f), x
if SR=0 and Fl =

m =m., +x. Ifm, >0 1let (i,v) ¢ I

iv iv iv = 1’

SR = SR - fi} and u = i.

If SC = § and F1 = 0, let F1 = 1, let (u,v)

if SC=0 and F1 = 1 go to (11), Else let j

e

1 and go to (3), If j # ntl, (if j =0, j =

1 go to (11). Else let i =

e go to (4).

ifm., > 0 let
iv -
Go to (1),
F1 = 0 let F1 = 1,

s)

0, let (u,j) € Fl;

= j.
=1, F1 = 1, go to (3);
p(v); let x = -x,
else (i,v) ¢ [,. Let
= (e:f)a x =

1, go to (3);

=p(u); if j = 0,

let j = 5; let x = -X—EX, m ., =m , + x, Let SC = SC - {v}
e . uj uj
1]
and v = j. Go to (6).
Let i = = - H i = {.
e i p(v). Let x xp and m, o= m + x
If m >0 let (i,v) ¢ I}; else (i,v) ¢ [,. Let SR = sR - {il.
Let u = 1.
If SR= ® and F1 = 0, let (u,v) = (e,f); x =1, and F1 = 1, go to (3);

it

if SR=@¢ and F1l

(u,j) e rl; else let (u,j) € Tz. Let SC =

Let SR = @ and F1 = O,

if SR=0 and F1 = 1, go to (il).Else let i

. ., Ifm, > 0, let (i,v) ¢ T_;
iv iv — 1

Let u =1, Go to (9).

1 go to(il), Else let j =

let (u,c) = (e,f), x

p(u); if j = @, let
- {3}

1 and

SC and v = j.

F1 = 1, go to (3);

-X and

p(v); let x =

else let (i,v) ¢ Fz.
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(11) Find o from

(Uij - Xij)/mij for (i,j) ¢ 1"1

U = min
(~I f " i | € F
xij/k mij) or (i,]) ”

The cell on which this minimum is taken is the leaving cell

r _ .
(ei’fl)' If (el’fl) e Iy (el,tl) e UB, and if (el’fl) 3 Fz,

(el,Fl) ¢ LB, For all (i,j) e T, let

(12) xij = xij + 0 mij'

REMARK 8. The algorithm A4, given above provides the basic pivot step
of the generalized transportation problem under the assumption that (e,f) was
in LB. If (e,f) was in 1B then, in the starting step (0) of algorithm A4
make the following changes: '"Let (e,f) e Tz and x = -1" and replace "x = 1"
by '"x = -1" in steps (5) - (7), (9), (10), and continue with the rest of the algorithm,

Due to this basic pivot step, the basis structure is changed, since
(e.f) ¢ B is now in B and (el,fl) € B is now not contained in B. However,
it was shown [6, 10] that the resultant basis is also another one-forest,

This fact is given as a theorem, the proof of which is given in [6].

THEOREM 2, The pivot step (Algorithm A4) of the generalized transporta-
tion problem preserves the one-forest property of the basis B,

EXAMPLE. (continued) Consider Fig. 3 for which when Algorithm A2 was
applied, the distance and predecessor function were obtained. Assume that the
cell (3,2) is to enter the basis. Since both row 3, and column 2 are contained
in the one-tree consisting of cells [(4,5), 4,1y, 3,1), (2,1), (2,2)}1 we
will apply algorithm A4 to the set T, which is a two-tree, obtained by the
introduction of cell (3,2) into the basis. Figure 5 gives the graph of T

and the distance function.



The following gives the steps of algorithm A4 and the results due to execution

of the corresponding step.

Step No. Result due to this step of A4
(0) (u,v) = (3,2); my, =1; FL=0; (3,2) e I}; s8R = {4}; sC={5]
(1) d(Ry) =2 # 0. Go to (2).
(2) Cl = p(R3); may = 0 -1 x (2/4) = -1/2; (3,1) e Fz
(3) d(Cl) =1+# 0. Go to (4).
(4) R4 = p(C,); m = 0 - (~1/2) = 1/2; (4,1) ¢ Fl' Go to (1).
(1) Ra e SR. Go to (5).
(5) C5 = p(Ré); (4,1) is the terminal edge

and (4,5) the entry edge of row segment

M, = 0-1/2 = -1/2 and (4,5) ¢ Fz. F1 = 1 {u,v) = (3,2).
Go to (3).

