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The function mapping any random variable to the information it generates
is studied. With respect to convergence in probability of random variables,
the information map is continuous with respect to pointwise convergence of
information precisely at the set of completely revealing random variables. It
is continuous on any subset of random variables to which the same smooth
independent term has been added. Some relationships between convergence in
distribution of perturbed random variables and convergence in distribution of
conditional expectations are also examined.



Convergence of Information and Random Variables

1. Introduction

One characteristic of the methods used in the study of the economics of
information is the use of many seemingly unrelated ways of specifying
information. This has been made necessary by the wide variety of situations
in which information is of interest as well as a lack of formal methods for
studying information as an economic variable. Information does often needs to
be given by some parametric form in order to generate meaningful results such
as explicit solutions or comparative statics. However, similar restrictions
on other economic parameters such as individual preferences and technology can
be made by restricting attention to some subset of -a familiar space of
possible characteristics. One example is the choice of a subset of Cobb-
Douglas utility functions from the space of consumer preference relations. By
maintaining a relationship between concrete and abstract forms, the general
theory of preference relations as well as the special properties of Cobb-
Douglas functions can be used in a self-consistent manner. The distinction
between those results which depend explicitly on the use of Cobb~Douglas
functions and those which can be generalized is usually clear. The use of
general consumer theory allows one to relate models using different
specifications of preferences. In contrast, the specification of information
is often in analogy with some more familiar set of objects such as the set of
normal random variables, obscuring the dependence of the results on that
specification. The results obtained by using a particular information
specification cannot be easily related to other models. Furthermore, without
general methods for solving problems of information, the parameterization of

information must often be severely restricted in order to allow solution to be



derived from more standard methods. Thig is seen by observing the large
number of models in which information is restricted to either complete
information or complete ignorance. )

One purpose of studying information in an abstract context is to provide
a framework for relating more concrete results using different information
specifications. Many properties of the abstract space of information, such as
continuity and compactness, relate to the topology of information being
used. To this end two relatively tractible metric topol§gies of information
have been proposed. One was first studied by Boylan (1971) which is analogous
to the Hausdorff metric on closed sets. Allen (1983) examined some economic
properties of the Boylan metric. 1In particular she showed that a consumer's
conditional expected utility is jointly continuous with respect to the
consumer's informaﬁion and state-dependent utility function (Theorem 10.6).
It follows easil§ that excess demand is continuous with respect to information
(Corollary 10.7). The second information metric is the pointwise convergence
metric, propqsed and studied by Cotter (1985). The pointwise convergence
topology is weaker than the Boylan topology (Proposition 5.1) but has the same
property of joint continuity of conditional expected utility (Theorem 8.7).
Both metrics are discussed in more detail in Section 2.

The next step is to relate these metrics of information to the
topological properties of spaces from which commonly used specifications. of .
informatioﬁ are drawn. Particular attention should be devoted to the space of
random variables since a huge bulk of information specifications involves use
of that space. Every random variable generates an information field. This
defines an information map which is a function from the space of random
variables to the abstract space of information. To relate topologies (and

hence convergence concepts) of random variables to topologies of information,



the continuity properties éf the information map must be established. Since
the information map is not one-to—one, no discussion of any map in the
opposite direction can be made. The importance of such results go beyond
relating the abstract properties of information to the properties of random
variables. 1In many cases, such as in rational expectations equilibrium, a
random variable plays two different roles, only one of which is to convey
information. 1In that case the properties of the price function become
directly relevant to its properties as an information fiéld. It is
immediately apparent that the information map is not continuous unless the
space of random variables is given the indiscrete (trivial) topology. Two
random variables on any given probability space may be arbitrarily close to
‘each other yet one can be completely revealing while the other is completely
uninformative. 1In Section 2 I state and prove that in a precise sense, the
information mép is lowersemicontinuous with respect to the pointwise
convergence metric., Intuitively, this means that the sequence of inforﬁation
generated by a convergent sequence of random variables either converges or
"collapses” in the limit. The main result of Section 2 is that the
information map is continuous at a given random variable with respect to the
.pointwise convergence metric of information and the metric of convergence in
probability of random variables if and only if that random variable completely
reveals the true state of nature. For the Boylan metric, matters .are even
worse; then there are completely revealing random variables at which the
information map is discontinuous.

