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Abstract

An index is described to measure crisis instability, the danger of pre-
emptive war due to each government's fear that the other is about to attack.
Crisis instability is interpreted as the probability of war an observer should
assess knowing only the costs to each government for striking first and for
being attacked. A series of axioms defines a Crisis Instability Index, a
scale of danger that gives a unique rank ordering of crisis situations. The
measure is equivalent to a simple function of the critical risks of the two
governments, as defined by Ellsberg.

A companion paper discusses the stability consequences of various arms
control agreements and of building anti-missile weapons in space.



1. Introduction

A widely-expressed hope is that the nuclear deterrent system is safe as
long as sane leaders are in control, since any attack would bring on
a devastating reprisal., The implicit assumption here is that the attacking
government faces a clear choice of war or peace, and so would choose
peace, However, the nuclear threat system allows other ways a war might
start in which no leader would face the simple choice of peace over
war.,

One way is the accidental, unauthorized or third-party use of nuclear
weapons. A second is escalation, as governments raise the risk of ultimate
nuclear war to achieve their ends in small confliets. A third, which we

will analyze here, is the phenomenon of crisis instability.

The Concept of Crisis Instability

During a crisis, when antagonists have invoked the nuclear threat
implicitly or explicitly, each government may feel compelled tp attack
first, not because it prefers war to continued peace but because it fears
an attéck and wants to lessen the catastrophic effects to itself, Each |
government knows the other does not want war, but suspicion grows that the
other is planning an attack or perhaps only that the other is worrying about
being attacked, leading one side to "retaliate first."

A 2400-year-old source, Xenophon's history of the Persian Expedition
(1949, p.82, quoted by Schelling, 1984), states the logic clearly. Tension
arose between the Greek army departing Persia and the Persian force
eécorting it, so the Greek leader addressed his Persian counterpart as
follows:

"I observe you are watching our moves as though we were enemies,
and we, noticing this, are watching yours too. I know that cases

have occurred in the past when people, sometimes as the result of
suspicion have become frightened of each other and then in their



anxiety to strike first before anything is done to them, have done
irreparable harm to those who neither intended nor even wanted to
do them any harm at all. I have come then in the conviction that
misunderstandings of this sort can best be ended by personal
contact, and I want to make it clear to you that you have no reason
to distrust us.” :

The Greek general recognized the two elements that destroy stability:
the existence of an objective situation that gives an advantage to the
first mover, and event of psychological impact that initiates the spiral of
mutual suspicion that the other is about to strike. The importance of this
catalyst event justifies the name crisis instability, although specifying
what types of events can trigger the fear of war seems to be a difficult
problem., The more predictable feature is the degree of offensive advantage
of the weapons holdings. Just as arms race theory holds that weapons
themselves cause more weapons, crisis instability theory regards weapons as
. .. 1
intrinsic causes of war,

The current nuclear threat system has many elements that give the
advantage to the offense. One is the continuing rise in missile accuracy.
Another is the introduction of multiple warheads (MIRVs) which allow each
missile to destroy several of the opponent's missiles in their silos, each
of the latter missiles having several warheads, so that ICBMs with MIRVs
give a double incentive to play the role of attacker. Failure to find an
invulnerable basing mode for land-based missiles, the possibility of
attacking the other's command and control system, the prospect of anti-
submarine warfare, and the vulnerability of the complex systems now proposed

for ballistic missile defense may increase the attractiveness of striking

first.

Past Theories of Crisis Instability
Concern over crisis instability has influenced American and Soviet arms

control policy since the late 1960's, but analysts have disagreed about what



the concept means, and whether particular systems help or hurt it. Some
state that the "essential component" of crisis stability is invulnerability
(e.g., Gray, 1981), others emphasize the number of each side's warheads per
opponent's silo, and others state that stability amounts to the
effectiveness of the retaliatory strike (Payne, 1984). The discrepancy does
not stem from any disagreement about objective properties of weapons systems
but from a vagueness in the concept and its surrounding logic. A number of
authors have listed factors that influence crisis instability but do not say
just how these determine it, Usually the factors trade off with one
another, so unless we know their functional relationship to instability, we
cannot draw conclusions for policy.