(3) d(C2) =3 # 0. Go to (4).

(4) Ry = p(Cy); my, = 0 - 1=-1; (2,2) e I,. Go to (L.

(1) d(R,) = 2 # 0. o to (2).
.- . e - L=1)=3 _ 4.

(2) (41 P(Rz), m21 0 1 = 3: (2)1) € rl.

(3) d(cy) =1 #0. Go to (4).

(4) R4 = p(cl); m,q = 1/2 - 3 = -5/2; (4,1) ¢ rz
(note (4,1) is updated from fl to rz). Go te (1),

(1) Ra e S((4,5)). Go to (5).

(5) Cg = P(R,); (4,1) is terminal edge and 4,5)
entry edge for column segment also M5 = -1/2 - (-5/2) = 2,
4,5) = r,. Go to (11).

(note that (4,5) is updated from [, teo rl.)
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(11) : 5, @
W= min _@9 35 75
1 (1/2) ° (5/2)
(e,f) = (4,1) and 4 = 30,
After making indicated changes we have:
*%,., = 30 ) x,, = 30
32 N 22
X9) = 135 g Fl Xy = 20 € FZ
- =0 - U
X5 1000 X1 0 B

Figure 4 gives the new tableau when these new x,.'s

given above for
1]

replace the old Xi*‘s

1
-

given in Figure 3. The current basis B,

(i,3) ¢ T
viz., {(1,3)) (1;&)’

in Fig. 4 consists of cells with cij circled,

(1,5), (2,1), (2,2), (3,1), (3,2), (&,5)}, The cell {(1,1)} is in its upper

bound and hence is contained in UB. The rest of the cells {(1,2), (2,3), (2,4),

(2,5), (3,3), (3,4), (3,5), (4,1), (&,2), (4,3), (4,4)]1 are at their lower

bound, This set of cells at their lower bound constitute LB. There are

mtntl = 8 cells in the basis which always includes the absorbing cell (4,5).

This basis form an one-forest consisting of 3 mutually disconnected one-trees.

The first one-tree T, consists of cells {(1,3), (1,4), (1,5)} with the slack

*1
element f{(1,5)} = €, (loop). The cells (1,3), (1,4) are the branches of T,.

Row 1 is the root of T.. The second one-tree T, consists of cells {(2,1),

1 —_— 72

(2,2), (3,1, (3,2)} while the third one~-

which coincides with its cycle CZ;

tree T3 consists of only the absorbing cell (4,5), It is easy to see that

every cell (i,j) e B is an element in only one of the one-trees and there is

at least one path between any two lines contained in the span of a specified

one~tree,



3. THE DUAL PROBLEM

Let us now define the dual problem to P. Let uy for iel,
vj for jeJ' and wij for iel, jeJ/ be dual variables associated with the
row constraints (6), column constraints (7) and upper bound constraints (8)

respectively. Then the dual problem (D) is:

(13) Maximize T a uy + T /b.v. -z ¥ Ui i = F.
iel jeJd 3] iel jeJ' 1+
Subject to the following constaints:
(14) e..u. +v, ~-w . <c,, iel; 1eJ/
13 1 3 1y — 13 )
(15) w,. 20 iel; jeJ’
(16) U_i E‘ O 1PI.
Equation (16) can be derived as follows: since Ui ol =M for } = n+l, (14)
’
becomes e, < ¢ but ¢, =0, e = 1, so (16) follows.

u, < c, ; .
i,n+171 — i, ,n+l’ i,n+l i,n+l

Given a basis B, one can determine a unique set of solutions for

u, and Vj to the equations

i
(17) e..u, +v, =c¢.,, for (i,j) € B
ij i j ij . 3)
] . . /
s0 that dij = eijui + vj is unique for all (i,j); 1iel; jeJ .
£ = :
Because of (16) di,n+1 uy < 0,