A natural question is whether there exists an economically useful subset
of random variables on which the information map restricted to that subset is
continuous. One answer is suggested by the use of smoothing methods in which

behavior resulting from informative observations such as prices is made



continuous by perturbing that observation with a smoofh noise term. In
Section 3 I show that on the set of random variables to which the same
indepenaent noise term has been added, the information map is continuous with
respect to convergencé in probability of random variables and pointwise
convergence of information. The noise term is assumed to have a bounded and
piecewise continuous density function. This theorem does not hold for the
Boylan metric. This result applies to the case where the set of decision-
relevant states is a subset of the real numbers with a pfobability
distribution given by a well-behaved density function, and information is
restricted to all possible perturbed observations of the state by independent
noise terms. In this case another result more useful to the study of optimal
choice of information holds. The main theorem of Section 4 is that when a
sequence of extended-valued error terms converges in distribution, the
corresponding sequence of the conditiohél expectation of any function of the
decision-relevant state converges in distribution. Continuity of conditional
expected utility as well as the value of information derived from any
maximization problem follows. Since the set of probability distributions on a
cémpact set is weakly compact, the value of information has a maximum whenever

the set of possible errors takes values in a compact set, including the

extended real line.

2. Lowersemicontinuity

Uncertainty is given as a probability space (Q, ¥, u) where Q is the set
'of possible states of nature, F the g-field of measurable subsets (events) of
Q, and p a probability measure on (R, ¥). Information is defined as in Boylan
(1971), so the space of information F* is the set of all sub-g-fields of ¥
modulo null sets. Following Cotter (1985, p. 7), no ambiguity will arise by

interchanging elements of F* with sub-g-fields of 7.



Let V be the set of all real~valued measurable functions on (@, F), with
the metric 6(f,g) = inf {e|p(|f - g| > © < &. Then convergence in 8 is
equivalent to convergence in probability. Any f € V generates a sub-o-field
of ¥, which is the smallest o containing every event of the form {w|f(w) < a}
for every a € B, Let ¢ : V> F* be the resulting function,

The fundamental discontinuity of o with respect to any topology on F*
other than the indiscrete topology is a primary source of difficulty in the
study of the economics of information. The problem is a‘possible "collapse”
of iﬁformation in the limit, which is formalized by Theorem 2.2. The
imposition of stronger nontrivial conditions on the convergence of a sequence
of random variables such as convergence of their density fuﬁctions is of no

value, as the following example illustrates.

Example 2.1: Let T = [0,1),T be the Borel sets of T, and A be Lebesgue

measure on (T,7 ). For each n define fn : T> R by

£ +3270 1f 277 < e < (D2 < 1/2

f (t) =
n

n n

2 - 3270 -t if 1/2 < 3270 < t < (§+1)2°
. For each n, fn is injective and therefore &(fn) =T ., 1In addition, fn has a
uniform (0,1) distribuéion. Let £ : T> R be defined by f(t) =t

for t € [0,1/2), and f(t) = 2(1-t) for t € [1/2, 1). Then for each n and t,
Ifn(t) - £(0)] < 2-n,-so {fn} converges to £ in ... In addition, f has a
uniform (0,1) distribution, so its density is identical to‘the density of each

fn. However, f is exactly two-to—-one, so o(f) # T .



In the above example, as in every example of a sequence of random
variables with discontinuous information, the limit random variable has "less”
information than the limit of the information generated by each term of the
sequence. To formalize this statement, the concepts of lower limit and upper
limit of a sequence of information are useful. Let Ll = {f € V| £l =
E[|£]|] is finite} with norm lel. Kudo (1974, Theorem 3.1) showed that for
any G, H sub-g-fields of ¥, IE[f|G ]I < HE[f|H ]I for every f € Ll if and
only if G ¢« H . Following Kudo , define the lower limit of a sequence of

sub=-g—-£fields { GIJ, denoted p-liminf G to be the largest (modulo null

n’
sets) sub-o-field G, satisfying lim inf IE[£| G A IE[£] 6 SN

for every f € Ll. The upper limit, denoted p-limsup G ,» 1s defined to be 'the
smallest sub-g-field G° satisfying l%ygup nE[fI G n]lI < nE[fI G 0]|| for

every f € Ll. Kudo (1974) showed that p~liminf G n = {A € ¥ %}g ﬁgé u(AAB) = O}
where AAB = (AnBc) v (AFnB) (Theorem 3.2), and that p-limsup G n always insts

with p-liminf G,< p=limsup th(Theorem 3.4).

Theorem 2.2: Let {gn} be a sequence in V converging in probability to

g. Then o(g) < p-liminf c(gn).

Proof: It suffices to show that for every a € R,
A= {w]|gw) < a} € p-liminf c(gn). Given € > 0, choose § > 0 such that
p{wla-8 < glw) < a} < €/2, and choose N such that for every

n

v

N, p{w||gn(w) - glw)] <68/2} > 1 - ¢/2. Fix such an n, and let

W

{w] Ign(w) - glw)| <68/2}. Let B = {u] gn(w) {a- 8/2}. Then

for w € Wn Bc, g(w) > a-5, and for w € Wn B, g(w) < a. Therefore,



B(AAB) < p(AnB W) + p(ASBAW) + u(WS) < /2 + 0 + g/2 = ¢
which completes the proof.