One way to put crisis instability on a more solid foundation is to
analyse it formally. Ellsberg (1961) was the first to treat it
mathematically, and Hunter (1972) and Wagner (1983) have extended his
‘theory. Kupperman and Smith (1978), Hughes (1978) and Grotte (1982) have
provided other mathematical approaches.

Ellsberg calculated each side's critical risk, the largest risk

acceptable to a govermment that the other is about to strike, "acceptable
risk" meaning that a government should choose to wait when its assessed
probability of the other striking lies below that value, He postulated that
the larger this risk, the more stable the situation.

There are two difficulties with this approach. First, it generates two
indices of temptétion to strike, oné for each govermment, but does not tell
us how to combine them to get a single measure of the danger of the whole
situation. If one side altered its weapons holdings in a way that raised
its critical risk but lowered the pther's, would this represent an overall

improvement?



Secondly, the degree of danger should depend not on each side's
critical probability of the other striking, but on the relative values of
the critical and the assessed probabilities, ie., the probability the side
really holds that the other is about to strike. If I see an antagonistic
government introducing a vulnerable multi-warhead ICBM my critical risk
might rise (since its retaliation would be costlier to me), but so might my
assessed risk (since I know it fears the loss of its weapons if it lets me
strike first). The root problem with Ellsberg's analysis in éur view is
that a side's critical risk involves its own costs but not other side's
costs. The decision should depend on all costs: my tendency to strike
first should grow with my belief that you are contemplating a first strike,
which should depend on my perceptions of how painful such a move would be to
you.

The second section of this paper describes a development from
Ellsberg's theory and from Grotte's related work (1980). It defines a
single numerical index that measures crisis instability based on the
outcomes to each govermment from attacking first and from being attacked.

In a further paper (0'Neill, 1985) we will describe a model for the outcomes
of a hypothetical nuclear war, which will allow us to estimate the stability
effects of various arms control measures and of space-based anti-missile

systems.

2. The Model of a Crisis

We will make a series of assumptions about the dynamics of a crisis.
One could add further complexities to the model based on specific beliefs
about the dynamics of certain types of crises and follow the lines

described here to derive a measure of crisis instability, but the

assumptions given now are simple and keep the core structure of the dilemma



the decision-makers would face.

A crisis is assumed to occur in one stage during which each govermment
makes a decision whether or not to strike. If each decides not to, the
crisis is over. To rationalize this ending rule one could assume ghat the
objective situation has changed or that the news that the other side decided
not to strike when it had the chance has convinced each government that it
will not attack now.

We assume that if a crisis occurs one government hasrthe opportunity
to strike first, One way to interpret this assumption is that one of the
two govermments is going to have the information sooner or have a faster
response time. The govermnments are equally likely to have this chance and
neither knows whether it possesses the first or second move. That is to
say, if it tries to strike first it does not know whether it will actually
succeed in being first or whether the other is in position to achieve a

pre—emptive attack.

FIGURE 1 HERE

The extensive—form game of Figure 1l represents this situation. 1In
Figure 1 the chance move at the beginning determines whiéh government can
act first, but the game is formally equivalent to one in which the chance
event occurs at the end and where each player decides on a disposition of
how to behave, with a random event selecting who is able to strike first if
both have decided to do so. The latter game has a different temporal order
of events than occurs in the world, but is strategically identical to the
former game and has the advantage that it can be represented by a matrix

(Matrix 1).
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Figure 1: The extensive-form game model of a crisis.

DA: decides to attack; DR: decides to refrain
from attacking. Loops indicate that the player

does not know which position the play has reached.



Gov't 2

Decide to Decide to
Refrain Attack
Decide to 0, 0 -r. -a
. 1 2
_ Refrain
Gov't 1
Decide to =3, -1, -aj-ry, —ajs-ry
Attack Zz

Matrix 1. The crisis as a game matrix,

The values ~aj and -rj represent the utilities of the govermment i when
it attacks first or attacks second respectively and satisfy Tr; < -ai < 0.

The zero point on the two utility scales has been arbitrarily set as the

utility of peace. An example of such a game is given in Matrix 2.

