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Abstract: Average waiting times in queuing models are generally computed with
the assumption that the arrival and service processes are independent and not
related. In many applications and especially in queues with scheduled batch
service times this assumption is not valid and a formulation which relates the
two processes is required. This paper proposes a model aimed at analyzing and
exploiting the relationship between the arrival and service processes with
emphasis on the impact of this relationship on average waiting times. The
presentation is made in the context of a transportation model to motivate and
validate the basic assumptions.
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1. Introduction

An important performance criterion for any queuing system or any system
in which a service is provided is the average waiting time of individuals
demanding service. Characterizations of such systems are made basically
through specifications involving the arrival pattern of individuals, the
service pattern, and physical and managerial aspects of the service
mechanism. A mair assumption in most queuing models has been the independence
and unrelatedness of the two basic stochastic components, namely, the arrival
and service processes. This paper aims to analyze and exploit a relationship
between these two processes in batch servicing queues with prescheduled
service times with emphasis on the impact of this relationship on the average
waiting time. The analysis will concentrate on the arrival and service
processes by ;ssuming that the physical and managerial aspects of the model
are very smooth; in other words, the queue capacity is infinite as well as the
batch capacity, common type of arrivals with no priorities, no balking or
leaving the queue after joining, and no interference with the scheduled
service operation through managerial decisions.

The model that will be proposed in the next section applies to all batch
servicing queues with scheduled service times, but the formulation as well as
the results on the model will be presented in the context of a transportation
model to motivate and validate the basic assumptions. Thus, the demand for
transportation services are provided by buses to passengers arriving at an
isolated bus stop, possibly with information concerning a published or
announced timetable of the scheduled services by the transportation
authority. Furthermore, the transportation authority dispatches its buses so

as to keep the promised scheduled services to its passengers.



If the passenger arrival process is a stationary Poisson process and the
bus departure times form a renewal process independent of the arrival process,
then a well-known result states that the average waiting time w is given by
w = (1/2) + (1/2)(52/p) where p and o% are the mean and variance of the time
headways between the buses or the interdeparture times. This result clearly
states that the passenger arrival pattern has no impact on the average waiting
time and the formulation makes it possible to compute the average waiting time
using renewal theory. However, if a timetable of the scheduled services are
available, then it is highly inappropriate to employ this model since the two
main assumptions are violated. At least some passengers will possibly behave
according to the timetable in arriving at the bus stop, thus the arrival
pattern will be nonstationary. Furthermore, the tramsportation authority will
dispatch its buses to keep the timetable which implies that the bus departure
process is possibly not a renewal process.

Empirical studies made using actual data by O'Flaherty and Mangan (1970),
and Seddon and Day (1974) report that a relationship of the form w = a + bp is
applicable at the stops sampled with the assumption that the time headway

2 ijs of the form o2 = Apz/(A + pz) for some constant A > 0 as

variance ¢
proposed by Holroyd and Scraggs (1966). Furthermore, they report that the
expression (1/2)u + (1/2)(62/p) overestimates the average waiting time and
moreover b < 1/2. These results are not surprising when one considers the
fact that the passengers will choose an optimal time to arrive at the bus stop
based on the information they have about the timetable and their observations
on the service performance. 1In fact, Jolliffe and Hutchinson (1975) found a
positive correlation between the proportion of passengers using this timetable

and service performance information in arriving at the optimal time which

maximizes their expected virtual waiting time and the decrease in the average



waiting time as opposed to a random arrival pattern.

In Section 2 we propose and formulate a model aimed at analyzing the
average waiting time when the arrival and service patterms, although
independent, are related through the scheduled service timetable. The
relationship being that both the passengers and the tramsportation authority
behave according to the timetable. This formulation will imply that the bus
departure process is no longer a renewal process making a renewal theoretic
approach impossible. This will necessitate a detailed analysis of the bus
departure process and the passenger queue process in Sections 3 and 4,
respectively. An explicit éxpression for the average waiting time will be
obtained in Section 5 using a limit argument and the equality between our
result and the result one would obtain if renewal theory is employed will be
pointed out. We will conclude this analysis by studying the expected virtual
waiting times and optimal passenger arrival times in Section 6, and mke some

concluding remarks in Section 7.