Consider the two topologies on F* which have been proposed. The Boylan

metric d, proposed by Boylan (1971) and used by Allen (1983), is defined to be

d(G ,H) = sup inf u(GAH) + sup inf p(GAH).-
GeG He H He H GeG
Allen (1983, Fact 9.3) showed that a sequence {G n} converges to G in this

metric if and only if

lim L SUP VE[£]|G ] - E[f] GlI = O.
weo {feL'| [£(w)] < 1 a.e.}®

The other principal metric on F* is the pointwise convergence metric p,

proposed by Cotter (1985). 1If Ll is separable, this metric can be defined to

be, where {fj} is a dense subset of Ll,

0(G,H) =T 279 min {1E[£,|G ] - EL£.|H 11, 1}
P J ]
j=1
so {G n} converges to G pointwise if and only if %EE 1E[£]G n] - E[f| GlI =0
1

for every f € 1., By Proposition 2.2 of Cotter (1985), pointwise convergence
is equivalent to the strong convergence of Kudo (1974), i.e., {6 n} converges
to G pointwise if and only if {P[A| G n]} converges in probability to
P[A] G ] for every A€ . Therefore {G n} converges pointwise if and only if
w-limsup G < p-lim inf G o in which case lim Gn = p-liminf G - The next

mr o
two results follow from Theorem 2.2. ’



Corollary 2.3: Let {gn} be a sequence in V converging in probability to

g. If c(gn) c o(g) for every n, then {G(gn)} converges pointwise to o(g).

Corollary 2.4: o is continuous with respect to p at every g € V which is

completely revealing, i.e., o(g) = %.

The striking fact about Corollary 2.4 is that o is continuous with
respect to the pointwise convergence metric only at every completely revealing
random variable. At any other random variable o is discontinuous, as shown by

the next set of results.

Lemma 2.5: For any f € V and € > 0, there exists g € V such that

8(£,8) < € and p(o(g), ¥) < e.

Proof: There exists some f” € L1 such that 8(f£,£°) < &/3 (Royden, 1968,

Proposition 11.26). By Theorem 3.1 of Cotter (1985), there exists a finite

disjoint partition {Bl, B2,...,BN} of Q@ such that p( B, ¥) < € and
2
"E[£°|B ] = £71 < € /9. Then by Chebyshev's inequality, 8(E[f"| B], £°) < /3.
N
Finally, let g be obtained from E[f’IB ] by g = E biIB where bl,...,bN are
1 i=1 i
distinct and for each i b, - —— - « Then ¢ =
» |b; ) jB £ (w)du(w)| < €/3 (g)

: i
and 6(g,E[£f"|B 1) < €/3, so 6(g,f) < e, completing the proof.

Corollary 2.6: o is continuous with respect to p at £ € V if and only if

f is completely revealing.

Proof: Follows from Corollary 2.4 and Lemma. 2.5.



As discouraging as Corollary 2.6 may be, matters are even worse when JF%*
is given the Boylan metric. In that case o is not even continuous at some
completely revealing random variables. The fellowing example is an analogue

of Example 8.1 of Allen (1983).

Example 2.7: Consider the probability space (T, T , A) defined in

Example 2.1, For each n define g : T> R to be gn(t) = j2-n
_ n

for §2 0 < t < (3+1)2 " and 3=0, 1, ..., 2"

- 1. In other words, g,(t) is the
first n places of the binary expansion of t. Then {gn} converges in

robability (in fact, in ﬁm) to the identity function, so the hypotheses of
P

Corollary 2.4 are satisfied. However, it is easy to verify that
d(o(gp)s 0(gps1)) = 1/2 for any n, so {c(gn)} does not converge in the Boylan

metric.

3. Continuity with a Fixed Term

In light of Corollary 2.6 and Example 2.7, the best possible result
regarding continuity of the information map o would be continuity of o on some
useful subset of the space of random variables. One possibility is suggested
by the use of smoothing operations on random variables when the discontinuity
of ¢ is a problem. The best known use of smoothing is in demonstrating
existence of rational expectations equilibrium. The excess demand of a trader
with a state-deéendent utility function is continuous with respect to the
observed nonstochastic price and the trader's information with respect to the
pointwise convergence metric of information (Cotter, 1985, Theorem 8.5; see
also Allen, 1983, Corollary 10.3 for a proof using the Boylan metric)., If the

price is stochastic but the trader does not infer from the price, continuity
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can be obtained by use of Chebyshev's inequality. If the information map o
were to be continuous, then the map from price to the trader's combined
information (initial information and price information) would be continuous
with respect to the Boylan metric, due to Allen's (1983) Lemma 14.1. Combined
information would also be continuous with respect to the pointwise convergence
metric if the trader's initial information were a finite partition (Cotter,
1985, Theorem 6.2). 1In either case excess demand would be a continuous
function of informative price. The only significant remaining problem in
establishing existence of rational expectations would be compactness of the
price space.