REMARK 9. Unlike the ordinmary transportation problem us and vj
are unique, because the dual variables are uniquely determined by the one-tree
in whose span they lie. Moreover in the optimal solution, if line 1{ contains
a basis cell in the slack column then u, = 0. Since the absorbing cell is
always in the basis [10}, Ul S 0. 1In addition all other u, must be nonpositive

+1

at the optimal solution, due to (16), Further, if ci. and e are all positive,

i3

then because of (17) the optimal vj's will be non-negative.
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REMARK 10. Since the one-trees are mutually disconnected in the basis

depend

graph G(B), u, and vj associated with the span of S(Th) of Th

only on the basis cells contained in T Thus they are independent of the

he
dual variables associated with any other one-tree, Tg where g # h., Hence,

in the basic pivot step, if some one-trees of the basis of preceeding iteration
are not changed, the associated ug and vj are also not changed.

The following algoritihm provides a method of evaluation u iel and

i L
v jeJ’ for the initial solution given by A2,
ALGORITHM AS. For finding the dual variabie U, vj associated with
s 3 r *
initial basic sclution.
(0) Let initial basis B consist of k trees Th with predecessor and
distance functions Py, dh for h = 1,...,k. Let h =1,

(1) Let r be the root of T i.e., dh(r) =0, Let u_ = 0;

h? T

t =1,
. - . . ? . =
(2) Find SCt {Jljejh and dh(J) t}.
If SCt = @, go to 6,
(3) For each jeSCt let 1 = ph(J) and let vj = Cij - eijui'
Let t = t+1.
(4)  Find SR = {iliel, and d (i) = t}. If sk =8, go to 6,
(5) For each ieSRt’ let j = ph(l) and let u, = (cij-vj)/eij.
Let t = t+l. Go to 2.
(6) If h = k, STOP. Else let h = h+l and go to 1.
EXAMPLE. (continued): Dual variables ug and vj for the initial

basis given as Fig. 3 are obtained utilizing the distance and predecessor given

by A2. These are shown in Figure 3 as row and column headings.

This algorithm is only for the initial basis. However a similar algorithm
(though long) for any general basis is given in [4].
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Steps of A5 Result due to this step of AS
(0) Basis B consists of 2 trees Tl’ T2 with P and
dh; h=1; k= 2.
(1) Row 1 is the root of T1 and dl(rl) = 0; uy = 0, t =1,
(2) sc, ={Cy,¢} as d () = dj(c,) = L.
(3) pl(Cj) = pl(CA) = rl; vy = 3 = 0; v, = 4 =0; t = 2,
(4) SR, = @. Go to (6).
(6) h =2, Go to (1).
(1) Row 4 is the root of T2 as dz(ra) = 0; u, = 0; t‘= 1.
(2) sc1'={col. 1} since dz(Cl) = 1.
(3) pl(clj = 1,1 v1 = 100; t = 2.
(4) SR2=={rows 2, 3} since dz(rz) = dz(r3) = 2.
(5) j=col, 1. u, = (6 - 100)1 = -94; u, = (1-100)/4

2 3

= -99/4 . t =3, Go to (2).

(2) sC, ={cz} since d,(Cy) = 3.

3 row 2 = pz(Cz), v, = 5 - 3x(-94) = 287; t = 4,
(4) SC3==@. Go to (6).

(6) h=2=%., STOP.

Thus [ul, u 4] = [9, -94, -99/4, 0] and [vl, v v4] = [100, 287, 3, 4]

2’ Y30 ¢ 2 V3
for the initial distribution. These are given as row and coiumn headings of
Figure 3 respectively,

Both the algorithms A2 and A5 discuss the determination of the primal
and dual solutions. 1In [4] we will discuss algorithms for changing the basis

from a given one-forest to the new one required at a pivot step. These are

based on similar algorithms for the ordinary transportation problem [23].
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The matrix D = {dij} is called the dual matrix. It is known that {9, 20]

a primal basic feasible solution is optimal if its dual solutions satisfy

[
o
c
+

< ..
(18) dij 13% vj < cij for (i,j) ¢ LB and

(19) dij £5Y% ;2 cij for (i,j) e UB, .