Gov't 2
Decide to Decide to
Refrain Attack
Decide to 0,0 -45,-12
Refrain
Gov't 1
Decide to | =-15,-20 -30,-16
Attack

Matrix 2. An numerical example of Game Type 61

Note that both prefer peace over any other outcome, but would prefer
to strike first rather than be struck. The fourth cell is the average of
the two other war cells, reflecting their equal likelihood of achieving a
first strike if both try to do that. "Type 61" is the designation for
games with this ordering of payoffs according to the classification scheme

of Rapoport and Guyer (1966), while Jervis (1978) calls it and its n-person



generalization the "Stag Hunt",

The outcome (Refrain, Refrain) is most attractive because it is payoff
dominant -- it is better for both players than any other outcome in the
game. However rational players might not choose it, especially wigh poor
communication and a history of conflict. The reason is the essence of the
concept of crisis instability: neither can afford to risk restraint. The
more extreme example of Type 61 in Matrix 3 illustrates the point that an
outcome may be best for all but not be the players' choice. Even though
peace at (0,0) is the payoff dominant outcome, the players do not dare to

trust one another, and (-2,-2) seems to be the likely result.

Gov't 2
Decide to Decide to
Refrain Attack
Decide to 0,0 -1000,-1
Refrain
Gov't 1
Decide to -1,-1000 -2,-2
Attack

Matrix 3. An extreme example of Game Type 6l.

There are three equilibrium strategy pairs in Matrix l: Peace
(Refrain, Refrain), Mutual Attack (Attack, Attack), and a third equilibrium
involving mixed strategies. We will investigate only the first two because
they are strong equilibria, meaning that any deviation from them lowers
that playef's utilities. (In contrast a lone deviation from the mixed
strategy equilibrium gives that player the same payoff as the use of the
equilibrium strategy). Also mixed strategies seem unrealistic for use by
govermments: almost by definition leaders want to have control, and certainly
they do not want to make crucial decisions using a random device.

We assume that players will choose one equilibrium or the other, that



they will not end up with one having chosen Refrain and the other Attack.
We are assuming in effect that if a crisis occurs, various factors, some
game-theoretic and some not, will point to one of the two moves as being
the other player's likely choice. Given the structure of the game with its
strong equilibria, a player with enough valid information about the other's
incipient choice, will have an incentive to make the same choice, so we are
assuming that expectations will be strong and valid.

This assumption means that our analysis does not cover situations where
one side gets misinformation that the other is about to attack and strikes
first to the complete surprise of the other, Instead our model assumes

common knowledge about world tension,

3. Axioms for the Crisis Instability Index

The crisis instability of a matrix will be defined as the likelihood of
the war equilibrium assessed by an observer who is rational but limited
in knowledge, who knows only the utilities to each government for striking
first or second.? Since the observer makes the judgment before the details
of the crisis are known, the likelihood will not be influenced by such other
factors as the issue of the crisis, efforts to control it, or any events at
the time of the crisis hinting at peace or war, It will depend only on the
possible war outcomes as given in Matfix 1.

The strong equilibrium outcomes are labeled a, b, ¢, etc. The function
P(alG) gives the rational subjective probability of equilibrium a, given
that the players are in the game G. We will write P(a]G) as Po(a). For
games with three equilibria we use the notation PG(ala or b) for the
likelihood of equilibrium a given that either a or b are chosen in game G.

Equilibrium probabilities for a certain class of three-person games

which are not models of crisis stability will be considered first, since it



will turn out that the probabilities of equilibria in these games have

implications for games of Type 6l. A unanimity game has positive payoffs

along the diagonal and zeros off-diagonal. Clearly an nxn unanimity game

has n strong equilibria at each diagonal outcome. Unanimity games can be

described by listing their equilibrium outcomes since all other payoffs
are understood to be zero, and we use the notation <ab...> for a typical
unanimity game, where a, b, etc., are not numbers, but possible events.

The axioms will describe the likelihoods of the equilibria in
unanimity games, and link these with games of Type 61. The probability
function P will apply to the set G, defined as including all 2x2 games with
two strong equilibria, and all 3x3 games with three strong equilibria,
Axiom 1. (Probability) For any G ¢ G» Po is a conditional probability

measure on the strong equilibria of G.