A stylized fact is that when the observation of the price function is
perturbed by a smooth independent noise term, continuity of excess demand with
respect to price can be restored. This fact has been used by Allen (1984a,
1984b) to establish existence of approximate rational éxpectations; with the
approximation due to the fact that traders are acting on perturbed rather than
market-clearing prices. A related method was used by Anderson and
Sonnenschéin (1982) where traders' models of the price-state relationship were
subjected to a convolution with a smooth density function. These results
suggest that by restricting the space of random variables to those which have
been perturbed by the same independent smooth noise term, the information map
o would bécome continuous on that subset.

Interestingly enough, there is a dual case to the one discussed above
which is perhaps of greater practical impo%tance. Suppose the set of decision
relevant stateé is a subset of the real line with a density function. A
decision-relevant subset of information is the set of observations of the true
state which have been perturbed by all possible independent noise terms. Note

that the error terms are also determined by the actual state of the world, and
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the space of informatin must be defined accordingly. Hence the definition of
information allows for information about the error term (or the states which
determined that error). This case is therefore identical to the one discussed
above with the noise and underlying state terms interchanged. The continuity
result hypothesized in the previous paragraph would then imply that the map
from noise terms to information about both the error and the decision-relevant

state is continuous.

Both of the above cases can be modelled by the probability space

2 1 2 1

(Ql xQ ,¥F xJF, p X pz) where Qz = R and 32 is the o-field of Borel sets

on E. Let V¥ = {f € V| for some Borel-measurable fl: Ql - K,

1 2 1, 1 2 1 2
flw,w)=f()+w for ace. (0, w

}. In the case of rational
expectations with price observations perturbed by a fixed noise term, utility
would be a function of Ql, fl would be the market price function, and wz the
perturbation. For the case of variable noise terms, w2 would be the decision-
relevant state and fl would be the noise term.

As in Section 2, V* is given the metric 8(f,f") =
inf {e > Olplw| [£w) = £ (w)| > & < e}. Since clearly 6(f,f") =
inf {e> Olpl[wlllfl(wl) - fl’(wl)l > €] < € V* is isomorphic to the space of
random variables on (Ql, Il, pl), denoted Vl. Let o* : V¥ = J* be the
information map restricted to V*, The following assumption provides

. 2 . C :
sufficient smoothness of p to obtain continuity of o* with respect to the

pointwise convergence metric on F*.

. 2. . .
Assumption 3.1: The measure = is absolutely continuous with respect to

Lebesgue measure, and its Radon-Nikodym derivative (density) ¢ can be chosen

to be bounded and continuous on K except at possibly finitely many points.



Then any £ € V* is absolutely continuous (with respect to Lebesgue

measure) with density function p*¢(t) = fl¢(t - fl(v))dpl(v). For any
Q
Al € yl any interval AZ = (—, a) for some a, define 4 = Al x AZ and
* 1 1 1
u*o (£ = £V (t - £7(v))du"(v). The
A AZ
following lemma is of interest in its own right.

: R = R to be u*¢A(t) = f 1 1
A

Lemma 3.2: P[Alc(f)] = u*¢A(f)/u*¢(f)a.e..

Proof: By'the definition of conditional.expectation it suffices to show
that for any £, € R, u(AnG) = fG[u*¢A(f)/u*¢(f)]du where G = f-l[(dm, to)].

Note that by a change of variables,

t .
[ Tute, (O)/ure(D)ldp = [ [ |1 (£ (MoCe-£ (vt (vae
G A A

1
. to-f (V) 1
=[ [ [ 71 _(uéCuduldp (V)
Al 7. 2

[ @lmin{a,e ~£ (D} 1dt(v)
A (o]

[ ate st (vrat (v +utane e
1
A NnB

1
where & is the distribution function of uz and B = {v € Qlltonf (v) < a}. The
first term may be interpreted as a convolution of mz with fl restricted to

1
A" n B, so
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[ et ~£f @t = p{l@ahe) x 11 0 g}

A'nB

o{1cal 0 B) x a%1 n g}

since ml € B and (wl, mz) € G implies mz < a. In addition, p.l(A1 n Bc)-uz(Az) =
1 1 2
p{CA" n Bc) x Az} =pu{la" n Bc) x A“] n G} since ml € B and m2 < a
' 1 2 1 2
implies ', w?) € G. Since p{[CA n B) x A1 n G} +p{lCa n BS) x a"] n ¢} =

p.{[A1 x A2] n G}, the proof is complete.
The central result can now be proved.