]
(0]
[
+
<
\Y%

If equality occurs in either of these two equations then we say the solution

is dual degenerate. The usual techniques [20] can be used to prevent dual

degeneracy.
A basis B, more precisely a basis structure (B, LB, UB) is said to be

dual feasible if ug and vj determined from (17) satisfy (18) and (19). 1If

we define

(20) wij = max (0, eijui + vj-cij)

(which means vij = 0 for (i,j) ¢ UB) for icl and jeJ' it may be verified that
(17) - (19) imply (14) and (15).

From the duality theorem of linear programming [9, 20], a basic solution
is optimal if it is both primal and dual feasible., Furthermecre for such a solu-

tion,

(21) Z= % T C iXys = Tau, + T b.v. - ¥ % Uijwij = F.
iel jeJ ' el jed 39 iel’jer’

EXAMPLE.(continued): Consider Figure 4 where the cells with Cij
circled give the basis. In the northeast corner of a cell (i,j) is given xij

and it could be verified that this solution is basic and primal feasible, The
dual variables Uy and vj appearing at the left and top rims respectively
satisfy (17). Unlike the ordinary transportation problem u, and vj are

unique, The dual matrix D = {dij = eijui + vj} is given as Fig. 6. The
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reader may verify that the solution is dual feasible as well, i,e.,, satisfies
(18) and (19) with LB = {(1,2), (2,3), (2,4), (2,5}, (3,3), (3,4), (3,5),
(4,1), (4,3), (4,4)} and UB = I(1,1)}. Since this tableau given as Fig. &4
is both primal and dual feasible, it is optimal. Setting wij as given

by (20) (wij =0 for (i,j) # UB), it could be verified the Z = F = $1460 as
given in (21). 1In this optimal tableau (Fig. 4) every ug with a cell,
(i,n+l) ¢ B is zero, (e.g., the absorbing cell). Further, all other uy <0
as ci,n+1 = 0. As we have both costs, Cij’ and the weights eij are non-

negative, due to (17) all vj's are also non-negative.

4. OPERATORS AND ASSOCIATED SOLUTIONS.
Let us now consider operators that transform the optimum solutions when
the data of the problem are changed as a (linear) function of single parameter.
DEFINITION 14. An operator 62}P) transforms the optimum solution of

a problem P into that for problem Pl' with data:

( T . '
a~ = a, + A, for 1iel
i i
bL=b, + 68, for jeJ’
S B T
22) cz = c + 5 for iel’; jeJ’
T - . r,o. ’
e~ = e, + be,, for iel’; jeJ
1] 1] 1]
T s Lt . 4
\ Ur~, = U.., + 8v,, for iel’; jed
1] 1] 1]
where a_,, b,, ¢c,., e.., and U,, are the data of the problem P, & is non-
1 J 1] 1] 1]
negative and @ , B, v.., e,, and v,, are given numbers, such that the
i j ij ij ij

transformed data satisfy assumptions (Al) and (A2). We denote this transformation

as

T
(23)  5~(P,B,LB,UB,X,D,2) = (P~,BL,LBL uBL, X2, D%, 25)
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where B, LB, UB, X, D, Z correspond to optimum solution of problem P and

Bz, LB£3 UBTQ XE DZ, Zz correspond to those for problem qu In stating (22)

we assume problem PEJ is also of type P satisfying assumptions Al and A2.
(It is of course possible that PE has no primal feasible solution.

REMARK 11. In the definition of the operator we have assumed that 5> O,

This involves no loss of generality, since to study the effects of & being

negative, we can define another operator & ‘T(P) with Q; = -ai; B; = -ﬁj;
v/, =+vy..; €/, = -¢.. and v/, = -v,. and still have &’ > 0.
1} 1] 1] 1] 1] 1] -

For most practical applications an operator as general as that of

definition 13 is unnecessary. In [1] we consider rim operators (6§ﬂP)) which

= g =\)-.=
Vi T %1y T Vi

arise when only the rim conditions are changed, i.e,,

for all iel’; jeJ’. Cost operators (6(C(P)) are also taken up in {1] in

Section 3 , wherein the data ccrrespond to cost entries alone i.e.,

ai = Sj = eij = Vij = 0 for iel’; jeJ’. Weight operators 5§jP) that arise
when only eij's are changed (i.e., Ci = Bj = Vij = Vij = 0 for iel’, jeJ' are

discussed in [2].

