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1. Introduction

The profit realizable from the invention of a new product depends on its
superiority to what already exists, the structure and magnitude of the market
for the product it is designed to replace, its costs, and the means employed
by its inventor to market it. Our focus here is on how much profit an
inventor of a new patented product can realize by licensing its manufacture to
the producers of an "inferior” substitute. We define the new product to be
"superior” to the existing "inferior"” product if at the same price, consumers
will only purchase the new product. The producers of the inferior product are
assumed to be members of an oligopolistic industry, of which a perfectly
competitive industry is an asymptotic limit. Also, we restrict our analysis
to licensing by means of a fixed fee only.

Our analysis discloses the circumstances under which an inventor's
optimal behavior ultimately leads to production of the "superior” product only
and no production of the "inferior"” product and when it allows for the
production of both. The difference between these two cases depends on the
relative costs of producing the "superior”™ product and "inferior™ product,
respectively. When the unit cost of the "superior” product is sufficiently
below the unit cost of the "inferior”™ product, then only the "superior”
product will be produced. An extreme case of this situation is when the
"superior” product is produced by a monopolist. Thus, an important feature of
our analysis is the demonstration of how the optimizing behavior of an
inventor of a new product determines the market structure both for the new
product and its “inferior” substitute, the prices of the two products, and the
profits realized by each of the producers and the patentee. It is further

shown how all these results depend on degree of superiority of the new product



over the o0ld one both from the demand side and cost of production side.

Our analysis is conducted in terms of a three stage noncooperative game
involving the patentee of the new product and the producers of the "inferior”
product, who are the potential licensees. We assume full and complete
information by all the participants in the game. In the first stage of the
game the patentee announces the price of a license to manufacture the new
product. In the second stage of the game each of the producers of the
"inferior” product independently and simultaneously decide whether to purchase
a license. We do not allow a licensee for manufacture of the "superior”
product to continue production of the "inferior" product. In the third stage
of the game each of the licensees and nonlicensees independently and
simultaneously decide how much to produce of the "superior" product and the
"inferior” product, respectively. The Cournot equilibrium quantities
resulting from these simul taneous decisions determine the respective prices of
the two products and thereby the profits to be realized by licensees and
nonlicensees, for every possible number of each. Differences between these
profits and the price of a license form the basis for a firm's decision to buy
a license in the second stage of the game. The relationship between the price
of a license and the number of firms that will purchase it is regarded as a
demand function for the license, or as the reaction function of the potential
licensees, by the patentee in the first stage of the game. The patentee
maximizes his profits from licensing given the demand function for the
license. Thus, the patentee acts as a Stackelberg leader in the three stage
game by forseeing the outcome of its third stage for every possible license
fee and thereby the derived demand function for licenses it induces in the
second stage, and then maximizing profits against it. The solution concept

used for the entire game is its subgame perfect Nash equilibrium. The subgame



perfect Nash equilibrium solution is employed to avoid possible but
uninteresting solutions such as the patentee's setting an extremely high price
for a license and no one buying it irrespective of its price. As in Kamien
and Tauman (1984a,b) our analysis is limited to linear demand and cost
functions. This is done to achieve a unique Cournot equilibrium which is
independent of how the set of firms breaks into two subsets of licensees and
nonlicensees. Also linear demand and cost functions enable us to obtain
closed formulas for industry structure.

The question of how much profit an inventor can realize by licensing a
patented invention can be traced back to Arrow (1962). He compared the
profits an inventor can realize by licensing a cost reducing invention, by
means of a royalty, to a competitive industry versus a monopolist. His
analysis was extended to allow the potential licensees to be members of an
oligopolistic industry and to licensing by both a fee and a royalty by Kamien
and Schwartz (1982). Their analysis, however, neglected the inventor's
ability to exploit competition for a license to his advantage. This
limitation was remedied by Kamien and Tauman (1984a,b) through the use of a
game theoretic framework. Similar analyses have been independently conducted
by Katz and Shapiro (1984a,b), an overview of which is provided by Shapiro
(1985).

All of these previous analyses have focused on cost reducing
innovations. Little appears to have been done on the question of how much
profit an inventor of a new product can realize by licensing its manufacture;
Usher (1964) addressed this question indirectly. This deficiency has been
recognized in the literature and finessed by the observation that a new
product may often be regarded as an input into its buyers' production function

and therefore treated as a cost reducing innovation. This approach may be



appropriate only in some instances, as licensing of manufacture of final
products is commonplace. A new product innovation can, however, be regarded
as a cost reducing innovation in a different way by assuming that the new
product could have been produced before but with a sufficiently high marginal
cost that rendered its production unprofitable. The innovation then
constitutes a reduction of the marginal cost of the new product to a level
which makes its production attractive.

In the next section we present our model, its analysis and conclusions in
the form of seven propositions. The detailed proofs of these propositions are
presented in the Appendix. The final section contains a summary of our

results and an indication of how they might be extended.

2. The Model

We posit the existence of n identical firms producting an "inferior”™ good
whose total quantity is denoted by X. The demand for the "inferior" good
depends on its price and the price of a "superior” new substitute good whose
total quantity is denoted by Y. 1Initially, the cost of producing the
"superior” good is too high to make its production profitable. Suppose that
as a result of a technological improvement its production cost has been
reduced to a level which makes the production of the "superior” good
potentially profitable.

The new technology is assumed to be the property of an inventor protected
by a patent. The inventor, who 1s assumed to be an outsider and not one of
the n producers, seeks to license his innovation to those producers so as to
maximize his total rents. His licensing cost is assumed to be zero. We
restrict our analysis to licensing by means of a fixed fee only.

The unit costs of production for the "inferior” good and the "superior”

good, respectively, are assumed to be constant. The per unit production cost



of the "superior” good depends on whether the producer has a license for the
new technology. Let c; denote the unit cost of producing the "inferior™ good
and let cg and cy denote the unit costs of producing the "superior” good
before and after the innovation, respectively.

We suppose that the demand functions for both the "inferior” and

"superior” goods are linear. In particular, we let

P, - P P, > P
2 1 2 1’
(1) X = {
0 P, < P,
b -P, + ¢P P, 2 P
2 1 2 1°
(2) Y =
b - (1 - s)P2 P2 < Py,

where O < ¢ <1 and P; and P, represent the prices of the "inferior"” and
"superior” goods, respectively. The product whose quantity is denoted by Y is
"superior” to the other one in the sense that at the same prices only this
product is demanded. That is, X = 0 whenever PZ < Py. By (1) and (2) the

demand for the "inferior” good when Y = 0 is given by
3) X=b»-Q@Q - g)Pl.
To assure positive production of the "inferior" good when Y = 0 and to assure

positive production of the "superior” good with the new technology, we assume

that

(4) b > (1 - ey,

and



(5) b > Cy < ECq-

That is, if Y = O then, by (3) and (4), the demand for the "inferior" good is
positive if it is sold at its marginal cost cy. Also (4) and (5) assure that
the demand for the "superior” good is positive if it is sold as its
postinnovation marginal cost cp, and the "inferior” good is sold for the price
¢y. To guarantee that no production of the "superior” good will take place

with the old technology cg, we assume that cg is sufficiently high so that

(6) b < (1 - e)che

From the demand functions given by (1) and (2) we can derive the inverse

demand functions. These are given by

- b-X-Y
(7) Pl —Max(——l—:—s——, 0) fOI’X)O,
and

_ b-egX-Y
(8) P, = Max(———— 0).