Theorem 3.3: Under Assumption 3.1, o* is continuous with respect to the

pointwise convergence metric on J*.

Proof: Let f € Vv*, A; € ¥, a€ R, and A = Al x (=, a).

'-¢, and a the points of discontinuity of ¢A’

L)

i LN N ] . i = =+¢.
with al < a, < < a; For ease of notation let ao -, aI+l

Let ¢A = 1> @preeendg

Let M = sup ¢.

Let YA be the distribution function of fl Al with atoms (points of jump)

{bj} (there can be at most countably many atoms), and write WA = Tc + Yd

where Yc is continuous and Yd is discrete.

Fix € > 0 and choose K > 0 and G € ¥ with p(G) > 1 - &/8 such that for

w € G, p*¢(f(w)) > K. Choose & > 0 with 8 < &/8 such that for any nonnegative

reals x,y,z,w with y > K, |x-z| < &, and |y-w| < &, it follows that

1

|(x/y) = (z/w)| < /4. There exists J such that pl{ml € Q [fl(ml) = bj for

some j > J} < 8§/(8MI). Since Yc is uniformly continuous (being nondecreasing)
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and f is absolutely continuous, there exists © > 0 with 7 < (aj4q ~ ai)/Z for
i=1, 2, ..., I-1 such that if F = {w € Q[[f(w) - a, - bj[ > 3 1 for every
i=1, 2, eee, I and j=1, 2, ec., J}, then u(F) > 1 - &, and [wc(x) - Wc(x’)l

< 8/(8MI) for every x, x” € R with |x - x”| < 3t. On each interval [ai +71, a,, =1

i+1

and on ( =, a, = t] and [aI + T, @), ¢A is uniformly continuous. Then there

1

exists n > 0 with nn < 7 such that for every x, X~ € R with Ix - x’| <n

and a; + 1< x, ¥ < a;1" " for some 1 = 0, 1, coo, I,

+1
then |¢A(X) - ¢A(x’)| < &/(21). Then for any t, t° € R with ]t - t’I <7
and t € £(F), letting t = min{t, t”}, t = max{t, t°},
t —a.—-T

i

I
lu*e, () - u*p, ()] gizo [ 1o, (t=x) = ¢, (") |a¥ (%)

t-a,+t
1 1
+ 1S o Cemx) = ¢, (+7x) |a¥, (x)

=1
t-a.~7
1

I
<&8/2+2M § [¥ (t'-a,+1) ~ ¥ (t-a,~1)]
- i=1 [ 1 [ 1

I
+2M ) [, (t"=a +7) ~ ¥ (t-a =0)] <8/2 +8/4 +8/4 =8

since t© - ai + 1 and t - ai - © do not lie on opposite sides of any bj for

j=1, eee, J. Since the set of points of discontinuity of ¢ is contained in

the set of points of discontinuity of ¢A, for the same t,t” as above,

luxo (t) - u*o(t”)| < 6.



15

Let £ € V* with 6(f, £f°) < n, so for some H € Zl with ul(H) >1 -1,
it follows that for w € H, Ifl(wl) - fl’(wl)l <n. Fory € Fn Gn H, it
follows by the above that p*¢p(f(w)) > K, Iu*¢A(f(w)) - u*¢A(f’(w))| < &, and
[u*6(£(w)) = p*e,(£ (w))| < 8. Therefore by Lemma 3.1, |P[A|c(£)] - P[A]o(£7)]]

< &/4. Therefore
1P[Alo(£)] - PIAloCE TN < /4 + 20(FS) + 20(6%) + 20 (H®) < ¢

so since all sets of the form Al x (=0, a) generate ¥, the proof is complete

by Proposition 2.2 of Cotter (1985).

Note that Theorem 3.3 fails when F* is given the Boylan metric. This
observation was made by Allen (1983, Section 14). The following example is
also Example 6.1 of Cotter (1985).

2

Example 3.4: Let (Ql, Jl, pl) = (92, 7, uz) = (T, T , A) (see Example

2.1). For each n define fn € VX to be fn(wl, wz)‘= wl/n + wz. Then {fn}
converges in érobability to f, where f(wl, w2) = wz. All of the hypotheses of
Theorem 3 are satisfied. However, as shown in Cotter (1985, Example 6.1),
{c(fn)} does not converge to o(f) in the Boylan metric, since for any n the
join of c(fn) and o(f), c(fn) v o(f), equals F, while o(f) v o(f) =

1 2
o(f) = {¢, Q } x ¥ . Recall that the join operation is jointly continuous in

the Boylan metric (Allen, 1983; Lemma 14.1).