Axiom 1 says that a strong equilibrium is sure to be chosen and that
the observer's likelihoods for the equilibria follow the standard
probability axioms.

Axiom 2. (Dependence on the abstract game) The probability function P
depends only the relationship of pairs of moves to utilities of
outcomes, i.e., it is independent of the labeling or ordering of
the players or moves. It is also independent of positive linear
transformations of a player's utilities.

The latter part of Axiom 2 assumes that players cannot make

interpersonal comparisons of utility.

Axiom 3., (Continuity/monotonicity) If G is a unanimity game with a one of

its diagonal outcomes, then Pg(a) is continuous and strictly
monotonic in the payoffs at a.

Axiom 3 says that the more desirable an outcome for either player, the
more likely it is. The axiom is appropriate for unanimity games, where
the players face the same risk trying to get one payoff as another, since

the off-diagonal entries are all zero. It implies that even a payoff-



dominated outcome of a unanimity game will be chosen with some positive
probability, a claim that seems plausible since non-game-theoretical
factors like tradition may point to such an equilibrium, with the players
afraid to deviate lest they end up off the diagonal.

Axiom 4. (Probabilistic independence of irrelevant alternatives).

Equilibrium probabilities for the 2x2 unanimity game <ab> and the
3x3 unanimity game <abc> are related as follows:

Peab>(a) = Peapes(ata or b).

This axiom declares that if the observer is informed that outcome c¢
will not be chosen in the game <abc>, then the assessed likelihoods are
identical to those in two-person game generated by eliminating c. Whether
the non-choice of ¢ is given by the rules of the game or by augmenting the
observer's information is not relevant to the observer's assessment in any
way that is obvious to us, so we will assume specifically that it is
irrelevant. This axiom is the probabilistic analogue of Nash's
independence of irrelevant alternatives axiom in bargaining theory (Nash,
1953). Luce (1959a, 1978) thoroughly investigated it in the context of
single-person decision-making, and it is sometimes called Luce's Choice
Axiom.

Note that by Axiom 3 the latter conditional probability will always be
defined.

The next axiom makes P dependent only on those features of a game
embodied in its best reply functions, a concept that was developed
essentially by Harsanyi and Seiten (1980, Ch.2). According to decision
theory a player's choice of a move is determined by the utilities in the
matrix, along with that player's assessment of the other's likelihoods of

making each move. In Matrix 2 for example, if 2's subjective probability

10



of 1 choosing Attack is greater than .25, 2 should choose Attack. We can

construct two best reply functions, one for each player, showing for every

subjective probability distribution over the other's moves, which moves the
player should choose, The best reply functions for Matrix 2 are sﬁown in
Figure 2,

1's subjective probability that 2 will attack:

0 .50 1
1

Refrain either Attack

1's choice of move

2's subjective probability that 1 will attack:

0 .25 1
1

Refrain either Attack

2's choice of move
FIGURE 2, Best reply functions for Matrix 2.

A player's function is constructed entirely from the payoff matrix and,
given a subjective proﬁability distribution over the other's moves, it
gives sufficient information for a choice of a move. It is conceivable
that the payoff matrix contains information that should influence the
probability distribution and that is not in the best reply functions, but
it is not obvious at all what this extra information is. Since only the
best reply functions are clearly relevant to the players, we state that
they alone are relevant to the observer's assessment of likelihoods.

It is easy to show that if a constant is added to the row-chooser's
payoffs in a single column, or to the column-chooser's payoffs in a single
row, the resulting game will have the same best reply function. Also, in

the context of 2x2 games, any two games with the same best reply functions

11



can be generated from one another using these operations.

Axiom 5. (Dependence on best reply functions) If G and G' have the same
best reply functions, then for any strong equilibrium outcome a
in G and corresponding outcome a' in G', P.(a) = Pgi(a').

We can now derive a general formula for the likelihood of war:

Theorem 1. For any P satisfying Axioms 1-5, there exists a
g > 0, such that for any game G of Type 61,

Po(war) = 1/{1 + [4a1a2/(r1-a1)(rz—az)]g}'

(Proofs of this and the next two theorems appear in the appendix.)