We now proceed to define a three stage noncooperative game G, involving the
inventor and the n firms of the industry. In the first stage the patentee
offers to license the new technology for a fixed fee a. In the second stage,
each of the producers decide independently and simultaneously whether to buy a
license and cease producing the "inferior" product. We let N = {1,2,...,n}

and S E.N be the set of licensees of which there are K in number. The



remaining n — K firms in N\S continue to produce the "inferior” product. In
the third stage each firm 1s informed of the choices made in the second stage
by the other firms. All the firms, licensees and nonlicensees, then determine
independently and simultaneously their production levels of the "superior" and
"inferior" goods, respectively.

We let x; be the production level of a firm i, 1 ¢ S and Y3 be the
production level of a firm j, j € S. That is, x; represents the production
level of a firm producing the "inferior" product and Y the production level

of a firm manufacturing the "superior” product. The profit levels of the

producers of the "inferior™ product and the "superior” product are

€)D) g

L= x @ - e), i ES,

and

(10) n

0

yJ(PZ - Cz) -a, jE€S,

respectively, where Py and Py are given by (7) and (8). The patentee's profit

is given by

(11) 1 = Kg.

Equations (9), (10) and (11) define the payoffs of each player in the
game G . Our objective is to analyze the subgame perfect equilibrium in pure
strategies of the game G,. A subgame perfect Nash equilibrium to this three
stage game is computed by working backwards from the third stage to the second

one and finally to the first. Thus, we begin by determining the Cournot



equilibrium quantities for the two goods when an arbitrary number K of firms

have licenses to manufacture the "superior” product.

Proposition 1. Suppose that K firms, O < K < n, produce the "superior”

product and the remaining n - K firms produce the "inferior" product. Then
the Cournot equilibrium quantities of the two goods are uniquely determined.
At this equilibrium all K producers of the "superior” good produce identical
quantities, Vi while the remaining n - K producers of the "inferior" product
produce identical quantities of it, x:. The Cournot equilibrium quantities

]

and corresponding prices for the two goods are given by

b - (1 - e)cl - (1 - e)K(cl - CZ)
Max| (K+1)n-K+1) - eKk(n ~-K) °’ 0], i ¢ 5,

(12) x, =
1

and for j € 5 and K > 1

(n - K+1)Q - e)( + ec; - CZ) +e[b- (1 - E)Cl]

(132) K+ 1)(n - K ¥ 1) - ek(n - X) , % >0,
ys =
’ b -1 - e)e,
(13b) Max[ T T 1 , 0] %, = 0.
Also for 0 < K < n
b + (n - K)(l - E)[l + (l - E)K]Cl + K(l - e)cz
(l4a) A -a)[EX+1)(n-K+1) - ek(n - K)] s Xy > 0,
Pl =
b + k(1 - g)c2
(14b) T "X+ D) , % =0,

and



1+ @-K)A -e)][b+ L -e)Xey] +el -e)n - K)g

(15a) T - )[K +1)(n - K+ 1) - eR(n - K)] > ¥y 70
P2=
b + KA - e)c2
(15b) T -+ 1) » %5 = 0.

The profits the firms earn in the third stage of the game are given by

1 2 ,
(16) ni(n,K) =T % 1 ¢ s,
and

1 2
17 = j .
(17) myEKy =Ty JES

To get the net profit of a licensee we would have to subtract the fee «
from (17).

We proceed now to the second stage of the game. In the second stage all
the firms are informed of the magnitude of the license fee a and
simultaneously and independently decide whether to purchase a license. The
integer number K of licensees is an equilibrium number if no firm has an

incentive to deviate from its decision. A buyer j € S will not deviate if
(18) a < nj(n,K) - ni(n, K-1), 1 <X<n, i¢é¢s,

and a nonbuyer i will not deviate if

(19) o 2 nj(n, K+1) - ni(n,K), 0<Kg<n-1, i ¢ 8.

Expression (18) means that a buyer of a license will not regret purchasing it
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if the difference between the profit nj(n,K) he can realize by being one of
the K manufacturers of the "superior” product and the profit n;(n, K - 1) he
can realize by manufacturing the "inferior"” product, when there are K - 1
producers of the "superior”™ good, is at least as large as the license fee a.
Note that we use ni(n, K - 1) and not ni(n,K) in (18), since whenever one of
the K licensees changes his mind there remain only K - 1 licensees. The
profit m;(n, K = 1) may be regarded as the firm's opportunity cost of
purchasing a license. Thus condition (18) asserts that the profit from
purchasing a license must be no less than its opportunity cost plus its out-—
of-pocket cost, which is the license fee a, to the buyer. Similarly,
condition (19) asserts that for a firm not purchasing a license, the license
fee exceeds the difference in profit of being a licensee, nj(n, K + 1), and

not being a licensee n;(n,K). Letting

m

[%2]
-
[}

m

nj(n,K) - ni(n, K-1), i S, 1 < K< n,

(20) a(n,K) = {
0 y, K=0, K=n+1

enables us to summarize conditions (18) and (19) as
1) a(n, K+ 1) < ¢ < o¢(n,K).

Finally, in the first stage of the game the patentee selects the
magnitude of the license fee a so as to maximize his profit aK subject to
(21). Note that a profit maximizing patentee who wishes to support a K firm
oligopoly of licensees will charge, in view of (21), the largest possible fee
a = a(n,K). Hence, an equilibrium fee a* and a corresponding Kg, where the
subscript n indicates that there were n producers of the old good in the pre-

* %
innovation period, must satisfy o = a(n,K ). It follows that the patentee
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solves the problem

(22) Max Ka(n,K)
K

s.t. a(n,K) > a(n, K + 1),
0 < X< n.
Note that iIn the above problem K is the patentee's decision variable and the

*
optimal fee o is obtained as a byproduct of the optimization.

Proposition 2. For every n the game G, has a subgame perfect equilibrium in

pure strategies.

The proof of Proposition 2 is provided in the Appendix. While this
proposition establishes the existence of a subgame perfect equilibrium the
uniqueness question with respect to pure strategies is left unresolved and
there are cases, as well as one exhibited below, in which the equilibrium is
not unique. There are, however, three cases in which there exists a unique
subgame perfect equilibrium in pure strategies. The first case is when the
"superior” product is "drastically superior” to the "inferior" product. The
second case is when the number of firms n becomes indefinitely large and so
the industry producing the "inferior" product is perfectly competitive. The
third case is where the price of the "superior” good affects the demand for
the "inferior" good but the price of the "inferior" good has a negligible
effect on the demand for the "superior” good.