Note in fact that {fn} converges to f in L , and that this example can be

1 2
modified to allow @ and @ , as well as the supports of ul and uz, to equal R.
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1
Note also that {fn } need not be chosen to converge to O. There seems to be
no way to "fix up” Assumption 3.1 to obtain continuity of o¢* with respect to

the Boylan metric.

4., Convergence in distribution of expectations

The results of Section 3 are not very useful for studying problems of the
optimal choice of information. The problem is that with respect to the
topology of convergence in probability, éompact subsets of V! are very small
unless ¥! is finite. Weaker topologies on .Vl such as the weak (Ll,L®)
topology are not likely to lead to continuity results analogous to Theorem 3.3
since weak convergence of a sequence of random variables does not imply
convergence of a function (such as the absolute value) of that sequence.

One solution to the compactness problem is possible when the state-
dependent objective function is measurable with respect to 32, which is the
case of a fixed real-valued decision-relevaut state and noise terms in Vl- In
this case the set of error terms can be expanded to cover signals which are
sometimes completely uninformative by allowing error terms to be infinite with
positive probability. Let ¥V be the sét of all random variables on i, the
one-point compactification of E. Define Ll(?z) to be the set of
integrable #2-peasurable random variables. Note that for any two error terms
in V which have the same image measure on &, the corresponding conditional
expectations of any random variable in Ll(yz) as defined in Section 3 have
the same image measure on X. 1In that case the value of information derived
from an optimization problem under uncertainty depends only on the probability
distribution of the error term, so the distribution of conditional expectation
and therefore the value of information can be taken as well-defined functions

of error probability distributions on H. The main result of Section 4 is
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that both functions are continuous with respect to weak convergence of
distributions. Since the set of probability distributions on a compact set is
compact with respect to the weak topology, these results can be used to show
that in a wide variety of situations in which all error terms are restricted
to taking values in a compact set (including the extended real line) the value
of information in a maximization problem with an F2-measurable utility
function has a maximum on that subset.

The specification of information by the distribution of error terms does
have some drawbacks. In particuldr, comparisons between agents cannot be made
by specifying only marginal distributions of errors, and the addition of
random variables is not continuous with respect to convergence in
distribution. Another problem is that the join of two information fields is
no longer well-defined.

Random variables in LI(IZ) may be written with no confusion as Borel-
measurable functions on K. Assumption 3.1 is taken to hold throughout, and
as in Section 3, let 815855000537 be the points of discontinuity of the
density function ¢ of the decision-relevant spacé. Note that the set of
bounded uniformly continuous functions on R, denoted CU’ is dense in

LI(JZ). Let Cy = {ne CU:}iT)h(x) = 0}, also used to denote those
X oo

continuous functions h on E for which h(=) = 0.

Since eiements of V are interpreted here as error terms, let e be an
element of V, Recall that a sequence of random va;iables on & converges in
distribution if their image measures on K converge weakly. Equivalently,

{en} converges in distribution to e 1if and onlyvif for every h € CO’
%}2 [E[h(en) - h(e)]l = 0. Then f,, f are defined in a way analogous to the

1 2 1,1 2
definition in Section 3: fn(w , W) = fn (w') +w” and f(wl, wz) = fl(wl) + wz.
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It is clear that in general, if e, e € V1 have the same distribution,

then E[g|o(£)] and E[g|c(f’)] do not have the same distribution for all

g € i, However, if g € Ll(32) then E[g|o(£)] and E[g|o(f’)] do have the same
distribution (this follows frém Theorem 4.1 below), so the possibility exists

that {E[glc(fn)]} converges to E[g|c(f)] in distribution. This‘is indeed the

casee.

Theorem 4.1l: Suppose Assumption 3.1 holds, and let {en} be a sequence

in V converging to e € V in distribution. Define fhs £ as above. Then for

1, 2. .
every g € L (¥ ), {E[glc(fn)]} converges to E[g|o(£f)] in distribution.

Proof: Let Wn and ¥ be the subdistribution functions on X of fnl and fl
respectively. The density function of f,, restricted to R is Wn * ¢,
where Wn * ¢(t) = fx¢(t-x)dwn(x), and the density of f restricted to B is ¥ * ¢.
Given & > 0 there exists $ € Cy such that |$(z) - ¢(2)| < €/3 for
all z # ai for any i. Let to € R be such that t°$ ai + b for any i and any b
a point of discontinuity of any Wn or Y.