This expression contains the parameter g which corresponds to the
observer's responsiveness to the game utilities as compared to the other
non-payoff factors. Low values of g are associated with judgments where the
unknown non-payoff factors are thought to be important so the likelihood of
war 1s set near 507 regardless of the payoffs, and high values of g tend
to place the probability at more extreme values based on the matrix alone.

We do not know how to determine a single appropriate g, but the next
theorem states that any value of g gives the same rank order of the games
by degree of danger as any other. Thus if we are satisfied with an ordinal
measure of crisis instability, we can select g arbitrarily.

Definition: A group of measures for a set of games are equivalent ordinal
scales if all rank-order the games identically.

Referring to the notation of Matrix 1 and interpreting the probability

of peace as a measure of crisis instability,

Theorem 2. If games of Type 61 are measured by their probability of war,
the measures generated by probability functions satisfying
Axioms 1 to 5 are equivalent ordinal scales, and all
are ordinally equivalent to the following measure:

(r1/a;-1)(r9/ag-1)

12



Definition: The Crisis Instability Index (CII) of a game of Type 61 is
defined by the formula in Theorem 2.

The CII is not itself a probability as it varies between 0O and
infinity, but it exhibits the directional behaviour expected of a crisis
instability measure. In the limit as a, approaches 0, government 1 has
nothing to lose by attacking first compared to not attacking at all, war
becomes certain, and CII approaches infinity. Similarly as T, goes to ap,
CII goes to 0 —- if one government can do no better striking first than
second, peace is certain,

Adding a large constant cost to each war cost a, and r; is equivalent
to having a; approach rj, and increases the likelihood of peace. This event
would correspond to each side acquiring the belief that a threshold effect

for a nuclear winter would occur.

4. The Crisis Instability Index and Critical Risk

Following Ellsberg, for two governments in the situation of Matrix 2,
we can calculate the critical risks, 4; and g,, the greatest probabilities
they would assess that the other is about to strike before they themselves

decide to strike. From these probabilities, we calculate the critical odds

for the event the other side is planning a strike, o = 31/(1'31)' and

9, = g,/(1-q,). The higher the critical odds the better, e.g., a critical

risk of .75 gives a critical odds of 3, so a government would have to hold 3

to 1 odds that the other is about to attack before it would be willing to

strike first.3

Theorem 3. The inverse of the product of the critical odds 1/0,0, is

ordinally equivalent to the Crisis Instability Index.

Ellsberg's rationale for his theory was quite different from our

series of axioms, but surprisingly our measure of crisis instability is

13



equivalent to a simple function of the critical odds.

5. Discussion

The Crisis Instability Index is relatively simple and gives in£uitive1y
acceptable results when applied to specific situations as is shown in the
companion paper (0'Neill, 1985).

The index has an unusual aspect that is both a strength and a weakness,
It is not a theory of how governments would behave, but of how an observer
knowing only the costs of war should assess their likely behaviour. It was
generated by declaring non-decision matrix variables to be irrelevant to the
assessment on the grounds that the observer Aid not know their values. The
theme of the axioms was that if two possible situations were alike except
for these unknown aspects, the observer should regard the two as equally
likely.

A present-day specialist is in a situation much like the observer. The
CII would be the rational way to estimate the benefits of a change in
weapons holdings, until a time when a more comprehensive theory of crisis
behaviour is developed.

The above approach, discussing the consequences of a change in one
variable while assuming other variables constant, i1s frequently found in the
non-mathematical literature of international relations. Also common in the
informal literature is the opposite method: researching a past crisis
situation as extensively as possible to identify all the important variables
that influenced behaviour. A contribution of the Crisis Instability Index
might be that the axioms would organize historical information about crisis
behaviour. One can ask how each axiom was violated in real life. How did
goverments assess the likelihood of the other's move? Which non-decision-—

matrix considerations were most important?
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Footnotes

l: Some other analysts of crisis instability since the time of Xenophon are
Clausewitz (1976, p.293, quoted in Levy's comprehensive historical summary,
1984), who hoped that superiority of the defense over the offense might

"tame the elementary impetuousity of war", and Schelling (1960, 1966) who
referred to the "reciprocal fear of surprise attack” and the "dynamics of
mutual alarm”. Snyder (1961) discussed the determinants of crisis instability
and expressed a belief which later developments would prove ironical, that
silo-based missiles would solve the problem, as one missile could at best
destroy only one of the oppoment's. Jervis (1978) considered different

types of crisis instability using historical examples.