2. Formulation of the Model

Consider an isolated bus stop where the departures of buses are
prescheduled with a finite interdeparture time s > 0. In other words, the
scheduled departure times of the buses are given by {0,5,25,35,...}. We
assume that the actual departure times {Un; n= 0,1,...} of the buses are of

the form

(1) U,=mns +D,, n3>0

where D, is the delay of the n'th scheduled service caused typically by late
bus arrivals or passenger loading times or both. Furthermore, we assume that
{p

a0 = 0,1,...} is a sequence of independent and identically distributed



random variables with a common distribution F on [0,s) U {+=} where D, = +=
implies that the n'th scheduled service is cancelled due to operational
reasons such as breakdowns, insufficient number of buses, or lack of demand
for transportation. To avoid triviality, we let q = P{Dn = +m} < 1 and define
p=1-q-= P{Dn < s}. The final assumption on the service structure is that
the buses have infinite capacity so that no passenger is left behind waiting
by a departing bus.

The passengers arrive at the bus stop according to a nonstationary
Poisson process with expectation function a(t) where the rate of arrivals
regenerage at the prespecified sefvice times. Letting N denote the total
number of passengers arriving during [o,t) for t > 0, the expectation function

a(t) = E[Nt] satisfies
a(ns + u) = na(s) + a(u)

for all n > 0 and 0 < u € s. 1In other words, the passengers behave according
to the prespecified schedule so that the arrival pattern has a periodic
structure where the periods are the scheduled service times. Note that the
expected number of passengers arriving during any interval of the form

[ns, ns + u), 0 < u < s, is equal to a(u) independent of n. It is also clear
that if we define t' for all t » O to be the number of the last service
scheduled before t or

(2) t = sup{n > 0: ns < t}

then



(3) a(t) = t'a(s) + a(t - t's), t > 0.

We assume that the passenger arrival process N = {Nt; t > 0} and the bus

departure process U = {U n > 0} are independent. Note that Un is not

n’
necessarily the departure time of the n'th service completed since q » 0 or
cancellations are possible. Furthermore, U is clearly not a renewal process
which makes a renewal theoretic approach impossible. To complete the

formulation we define processes K = {Kt; £t > 0}, Q = {Qt; t > 0}, and

W= {Wt; t > 0} so that for any t > O:

~
]

t total number of bus departures until time ¢,

Q¢ = total number of passengers present at the bus stop at time ¢,

=
I

t total time waited by all passengers until time t.

In the sections that follow we will analyze these processes in detail and
in that order to obtain an explicit expression for the average waiting time w

which can now be defined as

E[W,_] [P21Q Jdu
(4) W= lim =or = 1im-—g——ii——-
£ E[Nt] £eo E[Nt]

since Wt = f%Qudu trivially for all t > O,

This formulation is similar to the one in Ozekici (1983) where the main
assumption is that the buses are allowed to depart only at the scheduled
departure times. Thus, a late arriving bus waits until the next scheduled
time for departure. This makes it possible to identify the queuing process Q
as a regenerative process where the renewal points are thg bus departure times
and an explicit expression for the average waiting time is obtaired through

renewal theory. The present setting proposed, however, is more realistic in



the sense that buses depart as soon as the waiting passengers are loaded.

3. Bus Departure Process

A close look at the definition of the bus departure process K and t'
given by (2) reveals that K. is almost a binomial random variable for any

t » 0 since

(%) K = ; I{Un<t} - nzo I{Dn<s} * I{Dt,<t-t's}‘

It is clear that K is a counting process which is increasing and lncreases by
jumps of size one only. Furthermore, the sum on the right side of (5) has a

A
binomial distribution with parameters t and p since {D,; n > 0} are

n’
independent and identically distributed random variables with p = P{Dn < s}.
It follows that

|

EIX,) = pt + F(t -t 's)

for all t » 0, and

|

1
(6) P{K, = k[Dt. >t - t's} = (i)pk(l -t E
for k = O,l,...,t'. These observations clarify the structure of the bus
departure process XK. In particular, Ke has a binomial distribution
conditional on the event that the t"th scheduled service has not yet
departed. Note that the counting parameter is still t' due to the fact that
there is an initial service scheduled at time zero.

At any time t > O, the number of passengers waiting in the queue for

service depends on the time of departure of the last service before t. Thus,



if we define

(7 Tt = sup{k =0,1l,000 ¢ Uk < t} vOo, t=>0
then T, is the number of the last service completed before t if K, > 1. If
K; = 0, there are no departures until time t and T, is set to be equal to zero
1
by (7), since sup § = — by our convention. It is clear that T, =t on
1
{Dyv < t - t s}, thus

(8) , E[TtI{ }] =t F(t -t s).