LetS = {al + to’ a, + to,...,aI + to}. Then for each n,

2

e, * ot ) -¥ * $(to)l < fs |¢(t0—x) - $(to-x)|d‘1’n(x)
+ fsclcb(to-x) - $(to—x)|dwn(x) <0+ /3 = ¢/3

since no elemgnt of S is an atom of Wn. Similarly, |¥ * ¢(to) -V * $(to)] < g/3.
By the definition of weak convergence of measures, there exists N such that

for all n > N, lwn * $(to) ~-V¥ % g(to)l < g/3. 1t follows by the triangle
inequality that IYn * ¢(t°) -V * ¢(to)| < g, so {Wn * ¢} converges

to ¥ * ¢ almost everywhere with respect to Lebesgue measure. Since
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fmyn * p(t)dt = fﬁi * ¢(t)dt € 1 for each n, it follows by Exercise 12, p. 144
of Wheeden and Zygmund (1977) that %}g IR|Yn * o(t) -y * ¢(t)|dt = 0,

so by their Exercise 9, p. 85, {Yn * ¢} converges to ¥ * ¢ in Lebesgue
measure. Then by Exercise 10, p. 100 of Chung (1974), for every bounded Borel
measurable function F on K, {EtF(fn)]} converges to E[F(f)].

Let g; € C and define %n: R+ R to be %n(t) = Yn * (g’¢)(t)/‘l’n * o(t),

U’
and %: B> R to be g(t) =¥ * (g“¢)(t)/¥ * $(t). Extend gn, g to B by defining
gn(m) = %(w) = E[g’].‘ Then by an argument similar to the proof of Theorem
3.2, E[g’|c(fn)] = %n(fn), E[glc(f)] = %(f). By the argument of the previous
paragraph, {Wn * (g’¢)} converges to ¥ * (g"¢) a.e. (Lebesgue measure) and in
Lebesgue measure.

Choose h € C0 and € > 0., Let § > 0 be such that for x, x~ € R
with |x - x”| < &, it follows that |h(x) - h(x”)| < e/4. Let M be an upper

bound (in absolute value) of h and g°. Choose Kc i to be compact such that

(1) u{w|fn(w) € K} > 1 - /(6M) for each n

(2) there exists m > O such that ¥ * ¢(t) > m for t € K

Let n > 0 be such that for x, y, z, w nonnegative reals with y > m,
Ix - z| <n, and |y - w| < n, it follows that |(x/y) - (z/w)| < &§. Then
by the absolute continuity of f 6 and f, there exists by Proposition 24, p. 72

of Royden (1968) some K ¢ K and N > 0 such that forn > N and t € X*,

(1) u{w|fn(w) € X'} >1- g/(8/M)
(27) [¥_* (g76)(t) - ¥ * (g76)(t)| < m

(3°) ¥ *o(e) =¥ * o(e)| <n
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taking note that as t» «, the left-hand sides of (2) and (3) go to 0, so for
such n and t, Ign(t) - %(t)l < & and therefore |h o %n(t) -ho %(t)l < glh.
Then easily |E[h o gn(fn) -ho g(fn)]l < E[|lno gn(fn) -ho %(fn)l] < g/4 +
e/4 = €/2. By taking N to be larger if necessary, |E[h o %(fn) -
ho g(D)]] < e/2, so |E[h(Elg" [o(£)]) - h(Elg” [s(DID]] < e
For g € LlC72), choose g~ € Cu with Ig - g’l < &¢/2. Then for n > N

as above,

IE[h(E[gld(fn)]) - W(E[g|a(£)D)]]

< |EIn(ELgloC£ )]) = n(Elg” [o(E D)D] + &

+ |E[h(ELg” |o(£)]) - h(E[g|o(£)D]|

and since HE[g]c(fn)] - E[g'ic(fn)]n < 8€/2 and VE[glo(£)] - Elg" |o(E)]N <
8¢/2, a standard argument shows that ]E[h(E[glc(fn)]) - h(Elg”) c(fn)])]l < €
and |E[h(E[g|o(£)]) - h(E[g” |o(£)])]] < &, completing the proof.

. L . C s . L
To model the role of information in economic decision-making, let X< §

for some L be closed, and C(X; R) be the set of continuous functions V: X+ R,
with the topology of uniform convergence on compacta. In particular, C(X; R)
is a separable metric space. Convergence in distribution of random variables

taking values in C(X; E) is defined precisely as before.

2
Theorem 4.2: Let U: @ + C(X; R) be Borel-measurable such that for some
1 2 2 2 =
rel (), sup|Uw)(x)| ¢ r(w") for a.e. w’. Then if {en} c V converges
_ xex
to e € V in distribution, then {E[U|o(fn)]} converges to E[Ulc(f)] in

distribution.