Another concept of crisis instability which we do not discuss in this
paper is the tendency of decisions to become worse because of the time
pressure of a crisis,

2: Our approach differs from other equilibrium selection theories in that it
assigns a probability to each equilibrium. Van Damme (1983) surveys the
equilibrium selection problem, and all the theories he cites are
deterministic in that they try to choose a single equilibrium or set of
equilibria. As the game parameters change, equilibria jump into and out of
the set discontinuously. Theories like this are too strong for our
purposes, since we recognize that some non-game-theoretical factors will
influence the player's judgements about which equilibrium to choose, and
abruptly changing an equilibrium from an impossibility to a certainty based
only on the utilities leaves no room for these factors. Using such a theory
would imply that up to a limit adding warheads would create no danger at
all, but beyond that war would be certain.

Our theory can be regarded as a probabilistic generalization of
Harsanyi and Selten's equilibrium selection method for 2x2 games with two
strong equilibrium (1980, Ch.2), which essentially uses Axioms 2, 3 and 5.

3: One difference between Ellsberg's and our own approaches is that he did
not include a fourth outcome representing decisions by both to attack. 1In
our model two sides can see themselves heading to war and decide to attack,
but his conception was that a mutual decision to attack was negligibly
likely -- an attack occurs by surprise as each side's attitudes and
rationality vary over time in ways unknown to the other side. 1In the
analysis here we have stretched his model in our direction by adding a
fourth pair of payoffs to his matrix, calculated as the averages of the
other two war payoffs as was done for Matrix 2.
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Appendix. Proofs of theorems.

The essentials of Lemmas 1 and 2 were first proven by Luce (1959a,b).
The first lemma states that the ratio of the probabilities of choosing two
outcomes is constant, independent of other outcomes. The set of outcomes O
is defined as those where both players receive a positive payoff.

Lemma 1. For any a,b,c in 0% and any P satisfying Axiom 1 and Axiom 4

(a)

P<abc>(b) P<ab>(b)

Pcabe>(a) - Pcab>

Proof of Lemma 1. Applying the definition of conditional probability,

Peabe>(a) = Peapey(ala or b) Peapy(@ OF B)-
Expanding P < (a or b) and using Axiom 4 yields
Peabe>(a) = p<ab>(a)[p<abe>(a) + Peabey> (P 1

Piabes(a) P<ab>(a) p<ab>(a)
and rearranging, -—--————-- = = Q.E.D.

p<abe>(p) 1-p<ab>(a) P¢ap>(b)

Lemma 2. If P satisfies Axioms 1-4, there exists a real-valued
function w such that for any 2x2 unanimity game <ab>,

P (a) = memmmemme——— 3
<ab> w(a) + w(b)
and for any 3x3 unanimity game <abc>,
w(a)

(a) = =

w(a) + w(b) + w(e)

P<cabe>

Also, the function w is a ratio scale, i.e., another function
w' will generate the correct probabilities if and only if it is
proportional to w.

The proof will also show all values of w must have the same sign. We
can take the sign to be positive and interpret w(a) as a weight that
measures the "attractiveness" of outcome a.

The order of quantifiers in Lemma 2 is important. Given a probability
function and any game, one can easily find a function w that works, but
Lemma 2 says more: for a given probability function there is a weighting
function on the utilities that reproduces the probabilities for all game
simultaneously. :
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Proof of Lemma 2. P<ab>(b)

By Lemma 1, P¢ypey(b) = ——————-- P<abc>(a)°
: Peaby(a
Since
Peaber(e)  Pepenle) Pepes(©) Peapy(b) -
P = , then P<abc>(°) = Pcabe> .
<abe>(P)  Pepey(b) Pepey(D) Peapy(a)

Substituting the two expressions in P¢apco>(a) + Peapex(b) + P<abc>(C) =1
and rearranging terms, gives

Febe>(b)  Peapy(a)