Before proceeding to the analysis of these three cases we provide the
formula for a licensee's willingness to pay, a{n,k), given that there are K
licensees. This formula is obtained from combining expressions (20), (16),

(17) with (12) and (13a,b).
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(23a)

1§

- € K+1)(mn-K+1) -eK(n -K)

b - a—e)cl_ (1‘8)(1(_1)(61"C2)2
L T sy g b T e g

(1 ”m—K+1X1—w®+eﬁ—cg+ew—ﬂ-ekﬂﬁ
1

b-(1-e) -(1-e)X-1)g -¢),
]

1

, 1 <K<K,

1 Jb—(l_e)czz
@) @R I T T TR RkF D —e® - D@ -XF D
b~ (1 -¢)
@3c) 115 K+ 1 2

where K is defined by

17}, R<R<R+1,

, §+-1< K<n,

b- (1 - e)c1 b- Q1 - e)c1

, if n 2

> 0,

a - e)(cl - c2)
(24) K =

n , otherwise.

The number K has the following interpretation: it is

T = o)(e; = )

the number of producers

of the “"superior” good for which its Cournot equilibrium price is equal to the

marginal cost c; of producing the "inferior" product.

number we set K equal to n. By (12) and (15a) it can

is equivalent to no production of the "inferior™ good.

obtain Py = cq is when x; = 0. 1In this case applying
b+ K(1 - e)c2

(22) 2T ToR+D v

Equation (25) is equivalent to

b- (@1 - e)c1

(26) K = 4= SIGENL

If there is no such
be verified that Py < ¢
Hence the only way to

(15b) we have
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provided that ¢y > ¢, and that the rights side of (26) does not exceed n.
Consequently, a solution to Py = c¢q exists if and only if
b- QA - a)c1

0 < a - €)(e; - ¢

3 < n and it is then given by K.
2 -

Case I: The "Drastically Superior” Product

Following Arrow's (1962) definition of a drastic cost reducing innovation
we define the "superior”™ product as being "drastically superior™ to the
"inferior" product if and only if its monopoly price (given no production of
the "inferior” product) is below the marginal cost cy; of producing the
"inferior" product. Thus, the "superior” product is "drastically superior” to

the "inferior” product if and only if

b+ (Q - &:)c2

(27) ACEEES)

<ec

1°

Notice that (27) implies cy > co and it is equivalent to K < 1. Thus, for a
"drastically superior” product and K > 1, the "inferior" good will not be
produced.

Suppose first that 2 < K € n, then from (23c) the patentee's profit is

2

K (b - - e)cz) .

(28) o, = Ka(n,K) = ———775%

Recall now that the patentee's maximization problem (22) is carried out with

respect to K. Differentiation of expression (28) with respect to X gives

dn
0 1 -K
(29) wral m a(n,K) < 0 for X > 2.

Furthermore, since a(n,K), given by (23c), is a decreasing function of K it

follows that the constraint in (22) is satisfied for 2 < X < n. Thus, in this
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region the patentee maximizes profit by setting K = 2 and realizing a profit

of

2 /b - 1 - a)cz)2
1 - ¢ 3 :

(30)

The alternative for the patentee is to set K =1 and realize the profit given
by (23b). Comparison of (23b) with (30) discloses that the former quantity is

greater. Thus, we have:

Proposition 3. 1In the case of a "drastically superior” product the game G,

has a unique1 subgame perfect equilibrium in pure strategies. 1In this
equilibrium the patentee licenses a single manufacturer of the "drastically
superior” product. The remaining n - 1 firms drop out of the market as they
produce zero quantities of the "inferior"” product.

Hence, the patentee's profit is the difference between the monopoly
profit from production of the "drastically superior™ good and the profit that
can be realized by a firm in the Cournot equilibrium of an n-firm oligopoly
producing the "inferior"” good. The reason the patentee cannot extract the
full monopoly profit from the production of the "drastically superior”™ good is
because the licensee has the option of not buying the license and thereby
enabling the "inferior"” good to be produced by an n—-firm oligopoly. If
production of the "inferior” good were perfectly competitive, as when the
number of its producers is infinite, then the patentee could realize the full
monopoly profit from the "drastically superior”™ good for then the licensee's

opportuntiy cost would be zero.

Case TI: Perfectly Competitive Production

To arrive at the perfectly competitive production of the "inferior” good
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we let the number of its producers, n, go to infinity. We also drop the
integrality constraint on K, the number of licensees. If we let K: be the
number of licensees in a subgame perfect equilibrium of G,, then it can be
shown (see Proposition 4 below) that K: is bounded from above. Denote

~ *
K = sup Kh' The expressions for «(n,K) in (23a,b,c) then reduce to
n

btec) = ¢,
(31a) (l—a)((l—g)K+l) » 1 <K<K,
a (K) = lim a(n,K) =
N b - (1 - ¢)e
(31b) e LI SR LR ¢

As we have already analyzed the case where K < 1 (namely the case where the
new product is "drastically superior”™) we will now conisder only the case
where K > 1. Expressions (31) may be regarded as the inverse demand function
for licenses or as the reaction function of the potential licensees.

Employing (31b), the patentee's profit in the region 1 < E < K< K is the same
as in expression (28). Thus, by (29) its derivative is negative for all K >
1. 1In the region 5 < K¢ i, therefore, the patentee will sell 5 licenses in

order to maximize profits.

On the other hand, by (3la), in the region 1 < K < K the patentee's

profit is

b+ec, - ¢
1 2.2
5)((1 _ E)K + l) ’

(32) n, = K@ -

which, upon differentiation and setting equal to zero, yields

dn, 20, ()L - X

(33) T meorE Tt w® = o
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* *
Solving (33) for K yields an expression for the limit K_ of Kn

(34) K = :

It is not difficult to check that dno/dK is positive for K < 1/(1 - ¢) and
negative for K > 1/(1 - ¢). Hence this stationary point is indeed a global
maximum provided it is feasible, that is 1 < 1/(1 - ¢) ¢ E should hold. As we
have assumed that 0 < ¢ < 1, it follows that K: > 1. Hence, we should still

find out whether K> 1/(1 - ¢) holds, that is from (24) whether

b- Q1 - e)cl
a - e)(cl - c2) ’ 1 - ¢°

for ¢y > cp. The last inequality will not hold if and only if

(35) b~ (1 -e)ey <ey -y
In this case the patentee's profits are given by (28) instead of (32) and, as

*
shown above, K

(o]

= K in this region. Hence, if (35) holds then the asymptotic
number of licensees is K, otherwise it is 1/(1 ~ g£). We summarize all of this

in:

Proposition 4. Suppose the "superior” product is not "drastically superior”

*
to the "inferior” product, i.e, K > 1. Let K, be the number of buyers in a

subgame perfect equilibrium of G,. Then for each g, 0 < ¢ < 1.

c, € b-Q - €)e,,
* * 2 1
(36) KOD = lim Kn =

n>o b - (1 - e)c1

C - C

a - E)(Cl - cz), 1 >b - A1 - e)cl.

2
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L)
In particular, (Kn)n=l is a bounded sequence.