Dt,<t-t‘s
' _
Similarly, on {Dt' >t -~ t s} T, has the same distribution as the time of the
1
last success in t trials less 1l associated with a Bernoulli process with
1 1
parameters t and p. Using (6) it can easily be shown that for 1 < n< t ,

n—1<k<t'-10

and T, = 0 if K, = 0. Therefore, for n » 1

, t -1 ! '
k t
E[Tt|1<t =n, D, >t -ts] = k_z 1 k()5 ) = (at = 1)/(a + 1)
which can be used to compute
1
' t ! t' n t‘—n
EIT D, >t -ts]l =) [ -1/+ DI )pa
vt n=1 "

\
1

t - (1/p)(1 - q° ).



Therefore,

|

_ A _ _ t _ _ A
%) BT Iy seerg)] = 8 = /R0 =@ 10 - e -t e)

and putting (8) and (9) together we obtain

|

(10) EIT,] =t - (1/p)(1 = q% )1 - F(t = £'s)), t > O.

These observations on the processes K and T can now be used to analyze the

passenger queue process Q.

4, Passenger Queue Process

The definition of T, can be used to express the actual time of departure

of the last service completed before time t by UTt where (1) implies

T

(11) U =gT +D,,t>»0
t t Tt

with the understanding that Dy = 0 on K = 0. Furthermore, the queue size at
t
any time t is equal to the number of passengers that arrived since the time of

the last bus departure, or

(12) Q =N, - NUT =N NsTt+DT
t t
which implies
(13) E[Q|T,, Dy,Dy,ee] = a(t) = a(sT, + D )

t



= a(e) - Teas) - aldy )

by (3). To compute the expected queue size at time t using (13) we need to
compute E[a(Dy )].
t

\ \
Recall that T, = t on {Dt' <t -t s} which clearly implies that

\

(14) Ela(D; ] = [, SFamatx).

1
t) {D,i<t-t s}

' .
Similarly, a(DTt) = 0 on {D >t-t s, Kt = 0} since K, = 0 implies

DTt = 0., Therefore,

t'

\

(1) Ela(d, O1g = (/) ([3F(a)a G = F(t = £ 8D - q° )

~t's}]
¢ Dt'>t t's}

since P{D,, € dulKt > 1} = (1/p)F(du) for 0 < u < s and

T
t

]
P{Kt > 1|Dt, >t-ts)=1-q"

by (6). Putting (10), (13), (14), and (15) together and recalling that

a(t) = t’a(s) + a(t - t's) we obtain

1

(16) ElQ) = alt - t's) + (1/p)(1 - q° )1 - F(t - t's))

1]

. ISF(dx)[a(S)/p - a(x)] - fg—t F(dx)a(x)

for any t » 0. Defining f,(u) = E[Quq4,] for n > 0 and 0 < u < s, expression

(16) becomes
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(17) £_(u) = a(u) + (1/p)(L - a™ A - F(u))
. sz(dx)[a(s)/p - a(x)] - ng(dx)a(x).

It is clear that fn(u) is the expected number of passengers in the queue u
time units after the n'th scheduled departure time. Note that for fixed u,

fn(u) increases as n increases and f(u) = lim f,(u) can be expressed as
n+e
(18) £(u) = a(u) + (1/p)(1 = F(w)) ISF(dX)[a(s)/p - a(x)] - ISF(dx)a(x)

representing the expected number of passengers in the queue u time units after
a scheduled departure time in the long run. It should also be observed from
(16) that %im E[Q:] does not exist. Note that if D, = 0 identically then

>

£(u) = a(u) as expected since F(u) = 1 for all u » O.-

5. The Average Waiting Time

The expected total time waited by all passengers until time t can now be

easily computed by using (17)

(19) EMW, ] = [SEIQ Jdu = [§ SElQ ldu + jz,sE[Qu]du

\
\

£ -1
I Jof a + [0 %, (du
n=0

|

EAG) + (6 - 1/ - q° D) [3F(ax) [ma(s)/p - ma(x)]

|

- t' sz(dx)a(x)(s ~-x) + A(t - t's) + (1/p)Q - qt )

|

. ISF(dx)[a(S)/p - a(x)] - fg—t SP(ax)a(x)(t - t s - %)



.
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where m = (1/p) fg[l - F(u)ldu and A(x) = fga(u)du for any 0 < x < s. We will
see in Section 6 that m is in fact the expected waiting time of a passenger

who arrives exactly at a scheduled bus departure time. Furthermore,

E[W ]
(20) lin —— = [A(s) + [(F(ax)[ma(s)/p = (s + m - ¥)a(x)]]/s
tr
= [A(s) + ma(s) - [QF(dx)(s + m - x)a(x)]/s
b . . t' _ R ' _
y noting that lim q- = 0, lim t /t = 1l/s, and
tro tro
lim % ft_t Sft,(u)du < lim % fgf(u)du = 0.
tre too