Proof: Let Pn =po (E[U]c(fn)])—l and P = o (E[U|g(f)])_l be the
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corresponding image measures on C(X; R). By Lemma 8.3 of Cotter (1985),

{Pn} is tight and therefore relatively compact in the weak topology of measures by
Theorem 6.1 of Billingsley (1968).
Let u € C(X; R). Then a closed sphere about u consists of a compact
Kc X and € > 0 such that the sphere is {v € C(X;B)| [u(x) - v(x)]| <_e for
all x € K}. Let {Xj} c K be dense in K; then the above sphere is the
intersection over all j of the sets {v € C(X; R)| |u(xj) - v(xj)l e
for j=l,...,J}. Since C(X; R) is separable, any open set is a countable union

of closed spheres. Therefore by Billingsley (1968, p. 15), the sets of the

form H{l

+ C(X; R)» RJ is the projection
X seee X

, where II
} (H), where EA

evaluation map and Hc R 1is closed, form a determining class for the set of
measures on C(X; R).

-1 2
For {xl""’xJ} <X, P ol [x =p° o (H{

. o E[U[o(£ )1 =

3 S

ouloCe )1 = ¥ o (B0 [oCE )], EIUGx,)[0(E )]0

107

2
E[I
oo Gl L)

E[U(xj)lo(fn)])—l (with an abuse of notation), and similarly for P. By

Theorem 6.1 of Billingsley (1968), weak convergence of P o Hfl
n

Xy yees X
, 3 1 J
equivalent to convergence in distribution of { ) « E[U(x, )|o(f )]}
) PR j n
to ) qu[U(Xj)IO(f)] for every @ 5@, 5e00,0€ R, but this follows immediately
j=1
by Theorem 4.1, Since every subsequence of {Pn} has a convergent further

} is

subsequence whose finite dimensional projections converge to those of P, and

the finite dimensional sets are a determining class, it follows that each such

subsequence converges to P, hence {Pn} converges to P, completing the proof.

It follows easily that the optimal behavior resulting from the perturbed
observation of the decision-relevant state has the same continuity with
respect to information properties as do conditional expectations. The

following theorem is generic, and includes the case of prices and demand.
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Theorem 4.3: Let U: 92<+ C(X; R) be Boiel-measurable such that for some
1,2 2 2 2
re L (F7), sup|U(w )(x)| < r(w”) for a.e. w”. Suppose further that for a.e.
x€X
wz, U(w ) is strictly concave. Let S be a metric space, and let y: S++ X be
a nonempty, convex-valued, compact-valued upperhemicontinuous correspondence.
- 1 .
Let z: S x V» L~ be defined by z(S,e)(w) = argmax {E[U|o(£)](w)(x)]|xey(s)}.
Then if {(sn,en)} is a sequence such that lim s =8 and {en} converges

m o
in distribution to e, then {Z(sn,en)} converges in distribution to Z(s,e)-.

Proof: Let C*¥ ¢ C(X; R) consist of the strictly concave continuous
functions, with the subspace topology. Then z: S x C*> X defined by z(s,u) =
argmax {u(x)|x€y(s)} is continuous (Hildenbrand, 1974, pp. 29-30). The result

follows by easy application of the definition of convergence in distribution.

Corollary 4.4: Let u*: S x V > R be the value of information defined by

u*(s,e) = [ QU(w)(z(s,e)(Q))du(w). Then if {(sn,en)} is a sequence such

that 1lim s_ = s and {e } converges in distribution to e, then
po T n
lim u*(s ,e ) = u*(s,e).
n’ n
W

Corollary 4.5: Let M(E) be the set of probability measures on E with the

weak topolegy. et u¥: S x M(E) » B be the value of information defined by
u*(s,v) = u*(s,e) for any e € V whose probability distribution is given by

ve Then u* is continuous.



B'

R.

23

References

Allen, 1983, Neighboring Information and Distributions of Agents'
Characteristics Under Uncertainty, Journal of Mathematical Economics 12,
63-101.

Allen, 1984a, The Existence of Fully Rational Expectations Approximate
Equilibria With Noisy Price Observations, Discussion Paper No. 155,
University of Bonn.

Allen, 1984b, The Existence of Rational Expectations Equilibria in a Large
Economy With Noisy Price Observations, Journal of Mathematical Economics,

forthcoming.

Anderson and H. Sonnenschein, 1982, On the Existence of Rational
Expectations Equilibrium, Journal of Economic Theory 26, 261-278.

Billingsley, 1968, Convergence of Probability Measures (New York: Wiley).

Boylan, 1971, Equiconvergence of Martingales, Annals of Mathematical
Statistics 42, 552-559.

Chung, 1974, A Course in Probability Theory, 2nd ed. (New York: Academic
Press).

Cotter, 1985, Similarity of Information and Behavior With a Pointwise
Convergence Topology, unpublished manuscript, Northwestern University.

Kuds, 1974, A Note on the Strong Convergence of s—Algebras,

Annals of
Probability 2, 76-83.

Royden, 1968, Real Analysis, 2nd ed. (New York: Macmillan).