A detailed proof of Proposition 4 is provided in the Appendix. It

follows by (12) that if ¢y < ¢y then when K: 1/(1 - ¢) total production of

"o . L1 3 . : . * . 3
the "inferior”™ product is positive and if K, = K then no production of this
4

product takes place. Hence by Proposition it follows that if c9 is smaller
than ¢y but close enough such that c¢; = ¢cp < b = (1 - g)cy then the patentee
selects a relatively small K, K: =1/ - ¢), which does not cause the
production of the "inferior” good to cease. Note that when n becomes
sufficiently large then in both cases, total profit of the "inferior” good
industry reduces to zero and hence the patentee can extract the entire total

profit from the "superior” good industry. To find the optimal total profit of

the "superior” good industry recall that whenever X > 0
(37) P = Max (——I—-_—.—E——‘, O),

(see (8)). By (12) total production X of the "inferior" good is uniquely

determined for any value of K. Letting n go to infinity we obtain
(38) £ = (b= (1-ede; = KA = e)ep = ¢)1/(L+ (1= e)K)

and hence 3X/3K < 0. Thus the patentee, who is the leader in the game, knows
that by increasing the number of licensees K he will decrease the output level
of the "inferior” good and hence shift the demand function for the "superior”
good, in (37), upwards. He must, however, also take into account that as the
number of licensees increases the degree of competition in the "superior™ good

market also increases. At his optimal number of licensees, K* = 1/(1 - €) the

(o]
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positive effect of an additional licensee on the demand for the "superior™
good just balances the negative effect of an additional licensee on the degree
of competition in its production.

*
The equilibrium quantities and prices with K, = 1/(1 - ¢) are given by

* b - (1 - e)c1 - (c1 - c2) x

(39) X = 5 , P1 = Cps
and
(40) Y* 3 b + €Cy T & p* ) b + €cy + ¢y

2 ’ 2 2 ’

and hence the patentee's profit is given by

b+ egc, — ¢

1 2.2
/ =
(41) T ( 5 Y.

An interesting feature of these quantities, prices and profits is that
they coincide with those that would be obtained with a single producer of the
"superior” good who acts as a Stackelberg leader with respect to the producers
of the "inferilor” good (while they engage in a Cournot oligopoly game among
each other). Indeed, in this case this Stackelberg leader would regard the

demand function for the "inferior™ good

X=P2_P1,

where
nc, + P

1 - n+1

is the Cournot equilibrium price for the "inferior™ good, as the reaction
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function of the producers of the "inferior”™ good to P,, since the quantity
supplied always equals the quantity demanded. Upon letting n go to infinity
so that Py approaches cj, and substitution of X = Py - ¢y into (37), the

Stackelberg leader faces the inverse demand function

(42) P, = Max(b + ec

) -y, 0).

1
It is straightforward to show that when the Stackelberg leader is maximizing
profit with this demand then the production level of the "superior” good and
its market clearing price are those given by (40). Also, the amount of the
"inferior"” good produced will be as in (39).

Consequently, the patentee would have chosen K: =1 if the exclusive
licensee could act as a Stackelberg leader towards the producers of the old
good. Since in our model a single licensee cannot act this way, the patentee
selects K: =1/(l - ¢) and realizes the same profit level.

Notice that the above discussion applies just to the case where

¢p —¢) < b=-(l -¢€)cy, and then X > 0. If ¢ - ¢cp > b = (1 - ¢g)cy then
b - (1 - e)c1
(1 =e)e; - ¢y)

In this case the producers of the "superior” good do not face competition from

by (12) K > if and only if X = 0, for n sufficiently large.

the producers of the "inferior” good and hence their total profits are at

maximum whenever their number K is at the lowest possible level. That is

b - --e:)c1
A RO

The patentee's profit in this case is from (31b) and (36)

(43) ng =(b - (1 - e)cl)(c1 - CZ)'
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*
Let us compare now the profit the patentee realizes when K_ = 1/(1 - ¢)

% b - (1 - a)c1
and when Km = (1 — €)(C1 — cz)’

the parameters c; and ¢ are fixed and that the only possible parameter change

that is, (41) versus (43). We suppose that
that may force a switch from (41) to (43) is in cp. Observe that

b+ ec, - ¢

1 =b- (1 - e)c1 + (c1 - CZ)'

2

Now K; = 1/(1 - ¢) when cp —cp € b - (1 =€), by Proposition 4. Therefore
b+ecg ~cg=5b- (L =-e)eg + (¢ =cy)<2(b~ (1L =c¢e)ep),

from which it follows that

2
(b + €cy - CZ)

(44) : < (b - -

1

o in (41) is realized, that is if

¢p —¢cp ¢<b - (1l -¢e)cy- On the other hand, if ng of (43) is realized, that

holds whenever the profit =

is if ¢ = cp > b - (1 - €)cy, then we must have

(45) (-1 -e)e) < (-0 -e)e)e - c,)e
1 171 2

Since the left side of (44) is the profit the patentee realizes when

*
K

- 1/(1 - ¢) and the right side of (45) is the profit he realizes when
* b - (1 - e)c1
KCn = = e)(cl — cz), and from our assumption that ¢ and e are unchanged, it

follows that
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[
N

(46) T, < T

Furthermore, from the proof of Proposition 3 it follows that if cy is further
reduced so as to make the innovation "drastically superior”™ then the
licensee's profit becomes larger than ng of (43). Thus, as expected, the
patentee realizes a higher profit when the "superior” product's marginal cost
of production is substantially below the marginal cost of the "inferior™
product than when its marginal cost is only slightly below or above the
marginal cost of the old product.

Finally, we complete our analysis of this case by indicating what happens
to the price of the "inferior” product as a consequence of the introduction of

the "gsuperior"” product.

Proposition 5. Suppose both the "superior” product and the "inferior"” product

are produced in the equilibrium of the game G . Then for a sufficiently

n
large n, the price of the "inferior" product, Pj decreases as a result of the

"gsuperior” product's introduction.

The proof of this proposition is provided in the appendix.

Case 111: The Small ¢ Case

This is the case where while the effect of the price of the "superior”
product on the demand of the "inferior”™ one is still substantial, the cross
effect of Py on the demand for the "superior” product becomes negligible.
That is, we have an almost indefinite demand (but not necessarily cost since
¢y > ¢y may hold) "superiority” of the new product over the old one.

We begin the analysis of this case by observing that when n + = and
e =0, then K: = 1. This assertion is obviously true in case the new product

is "drastically superior” (see Proposition 3). 1If the new product is not
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"drastically superior” and ¢ = O then only ¢y = ¢y < b - ¢y can hold in (36),
and hence K: = 1. Thus, in either case, whether or not the new product is
"drastically superior”™ to the old one, it will be licensed to one manufacturer
and the patentee will realize the monopoly profit of a single manufacturer.

We next ask what happens when ¢ 1s close to zero and n is finite. It
turns out that the patentee still licenses only one manufacturer of the new
product unless, possibly, when the old product is produced by a duopoly, i.e.,

n = 2. We state the result as:

Proposition 6. There exists g, > 0 such that for each 0 < ¢ < g, and for

every n > 2 the game G, has a unique subgame perfect equilibrium. In this
g n q g

equilibrium there is at most one manufacturer of the “superior” product,
b-¢

*

K= < 1. Furthermore, if n > max(2, 2 1. 1), then the patentee licenses
n b - <y

exactly one manufacturer of the "superior” product, K; = 1.

The proof the proposition is provided in the Appendix.