The bound operators &8L(P) which result when only the Uij's change

(i.e., @ =B, =~ . =g . =0 for iel’, jeJ') are discussed in [1]. It is
1 J 1) 1)
shown that these are equivalent to rim operators. Finally simultaneous

application of combinations of operators are also given,

We call the above operators area operators to distinguish from cell operators.

For a cell operator either a single cost entry cpq or a single weight entry
is ch d. i,e, . .. =0 i,j) # (¢
epq is change i.e., YiJ or elJ for all (i,j) # (p,q), (cell cost

operator or cell weight operator). Similarly when a single ap and bq alone

are changed. 1i.e., @ =0 for i # p and Bj = 0 for j # q (cell rim operator).
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Surprisingly enough many of the applications of operator theory
require only cell operators for which reason this is considered separately
here in developing efficient algorithms. The cell operators are further
classified into positive and negative operators depending on whether the

data are increased or decreased,

DEFINITION 15. An operator BE(P) is said to be basis preserving,
and denoted by light face letters &T(P), if the transformed problem PT has
an optimum solution with BT = B, LBT = LB and UBT = yB (i.e., the basis
structure is preserved).
T . . , T
We denote by . the maximum value for § (i.e., 0< 6§< pn') so that
the operator is basis preserving. In papers [1] and [2] our discussion is limited

te such operators. In [3] we show that any operator can be expressed as a

product of basis preserving operators.

Table 1 about here

Table 1 summarizes the operator classification discussed above.
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TABLE L, OPERATUR CLASOLPIULALLUN

g All the data for
_ the transformed Constraints
Symbol for problem are the on & for
Basis- same as the Notation for basis
Preserving Name original problem transformed preserving
operator’ except problem” * operator
5T (P) operator See eqn. (22) 1 BT LBT UBT, 0< §< uT
A XT DT ZT -
a; -ai+83’i for iel A A A
&R, (P) area rim A P ,B LB UB A
A operator bJ —bJ+@3 for jeJI XA DA 7A 0<6<
+ + + __+
a =a +e § P ,B ,LB UB+ +
R (p) (plus) cell p P P4 X+ D+ + 0< 6<
ol rim operator b+ - bq + 5
q
ap (minus) cell - - - - -
R (P = -
6 pq( ) rim operator ap ap epq& P :B :LB_,UB R o< 5<
b =b - § XD .2 ==t
q q
5. =c,. + 8y, . A BA LBA.UBA . A
5C . (P) area cost ij ij ij A A A ! 0< ey
A operator for iel and jeJ X,D,Z
st ) (plus) cell F s 4+ pt 5T 1t ust 0<g< .t
pq cost operator P4 Pq + _+ + e
X ,b ,Z
_ (minus) cell - . - - - -
éCpq(P) cost operator Cpq - Cpq ° F :B :LB_’UB 0< 6< o
X ,p .,z
A pA LA LA A
= ¢ Se, i IB )
SE . (P) area weight eij Cij * Glj AB ALBA vB, 0<8< uA
A operator for iel’, jeJ/ X ,b,2
N ot 5 1ot upt
SET (P) (p}us) cell e+ = e + 5 ,B ,LB ,UB , 0< §< u+
Pq weight Pq jolel X+ D+ Z+ - -
operator
- (minus) cell - - - -
6qu(P) weight e =-e -8 p.B,LB ,UB, 0< 86<
operator P P4 X ,D-,Z
A _A A A
a b d
L, () rea boun v =, 4 v, P.B LB ,UB, 0< 6<
operator ij ij ij A A A - -
X ,b,2Z
; +
st (P (plus) cell . P, .17, u8", .
Pq bound operator qu = qu t+ 8 v+ D+ 7 0<é<p
E
. - ) P B LB .Ub” -
5L ®) (minus) cell U = U - § :B :LB-’Ub ’ 0< 8§<
b Pq Pq
q X ,D,Z

* We use bold face letters T,R to denote operators (not necessarily basis-preserving

,C
* The notation (P,V,LB,UB, Z) is used for the original problem.
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