P
<be>(c) P (b)
P<abc>(a) = c> <ab> . (1)
|+ c<bex(®) | Pehey(®) Peapy(a)
Pebes(e) Pebed(e)  Peap>(b)
(a)
Choose some e in 0% and define w(e)=1 and w(a) = Lae2’2” for a in O%.
P<ae>(e)

The function w will be well-defined and positive since both numerator and
denominator are positive,

Peaps(a) P (a)
By Lemma 1 JSab2las _Sabe2’3. , but
Pcab>(b) P¢abe>(b)
<ae(a) (e) Peaex(b)
Pcabe>(@) = Pgaped(e) =——---——- and Pcabed(b) = P<abe> '
<ae>(e) P¢ae>(e)
Peapy(@)  w(a) |
-===%-——= = ——-- holds along with an analogous expression for <bc>.
P (b)  wb)
<ab>

Substituting the two in (1) gives the formula for the 3x3 case in the
lemma. To derive the 2x2 case we use the 3x3 expression plus the

following formula derived from writing P<abc>(a) as P¢ape>(a or b) Peaps(a).

Peabes (@)

Peaby(a) =

P (a) + P (b)
To show that w is §a?§%io scaléa%%>first show that any change of unit

of w will generate the correct probabilities. If w' = kw for some non-zero
constant k, clearly w' will yield the two formulae of the theorem. Next we
show that all other functions w' satisfying the axioms must be of the form
w' = kw. Assume there exists a w' that is not, so that

w(a)/w(a) =/w'(b)/w'(b).
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Proof of Lemma 2. P<ab>(b)

By Lemma 1, P<abc>(b) = ;‘--'E-; P(abc>(a) °
) <ab>\2
Since
Peabe>(e)  Pepenle) Pepe>(e)  Peapy(b)
= , then P<abc>(C) = P(abc>(a)'
Peabe> () Bepen(b) Pepe>(b) Peapy(a)l

Substituting the two expressions in P pcoy(a) + Peapen(b) + P<abc>(C) =
and rearranging terms, gives

P be>(®)  Peapy(a)

P ) P b)
(a) = <be>(e)  Peaby( . )

Pcabe> P
|+ -Sbex(®) - Pebey(b) Peapy(a)
Pbex(e) Pebed(e)  Peaby(b)
(a)
Choose some e in OY and define w(e)=1 and w(a) = _Sae2’2’ for a in O%,
Peaex(e)

The function w will be well-defined and positive since both numerator and
denominator are positive.

Pab>(a) P (a)
By Lemma 1 <ab> - _fLabe> . but

Peab>(®)  Peabe(b)

P<ae>(a) (e) ES&EZSEZ
P<abe>(a) = Peaper(e) —-=--——- and Pcabe>(b) = P<abe>'© ’
<ae>(e) Plae>(e)
Peapy(@) _ wla)
= holds along with an analogous expression for <bc>.

Peaps (D) WD)

Substituting the two in (1) gives the formula for the 3x3 case in the
lemma. To derive the 2x2 case we use the 3x3 expression plus the

following formula derived from writing P<abc>(a) as Peape>(a or b) Peaps(a).

P Pabe>(®)
<ab>(a) = .

Pcabe>(a) + P (b)
To show that w is gargzio scaléa%%>first show that any change of unit

of w will generate the correct probabilities. If w' = kw for some non-zero
¢constant k, clearly w' will yield the two formulae of the theorem. Next we
show that all other functions w' satisfying the axioms must be of the form
w' = kw. Assume there exists a w' that is not, so that

w(a)/w(a) =/w'(b)/w'(b).
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w(a) w'(a)
Then f .
w(a) + w(b) w'(a) + w'(b)

However this is impossible since the two sides of the equation-are
alternative formulae for P<ab>(ax Q.E.D.

Lemma 3. If P satisfies Axioms 1-5, there exists g > 0 such that for any
2x2 unanimity game <ab>

P (a) = Cave)? ,
<ab> (u g + ( g
ava) Yyvp)

and for any 3x3 unanimity game <abcd>

(uava) g

(a) = == .
(ua"a)g + (ube)g + (uch)g

Pcabe>

Lemma 3 extends Lemma 2 by giving the form of the weighting function as
w(u,v) = k(uv)8, when the probability function satisfies Axiom 5.