It may well happen that in a unique equilibrium to G_ no firm will

n

produce the "superior"” product (K: = 0). This happens if
b-c¢
1
2 <n<K2 T o 1 holds. Then the opportunity cost of a manufacturer of
2

the "inferior” product exceeds his profit from the manufacture of the

"superior” product. Observe that this occurs if cy is sufficlently large so
b -¢
1

as to make b - ¢y sufficiently small. Furthermore, if n = 2 T " 1>2
2

then two subgame perfect equilibria Ki = 0 and Ki = 1 are possible.

When n = 2, it may turn out that by licensing both manufacturers of the
"inferior” product, the patentee can realize a higher profit than by licensing
only one. This is illustrated by the following example, in which ¢ = O.

Continuity arguments imply that the same phenomenon occurs for ¢ > O

sufficiently small.
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Example. Suppose the "inferior" product is produced by a duopoly, n = 2, and

that b = 30, ¢ = 18, and cp = 10. The demand functions for the two products

and their cost functions become, according to (1) and (2)

X = P2 - Pl’ P2 ? Pl’
Y = 30 - Pz,
£1(x) = 18x, fo(y) = 10y.

Now by (11)-(17) and (20) we can construct the following table:

Py X; ?, ¥ 7z (K) nj(K) n, = Ka(K)
22 4 30 0 16 0 0

19 1 20 10 1 100 84
50/3 0 50/3 20/3 0 (20/3)2 86.88

Note that for every number of licensees, a licensee's opportunity cost is
the profit of a nonlicensee in an industry with K - 1 licensees. Thus, the
opportunity cost of a single licensee is 16 which is greater than 1, the
opportunity cost for each of the two licensees. The reverse might have been
expected as an exclusive licensee who deviates will only realize the Cournot
equilibrium duopoly profit from production of the "inferior" good, while when
he is one of the two licensees, he will realize monopoly profits from
production of the "inferior” good, if he chooses not to purchase the
license.

The reason that this does not happen is that when the "superior”

good is produced the demand for the “"inferior” good declines so much that the
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monopoly profits from producing it fall below the duopoly profits when only
the "inferior" good is produced. Thus, the opportunity cost of a licensee
when K = 2 is so much lower than when K = 1, that even though the profit from
producing the "superior” good declines when K goes from 1 to 2, K* = 2 is the
unique equilibrium outcome. This is illustrated in the example where the
patentee realizes a profit of 86.88 by licensing two manufacturers of the
"superior” good as compared to a profit of 84 if he were only to license one
of them.

Finally, for sufficiently small ¢, we are able to compare the equilibrium
prices and profits corresponding to the subgame perfect equilibrium of G, with
the equilibrium prices and profits that exist prior to the introduction of the

"superior” good. We summarize these results as:

b-c¢c
Proposition 7. 1If ¢ is sufficiently small and n > max(2, 2 T " 1), then
2
in a subgame perfect equilibrium of the game G :
(1) If each nonlicensee, 1 ¢ S, produces a positive amount of the

‘inferior” good, then its Cournot equilibrium price declines
following the introduction of the "superior” product.

(ii) The equilibrium net profit of a licensee remains the same as what
it was prior to the introduction of the "superior” product, i.e.,
as when it was producing the "inferior” product, but the profit of
a nonlicensee declines.

(iii) Total profits, consisting of the profits of the patentee and the
firms producing the "superior” and "inferior” products increase.

The proof of this proposition is provided in the Appendix.

Summary

We have addressed the questions of how much an inventor of a "superior”
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product could realize by licensing its manufacture by means of a fixed fee to
the producers of an "inferior™ substitute, and what the resulting industry
structure would be. The interaction between the inventor and the potential
licensees has been modeled as a three stage noncooperative game. We found the
circumstances under which there will be only one licensee of the "superior”
product, when there will be more than one, and when production of the
"inferior” product will continue and when it will cease. We have been able to
demonstrate that the inventor's profit in equilibrium increases with the cost
superiority of the new good over the "inferior"—that is, when the "superior”
good is not only more preferred by consumers than the old, but becomes also
less costly to produce.

Our analysis has been restricted to linear demand functions and cost
functions. A general analysis involves a great deal more computational
difficulty. We have also restricted the iaventor to employing a fixed fee to
license his new product. Other alternatives include the use of a royalty
only, a combination of a fee and a royalty, nonlinear royalties, and an
auction. The comparison of these methods merits further investigation.

Obviously the most important extension of this work is to see how it
compares with real world practices of licensing new products. As until now no
model of new product licensing appears to have been available, its

presentation may constitute a step in that direction.
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Appendix

Proof of Proposition l. First we show that in a subgame perfect equilibrium

all X firms in S must produce the same quantities. Consider a Cournot

* * * * *
equilibrium (yl,...,yK, XK+1""’Xn> and denote by X total production of the
* *
firms in N\S—that is, X = 2 X . Then, in view of (8), the firms in S face

i¢s
the residual inverse demand function

(A.1) P, =b -
where b = (b - EX*)/(l - ¢e). It follows that y;,...,yi must be a Cournot
equilibrium in the game plaved by the K firms in S, facing the inverse demand
function (A.1) and the per unit production cost cp+ It is well known that
such an equilibrium is symmetric, i.e., y: = y; = L,, = y; must hold. 1In a
similar way it is possible to show that all xI, i ¢ S are equal.

To derive the equilibrium quantities and prices, consider first the case

where K > 1, that is, S # #. 1In view of (7) and (8), the profit functions are

given by
T, =y, {(b-¢ Y x, - ) y.)/(1 -¢g)~-c,], fories,
oot jemvs J 0 ges J 2
and
n; = % [(b - Y ox. - ) yj)/(l -¢) - ¢l , for 1 ¢s.

jems 1 jes

Note that the fee a does not appear in m;, i1 € S since it is considered a
fixed cost at this stage. Since every firm maximizes its profit subject to a

nonnegativity constraint, the first order necessary (and sufficient—-due to
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the concavity of m;) optimality conditions are

- b-c¢ 2 Xj - 2 yj -y
(A.2) i_ JEN\S J€S - ¢
' 6yi 1 - ¢ 2

i

<0, ice€s,

where equality in (A.2) holds if y; > O,

b- ) ox.- 7 y.-x
(4.3) oty _ jems 0 ges b .
) axi 1 - ¢ 1

< 0, i ¢S5,

where equality in (A.3) holds if x; > O. Using the symmetry property

y; =9V, L €8, x, =x, 1 ¢ S, we obtain

(A.4) b-—e(n-K)x- K +1l)y<g (1 - e)cz,
and

(A.5) b-(n-K+1)x -Ky < (1 - e)cl,

where quality in (A.4) ((A.5)) must hold if y > 0 (x > 0). TFour cases are

now possible.

(i) x =y =90. Then if K < n, (A.5) implies a contradiction to (4). If
K = n then only (A.4) is relevant with x = 0. Then y = 0 only if

b- (1 - e)c2 < 0, implying the zero part of (13b).

(i1) x> 0, y = 0. Then (A.5) implies

b-Q —a)cl

(A.6) x = —— ¥ T

Substituting (A.6) in (A.4) the necessary condition
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(n-X+1b-egn-X)b+e(n-X)(A —g)cl- Q —g)(n—K+l)c2< 0,

is obtained, which is equivalent to

(A.7) A -e)n-XK+ Db+ gc, - c2) +e(db - Q1 - e)cl) < 0.