By a similar argument it can be shown that

E[N ]
. t- a(t)
lim Y = lim .

tr tre

= a(s)/s

]
since a(t) = t'a(s) + a(t - t's) and a(t - t s) € a(s). Now, it follows that

. (l/t)E[Wt] S
(21) w = ii£.(T7EYET§;T =m + [A(s) - fOF(dx)(s +m - x)a(x)}/a(s)

An interesting special case will be to take p = 1 and assume that N is a

stationary Poisson process or a(x) = ax for some constant a > 0., Then,

expression (21) reduces to the well—known formula

w = (1/2)E[Hn] + (1/2)Var(Hn)/E[Hn]
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where H, is the n'th time headway between the buses or H, = U, = U,y =
s + D, - D,_; with E[Hn] = s and Var(H,) = 262 where 62 = Var(D,). 1In fact,
this result is obtained using renewal theory where the underlying renewal

process is U. However, in our formulation U is not a renewal process since

Var(Un) = 62

independent of n in this special case with p = 1.
Considering the general case with p < 1, one can define the bus departure

times S = {Sn; n = 0,1,...} as the jump times of the departure process K, or
S, = inf{t > O: K >n}l, n> 0.

It is clear that S is not a renewal process in general, but it is possible to

show that

S
E [Isn+1QudU]
n

E[N - N, ]
Sn+1 Sn

(22) w =

which is indeed the formula one would employ if S was a renewal process. The
details of this observation are omitted in this analysis, but the equality
between the renewal theoretic expression (22) and our result (21) should be
emphasized.

Note that with this formulation it is possible to represent the bus

departure times by

Sn=SO+H1+H2+"' +H.n,n>l

where S; is the departure time of the initial bus and {Hn} are the time

headways between departing buses, or
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Hy, = S, = Sp—1p n 2> L.
It is possible to show that
2, 2 ~2
E[Hn] = s/p, Var(Hn) = (q/p)s + 20

- for all n » 1 where 02 = (1/p) f(S)F(dx)x2 - m2 and m = (1/p) ISF(dx)x. It is

also true that the sequence {Hn} are identically distributed and thus

E[s,] = E[Sg] + nE[H,] = m + (a/p)s
for all n > 0 since E[Syl = (q/p)s + m = m, but S is not a possibly delayed
renewal process since {Hn} are not independent. As a matter of fact,

2

Cov(H,H 4)) = -0° and

) = ~a2/((a/p>)s + 20°)

which reduces to p(H,, H,4) = -1/2 if p = 1. The dependence of H,,; to H, if
p = 1 can also be explained by the observation that if H, is large, say, close
to 2s, then H .| can be at most slightly greater than s ruling out possibly

larger values for H _,;.

6. Virtual Waiting Times

The analysis made in Sections 1-5 seems quite cumbersome at times, but it

turns out that the virtual waiting times defined by

(23) v, = inf{u > t: R =K + 1}, £>0
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can be handled quite easily. The first observation to note is that

Vas ™ DnI{Dn<s} ts+ V(n+1)s)I{Dn=+m}

for any n » 0. Thus, if we let g(n) = E[Vns]’ then

(24) g(n) = ISXF(dx) + q(s + g(n + 1))
= f(s)xF(dx) +qs +qg(n + 1) =c + qg(n + 1)
where c =gqs + ISXF(dx).

This implies

g(0) =c + qg(l) = c + qc + qg(2)) =c + qc + ng(Z)

or

2 +
g(0) C+q+qc+...+qnc+qnlg(n+l)

in general. Now, g(nr) < 2s/p for all n implies

-]
(25) g(0) = ¢ ) q" = e/p = (q/p)s + (1/p) ISXF(dx) = m
n=0
Furthermore, it can be easily shown by (24) that g(n) = g(0) = m for all
n » 0. Thus, the expected virtual waiting times at scheduled departure times

are all equal to m. Now, to compute the expected virtual waiting time at any

t =ns +u for some n » 0 and 0 € u < s we first observe that

\Y = (Dn - u)I{

ns+u } * (s -

u<D <s u ¥ V(n+1)s)I{D <u or D_=+w}
n n n

which clearly implies ﬁ(t) = E[Vt] satisfies
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(26) h(ns + u)

JSF@x)(x —u) + (s ~u + gl + 1))(q + F(u))

IiF(dx)(x —u) + (s - u + m(q + F(u))

independent of n. Thus, the expected waiting time for a passenger who arrives
u time units after a scheduled departure time is given by (26).