1

However, (A.7) contradicts (4) and (5).

(iii) x =0, y > 0. Then equality in (A.4) must hold and (13b)

follows. Substituting (13b) and x = 0 in (A.5), we have that

(A.8) b -1 - e)c1 -1 - e)K(c1 - c2) < 0

must hold for x = 0, y > 0 to be a Cournot equilibrium. Note that (A.8) and
(4) imply cq > cy. Hence, in view of (4), b - (1 —¢g)ey > 0, and y > 0 is
also implied by (A.8). If (A.8) holds, then substituting X =0 and Y = Kyj,

where Y is given by (13b), in (7) and (8) we obtain (14b) and (15b).

(iv) x > 0, y > 0. Then the unique solution to (A.4) and (A.5) gives

(13a) and the positive part of (12). ©Note that in view of (4) and (5), yj
given by (13a) is always positive. Moreover, in view of (12), x; > O only if
(A.8) is not satisfied. Consequently, cases (iii) and (iv) are mutually
exclusive and there exists one and only one Cournot equilibrium.

Furthermore, substituting Y = Kyj and X = (n - K)xi, where yj and x; are
given by (13a) and the positive part of (12), respectively, we obtain (l4a)
and (15a).

To conclude the proof, it is left to consider the case where K = 0. Then
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S = P and only (A.5) is relevant holding as equality. From this, (12) and
(l4a) (for K = 0) follow. Furthermore, (15a) (for K = 0) is obtained from (8)
by substituting Y = 0 and X = nx;, where x; is given by the positive part of

1 1

(12), when setting X = O, g

Proof of Proposition 2. We have to establish the existence of an optimal

* *
solution Ko 0« Kn < n, to (22). Denote

(A.9) in = max argmax Kg (n,K),
0<K<n

where o (n,K) is given by (20). Certainly, such a in exists. We claim that

*

in =K . To establish this note that by (A.9)

Kna(n,Kn) > (Kn + 1)a(n, Kn + 1).

Since (Kn + Va(n, Kn + 1) > kna(n, ﬁn + 1) if «(n, kn + 1) > 0, and since

Kna(n,Kn) > 0, we obtain

From (A.10) we have that o(n, ﬁn) > a(n, ﬁn + 1), hence En is feasible in (26)

and by (A.9) it must also be optimal for (26). i

*
Proof of Proposition 4. Ilet K, denote an optimal solution to (22), and let

* @
(K_)__, be a sequence of optimal solutions.
n’n=1 4 P

*
Lemma 1. For each n let K, be the number of buyers in a subgame perfect

*
equilibrium of the game Gn’ Then the sequence (Kn)n=1 is bounded.
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* o
Proof. Suppose to the contrary that (Kq)n=l is not bounded. Then it has a
subsequence which converges to infinity. Without loss of generality, let us
* o
assume that (Kn)n=l is already this subsequence. Denote by yz the equilibrium
*
output of a licensee in G,. Then for sufficiently large n, Yn is given by
either (13a) or (13b) where K there is replaced by K;. However, in both cases
% % 9 x|
Kn(yn) > 0 as n > =». This is obvious if y, is obtained by (13b). In case
* o
(13a) is relevant, the same limit is obtained if either (n - Kn)n=l is a

bounded sequence or not. Hence, it follows (17) that for j € §

* *
Kn.(n,K)> 0, as n» 0, and hence
n’j n
* *
(A.11) Ka(n,K ) > 0 as n>» =.
n n

Note, however, that

b- QA -¢)e b-(0 -¢)
1 2.2 12, .o o
T -t ( 2 ) - gy L ifx =0, 1495,
l-a(n,l) = { 1 r n(l - €)(b + €°1 _ cz) + E(b _ (l - e)cl) 5
1 - éI( 2n —eg(n - 1) )
b-(-el ,

- ¢ T )] , if X >0, 1¢S5,

and it follows that for sufficiently large n

b - (1 -¢)c (1 =€) +ec, - c,)
min{ (——p 2%, « "} > 0.

a(n,l) »

21 - ¢)

* * * o
This, together with Kna(n,Kn) > a{n,l) contradicts (A.1ll). Hence, (Kn)n=l is

bounded. 1l

We now continue with the proof of Proposition 4. Note that, in view of



the proof of Lemma 1, as n » », the
profit by selling his innovation to

sufficiently large n. By (24)
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inventor can guarantee himself a positive

*
a single firm. Hence K 3 > 1 for

b - (1 - e:)c1

min {

(A.12) K o= {

Then, in view of (12), for K < X we

for X > K we have x; = 0 for i ¢ S.

(1 - E)(Cl -

Cz),n}, if N > Cyo

have x; > O for 1 ¢ S, and if X < n then

Also note that since the innovation is

nondrastically superior K » 1 must hold. It follows from (16), (17) and (20)

that the profit of the inventor in an n firm industry, in case he sells his

innovation to K firms, is given by

(A.13) D(n,K) = Ka(n,K),

where a(n,K) is given by (23a,b,c).

Note that a(n,K) is a continuous function of n and K. In view of the

proof of Proposition 2, it is sufficient to maximize D(n,K) over K, 1 < K< n

*

in order to solve (22) and to determine a value for K,- Recall that Lemma 1

~

implies the existence of a number K

* ot .
such that 1 < K, € K for every n and, in

particular, for n » K. Consider now the function G defined on

[0, 1/K] x [1,K] by G(t,K) = D(1/t, K). Using (A.13) and (23a,b,c) we obtain

S S |

(A.14) G(0,K) = lim D(n,K) = {

n-»>o

K

b + €C; T &

- K

)2, if 1 ¢ K< X,

b - (1 - e)c2 ) - N

1

(
- T ) , 1if K< K< K.
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Letting

S(n) = max D(n,K),
and 1<K<K

G(t) = max G(t,K),

1<K<K

we have that E(t) = 5(1/t) on [O,l/ﬁ]. Since G is continous in both arguments
and K ranges in a compact set, it follows by Debreu's Maximum Theorem (Debreu,

1959, p. 19) that G(t) is continuous on [O,l/i] and that the correspondence

$(t) = arg max G(t,K),
1<K<K
is upper semicontinuous on [O,l/ﬁ]. As a result, the limit of every

*
convergent subsequence of (Kn):= must be an optimal solution to

1
(A.15) max {G(0,K) = lim D(n,K)},
~ >
1<K<K

where the above limit is given in (A.14). Simple differentiation of both

terms in (A.1l4) shows that problem (A.15) has a unique maximum given by

1 if 1 < K = PC ¢ €)C1
> — - - — ’
: T =eXe, - ¢

(A.16) K = |

% o
Since (Kn)n=1 is, by Lemma 1, a bounded sequence, it has a convergent

subsequence and, by the above arguments, every convergent subsequence must
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* * * ‘e
converge to K_ . Hence K, » K_ . It 1s easy to verify that the conditions in

(A.16) are those stated in the proposition. ]

Proof of Proposition 5. Suppose the "inferior” good is positively produced,

then, by (l4a) it is sufficient to show that

b+ (1 - a)nc1 b+ (n - K:)(l -e)( + (1 - g)K:)c1 + K:(l - e)c2
T -G +D

(1 - ). +1)(n - K +1) - K (a - K]

or equivalently:

X * * *
A=[® +1)(@-K +1) =K (n =K )= (n+1)]b
* * * *
+ [ - g)n(Kn + 1)(n - K +1) - (1 -¢enek (n = K)
* * *
- (n+ L - Kn)(l -e) + (1 - e)Kn)]cl - (n+ 1)1<n(1 - e)cz > 0.

However,

% * % % *

A= Kn(l - e)(n - Kn)b + (1 - g)Kn[g(n - Kn) + (Kn + 1)]cl
L * % * L
( e)Kn(n Kn + Kn + )c2,

and

A * *
(A.17) —_—— = (n - Kn)[b + gcy ~ c2] + (Kn + 1)(c1 - CZ)'

1 - g)Kn

*

*
Since K, is bounded we obtain by employing (5) that A > O for sufficiently

large n. 1

Proof of Proposition 6. First note that if for 0O the innovation is

E:
b+ (1 - e)c2
2(1 - ¢)

"drastically superior”-—that is, the inequality < Cys holds at
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¢ = 0, then by continuity there exists a positive e < 1 such that every g, 0 <

e < g, defines a "drastically superior” innovation. By Proposition 3 we have
*

that for these values of g, K, = 1 holds for all n > 2. Hence, throughout the

b+ (1 - e)c2
2 C holds at ¢ = 0.

remainder of this proof we suppose that T = &) 1

Note that since the left side of this last inequality is increasing in e, such
an Innovation will remain nondrastically superior for all values of 0 < g <
1. The proof will consist of three intermediate results.

b - =

b - Cy

unique subgame perfect equilibrium. In this equilibrium Ki = 1.

Lemma 2. If ¢ = 0 then for each n > max{2, 2 - l} the game G, has a

Proof. Fist we show that the profit function D(n,K) of the inventor is
decreasing in K for n » K » 2, where D(n,K) is given, in view of (A.13) nd

(238. b )C) > bY

b - 9 o b - S X - 1)(C1 - Cz) 2

(A.18a) K[(K 1 ) =« CESED)) "], if1<K<K+1,
D(n,K) = {
b - €y 9
(A.18b) K(;—;;T—O , If K+1<K<n,
where, from (A.12)
b - =
ain {————,n}, if c; > ¢
1 Cy 1 2
(A.19) K = {
n , 1if 1 < oo

Note that since the innovation is nondrastically superior (A.19) implies K > 1
and hence D(n,1l) and D(n,2) are always given by (A.18a). Also, observe that

*
expression (A.18b) is decreasing in X. Hence K <K+ 1l and it remains to

show that (A.18a) is decreasing in K for K+ 1 > K » 2. Let
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(A.20) A= (b - cl)/(b - CZ)'
Then
(A.21) €y =€ = a - )\)(c2 - b).

From (A.18a) and (A.21) we have

(b - CZ) - K(cl - CZ) 2

K
K(n - K + 2) ]

2
————(b - ¢c,)" - K]
X + 1) 2

D(n,K)

K[l -&RA -]
® +1)2  K(n - K + 2)°

® - ¢,

].
Letting E(n,K) = D(n,K)/(b - cz)z, we obtain

2
(A.22)  E@K) =—= - 1 _+ 2a-x)2_Ka-x)2
K +1)" Ko -K+2)" @-K+2)° @-K+2)

1 [K(n+2)2 _l_i_l(—Z(n+2)1 + 21 -2) K@ —)\)2
] .
(n+ 2)2 X + l)2 K (n-X+ 2)2 (n-K+ 2)2 (n-K+ 2)2

We will show that the derivative of E(n,K) with respect to K is negative for

n> 2, 2< K< n. Differentiating (A.22) w.r.t. K we have

(A.23) QEé%L52-= F+ (1 =2 - (1 -2,
where
2
e 1 - (K - 1)(n +32) .\ l7_+ K - 3(n + 2;1,
(n + 2) (XK + 1) K (n - K+ 2):
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(A.24) G = 4 -
(n-K+2)
and
q = n+X +2
(n =K +2)°

Since the nondrastically superior innovation case is considered, the

inequality, b - ¢y > cC holds. Thus, in view of (A.20) and (A.21), we

17 %
obtain A > 1/2. Also, by (A.21) the inequality A < b/(b - cy) holds and

hence,
(A.25) L1 -n s - /b - c).
2 z 2 2

To show that expression (A.23) is negative for n > 2 and 2 < K < n, it is
sufficient to show that the maximum of (A.23) with respect to (1 - A) and
sub ject to (A.25) is negative. The function (A.23) is a concave function of

(L - A). Its unconstrained maximum is
*
(A.28) (L -2) =6/(24) = 2/(n + K + 2),

which is within the bounds (A.25). Hence, it is also the constrained global

maximum. Substituting (A.26) into (A.23) we obtain

d3E(n,K)

2
Y £ = F + G /(1)

1 -»

which equals, via (A.24),
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1 1 (+ 2% - 1) 3(n + 2) - K
] 31~ 5 3
(n + 2)2 K ® + 1) (n + 2)%(n - K + 2)

.\ 4

(n+KXK+2)(n-K+ 2)3

1 1 o+ %K - 1) 1
=5l - comn 2
(n + 2% K ® + 1) (0 +2)%(n - K + 2)(n + K + 2)
1 1@ ®-1), 1 |
L )
(n + 2)% %2 K + 1) (n + 2)% - g2

We now show that P(n,K) = (n + 2)26E(n,K)/aK is negative for n > 2,

*
a-x
2< K<n. Sincen+ 2 > K + 1 we have

1 _rR-1, 1
k2 KTl 2ok

(A.27) P(a,K) <

Since the three terms on the right side of (A.27) obtain their maxima over

2<K<natK=2, K=2, and X = n, respectively, we have for n > 2

1 1

(A‘28) P(D,K) < m_ TZ_

< 0.
*
It follows that D(n,K) is decreasing for n > 2, 2 < K € n and hence K, < 2.
Next we show that D(n,l) > D(n,2) for n > 2. This will imply, together
*
with the above conclusion, that K, < 1 for n > 2. Equivalently, we show that

E(n,1) - E(,2) > 0. Now
(4.29)  E(n,1) ~E(n,2) = -—A -2y

To show that (A.29) is positive, we establish positivity of its minimum

subject to the bounds
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(A.390) 1/2 < A < b/(b - cy)s

eastablished in (A.25). The function (A.29) is convex and its unconstrained

minimum

* _ (n + 1)2
2(n + 1)% - n

2)

satisfies 1/2 < x* < 1. Hence (A.30) holds at x*. Substituting x* in (A.31)

we obtain

E(n,1) - E(n,2) = 37 = —— ,
2(n” + 4n + 2)

6

which is positive for n » 3. Consequently, E(n,1) - E(n,2) > O for n > 2 and
" *
ence Kn < 1.