An interesting problem concerning the behavior of the passengers is the
optimal arrival time to the bus stop that minimizes the expected virtual
waiting time. To analyze this problem assume that F(dx) = F'(x)dx for some
continuous function F on [0,s] and let h(u) = h(ns + u) as given by
expression (26) for any n » O. It is clear that h is continuous on [0,s] and

h(0) = h(s) = m. The optimization problem now becomes

Min h{u)
O<u<s

and since h is continuous on [0,s] there is an optimal solution to this
problem. If an optimal arrival time u® is different from O or s, then a
I
necessary condition it mist satisfy is h (u ) = 0 or
' % *
(27) F ()= (/(b-u))
where b = s + m since

(28) h(u) = (b = WF (u) - 1

for all 0 € u € s.
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Note that there exists at least one u* which satisfies (27) since if
F (u) > (1/(5 ~u)) for all 0 < u < s, then h'(u) >0 for all 0 < u < s and h
is strictly increasing on [0,s] which contradicts the fact that h(0) = h(s).

A similar argument can be made if F'(u) < (1/(b = u)) for all 0 < u < s to
reach the same contradiction.

An interesting case arises if F is decreasing on [0,s] so that the
probability of a bus departing at any time after the scheduled service
decreases as time increases. In this case it follows from (28) that h' is
decreasing and thus h is concave on [0,s] with h(0) = h(s). This clearly
implies that an optimal arrival time is at either one of the boundaries or
u¥ =0 or s with h(u™) = m.

If F is concave on [0,s] with F'(O) > 1/b then it can still be shown
that =0 or s by using the fact that there is a unique O < z < s satisfying
F'(z) = (1/(b - z)) since 1/(b - u) is strictly convex on [0,s], and that h is
increasing on [0,z] and decreasing on [z,s] with h(0) = h(s) = m. But if

] .
F (0) < 1/b, then a similar argument can be made to show that
* v
u = inf{O < ug<s: F )=/ - u))}

]
is the optimal arrival time. If F is arbitrary, however, all that can be
concluded is that an optimal arrival time is either O or s or a time

satisfying (27).

7. Concluding Remarks

A comparison can be made between the average waiting time computed by

expression (21) in this analysis and the well-known approximation

@ = (1/2)E (8] + (1/2)Var(8_)/E[H_]
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which translates to

>

(29) W

(s/2p) + (qs/2p) + (gzp/s)

((1 + q)/2p)s + (a%p/s)

since E[H,] = s/p and Var({,) = (q/p?‘)s2 + 202, Assuming that F and the

) 1
expectation function a are differentiable with derivatives F' and a on [0,s]
an interesting behavioral relationship between passenger arrivals and service

departures can be obtained. It can be shown using (21) that

(30) w - = [[§ax - aGx)((b = OF (x) - Ldxl/a(s)
G = [fSax - aGx))h (x)dx]/a(s)
(32) = [5G - a )@ = h(x))1/a(s)

where a = a(s)/s or the average passenger arrival rate. If the passengers
behave independent of the scheduled timetable or the sefviCe pattern than N is
a stationary Poisson process with expectation function a(x) = ax and w = w
since a'(x) = a. Note that in expreésions (31) and (32) a represents the
passenger behavior while h represents the service behavior. If they are not
related with a completely random passenger arrival pattern then the éverage
waiting time is given by (29).

Recall that h(x) is the expected time until the next bus departure x time

units after a scheduled departure and m = h(0) = h(s). So if the product

Y
e
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inside the integral of expression (32) is nonpositive for all x, then w < W
and the approximation (29) overestimates the average waiting time. This will
be true if the passengers behave cleverly in arriving at the bus stop based on
the information they have on the scheduled timetable and service

performance. Therefore, at any time x if the passenger arrival rate is
greater than the average arrival rate, or a'(x) > ;, whenever it is clever to
do so, or h(x) < m, and vice versa, then W < We However, if the opposite is
true about the behavioral relationship between the passengers and services
then w > W.

The observation that w < ; is true in particular if the passengers behave
cleverly when F' is decreasing on [0,s] so that buses are more likely to
depart closer to the scheduled departure times., We have shown in Section 6
that this implies h is comcave and thus h(x) > m for all x in [0,s].
Furthermore, the time z which satisfies h'(z) = 0 or F'(z) =1/(b -2z) is a
worst arrival time because it maximizes the virtual waiting time. The optimal
arrival time for passengers is also shown to be 0 or s. A clever behavior
that is expected from the passengers 1is such that a'(z) = 0, a' is decreasing
with a(x) > ax on [0,z], and a is increasing with a(x) < ax on [z,s]. Such a
behavior will also imply that w < w from (31) since h' is nonnegative on [0,z]

and nonpositive on [z,s].
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