To complete the proof of Lemma 2, we show that under the condition

b~-c¢ .
n> 2 g—:—zl-— 1 we obtain D(n,1) > O and consequently K; =1 for n > 2.
2
Indeed
b -c¢ b -¢
_ 2.2 1.2
D(n,1) = (=) G T >0
if and only if the above condition holds. {1
b-c¢
Corollary 1. For every n > max{2, 2 P T o 1} there exists a positive
2

number e€(n) < 1 such that for each g, 0 < &€ < eg(n), the game G, has a unique

*
subgame perfect equilibrium. In this equilibrium K, = 1.

Proof. Since all inequalities established in Lemma 2 were strict, they will
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continue to hold for small values of e-—namely, for e satisfying 0 < £ < e€(n)

for some 0 < g(n) < 1. 0

Lemma 3. There exists an 0 < ¢ <1 and a positive integer ngy such that for
all 0 < ¢ <& and n > ng the game G, has a unique subgame perfect

*
equilibrium. In this equilibrium K, = 1.

Proof. Since we deal with a nondrastically superior innovation at £ = 0, we

have b - ¢, 2 ¢, — ¢

1 1 5 From this inequality we obtain for € > 0

b- (1 - e)c1 > b - ¢y P Cl T Co»
*
holds and consequently, from Proposition 4, lim K, = 1/(1 - ¢) as n » .
Therefore, for € < 1/2 we have 1 < 1lim Ki {2 as n > =,

*
Let us consider now only integer values of XK. Then K_, given by (A.18),

81 + 1 where r

should be rewritten as either r; 3 ;] or [; E T

1 1 is the
- €

1
integer part of T =" Hence if € < 1/2 then for sufficiently large n we have
* * ~
either Kn = 2 or Kn = 1. We now show that there exists an &€ < 1/2 such that

for all 0 < ¢ < E

(A.31) lim D(n,l) > lim D(n,2)

n»x n->o

holds. To show this, observe that by (A.l4), inequality (A.31) is equivalent

to

b +ec, - c2)2
2 - ¢

(1 - €)(

and thus
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must hold to ensure (A.31). It follows that for 0 < ¢ < ¢ there exists an

integer ngy such that for all 0 < ¢ < e and n > Ny
D(n,1) > D(n,2),

and hence Kz = 1 holds. 0

To complete the proof of Proposition 6 define

b - 1
,F—_——C——l)<n<no}, E},

€g = min{min{s(n)'max(Z
2

where e£(n) satisfies Corollary 1 and & and ng satisfy Lemma 3. Proposition 6

is now an immediate consequence of both Corollary 1 and Lemma 3. 0

Proof of Proposition 7. Proposition 6 implies that for each g, 0 < ¢ < g,

Kn = 1 holds.

Proof of (i). The pre-innovation equilibrium price the "inferior™ good is

obtained by substituting K =0 in (l4a)

b + n(1l - s)cl
1 T -a)nF1)

P

*
while its new equilibrium price Py is given by (l4a) upon substituting

s DH@-DA =)@ -edeg + - ey
1 = O -e)[2n - e(n - 1) )
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We show that Pf <Py for ¢ =0 and hence, continuity will imply the same

inequality for sufficiently small . Now, for £ = 0,

P* . ) b+ 2(n -1 )cl + ¢, _ b + ne,
1 1 2n n+1

(b + ¢y = 2c1) - n(b - c2)

= Taln 7 1) <o,

where the last inequality follows the assumption

b - ¢y
ny>2——-=-1=
b - Coy b - ¢y

b - 2cl + <y

Proof of (ii). First consider a licensee j € S. Since the inventor extracts

from such a firm its current profit less its opportunity cost, the net profit
of a buyer firm is its opportunity cost. Since K; = 1 this opportunity cost
is its pre-innovation profit. Consider now a nonbuyer firm i ¢ S. If in
equilibrium x; = 0 then g = 0 which is less than its pre-innovation profit.

If x; > 0 then following (16), (12) and Ki = 1 the post—innovation profit is

given by

1 rb - Qa - e)c1 - - e)(c1 - c2) 2 L4
1 -¢t 2n - ¢(n - 1) 1, 1 ’

ni(n,l) =

while the pre-innovation profit from (16), (12) and X

0 1is

1 /b - 1 - e)c1 9

my (0,0) = =777 )

id¢ s.

It is sufficient to show that ni(n,l) < ni(n,O) for ¢ 0. 1Indeed, the
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inequality

b-c-c+c)) b - ¢
_ 1 1 2°.2 _ 1.2
1 (n,1) = 7, (0,00| o = ( - e I

is equivalent to

b+C2 "2C1 <n(b—c2).

b-c¢
But the last inequality follows our assumption that n > 2 E—:—EL-- 1.
2

Proof of (iii). We show that for € = 0 the total pre-innovation industry

profits are strictly less than the post—innovation profits. For g = 0 the
overall pre-innovation industry profits are

b -c¢c

1 )

(A.32) 1= n(n T

If following the innovation Xy = 0 for 1 ¢ S, then the overall industry

profits are the monopoly profits, in the y product, given by

Hence, if x; = 0 at equilibrium, we should establish

b - ¢ b - ¢

2.2 4 1.2
(A.33) ) > —— ).
(n +1)
Note, however, that in view of the definition (A.12) of K, if x; = 0, then

n

that (A.33) indeed holds. Suppose that following the innovation Xy > 0 for

K* = 1 » K and this occurs only if ¢y > cp. This together with n > 1, implies



i ¢ S at equilibrium. Then for ¢ = 0, by (12), (13a), (11), (16), (17) and

(20), the total industry profits are now

b - ¢ b+ c¢c, - 2¢
* 2.2 2 1.2
(A.34) n = C‘jz———) + (n - 1)( o ).

From (A.32) and (A.34) we should establish that

b - ¢ b+ c, - 2¢ b - ¢

(A.35) A = (_2_3)2 + - 1)( 2r21 1.2 _ 1.2

holds. Let

C2 Ab + (]. - )\)Cl

where, in view of (5) and (4), A < 1 holds. Then

b-cy=(l-A)b-cp)
(A.36)

cg = ¢y = A(b - 1),

and substituting (A.36) in (A.35) we obtain

2 2
A=(b-c )Z[SE_:;A)_.+ (n - 1) a+x a 1.
1 b 4n2 (n + 1)2

Let G(A) = A/(b - cl)z. Then G(\) is convex. To show that G(A) is positive,
we show that its minimum value 1s positive. G(A) attains its unconstrained

global minimum at xf given by
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2
* -n+1
(A.37) N =
n +n-1
* b-=¢
Note that Ay > O. However, the condition n > 2 T= o 1 implies, in view
2

of (A.36), the constraint

(A.38) A < .

It is easy to verify that xf given by (A.37) does not satisfy (A.38) and

consequently the problem

min G(\)
s.t. (A.38)
. < o * n-1 .
does not have a minimum, but an infinum at A = TFI Furthermore, since

¢(\") = 0 it follows that G(A) > O for all A satisfying (A.38). Hence, A

which is given by (A.35) is positive. 0
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Notes

1By unique we mean that the number of licensees is uniquely determined

but not the set of licensees. The payoffs are all uniquely determined.