The reason why w must be a power function is instructive. (Our
discussion here owes much to the exchange between Luce (1959b, 1962) and
Rozeboom (1962).) A scientific law typically gives a relation among several
physical qualities by stating a functional rule relating their numerical
measures. The numerical measures of the qualities are usually not unique,
for example, they may be ratio scales so that any other set of numbers
proportional to the first set would do as well. (Our theory in particular
involves ratio scales. The weighting function w is a ratio scale by Theorem
1, and u and v are ratio scales since they represent the utility increment
over the zero-point,) If the unit of measurement of one of the ratio scales
changes, some other variable in the law must also change if the numerical
functional relationship is to remain true. Since the measures are ratio
scales they can change in only one way: multiplication by a positive
cons tant,

As an example of an impossible law suppose two ratio scales x and y are .
related by y = e7X%, Changlng the unit of the x-scale by setting x' = 2x
results in values y'= e X = e~2X, which are not proportional to the
corresponding values of y. In éther words, the two laws, y = e™X, and y' =
e~2X disagree non-trivially about the shape of y's decline with x. The
essence of the proof of Theorem 2 is that only for functional laws of the
form y = k x€ does a proportional change in one variable yield a
proportional change in the other.

At first glance many valid laws seem to violate this requirement., For
example the law of radioactive decay states A = e~d/L, with ratio scale
variables 4 for the duration of time the 1sotope‘%as been decaying, Ao and
A for the initial and current amount of the isotope, and L a parameter
proportional to the half-life of the isotope. The resolution of the puzzle
is simple: a rescaling of d requires a rescaling of L, which is in units of
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time. The variable in the exponent has in fact been rendered dimensionless
by division by L, and so there is no need to rescale A to maintain the
truth of the numerical relationship.

Thus the restriction on the possible functions relating two ratio
scales may not apply if the functions contain dimensional parameters. We
can be sure that our functions P or w will contain no such parameters since
w can depend only on the abstract game, by Axiom 2, Dimensional parameters
say something about the real world and must be found by empirical
investigation, e.g., the fact that a material has a certain half-life
requires observation, but Axiom 2 makes the strong assumption that the
probabilities are invariant when the utilities in the game are changed in
‘certain ways, irrespective of any changes in the utilities for outcomes
outside the game. In the domain of two-person conflict, the observer might
conceivably use an external utility standard such as death or enjoyment of
the world's wealth, but Axiom 2 disallows these considerations,

Proof of Lemma 3. Since by Axiom 2 P, degends only on the utilities of the
outcomes, and since by Lemma 2 w(a) depends only on the outcome a, we can

express w(a) as wlu_ g ) consider two 2x2 unanimity games <ab> and <a'b'>
where the latter is generated from the former by multiplying the first

player's utilities by a positive constant k. Using the formula of Lemma 2

for Pcaby(a) and P<avb'>(a') and rearranging gives

w(kua’va) = [w(kup,vp)/wlup,vp)] wlua,va). (1)

Since the above can be derived for any outcome b, the factor involving
b must be a function of k alone, so we may write it RK(k,v ) ., g (k)
o o a’ v ’

where v, has been written simply as v. Thus from the above formula we have

wiku, oy = Ry (k) wlug,v)
Choosing u_ = ]| gives Ky(k) = w(k,v)/w(l,v) and the above equation

becomes
wlku oy = wik,v)w(u,,v)/w(l,v).

Let t,(+) be the fugction logfw(.,v)/w(l,v)].
Then tolku,) = loglw(ku,,v)/w(l,v)]

wik,v) wlug*V)

= log
w(l,v) w(l,v)

tv(k) + tv(ua) .
The function P is continuous in ku,» SO it can be shown that w and thus

t, are continuous. The above eguation for t is an instance of the L.
functional equation f(xy) = f(x) + f(y) and therefore under these continuity

conditions it has the unique solution

ty(u) = b(v) log u for some b independent of u, so that

w(u,v) = c(v) ub(v), (2)
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time. The variable in the exponent has in fact been rendered dimensionless
by division by L, and so there is no need to rescale A to maintain the
truth of the numerical relationship.

Thus the restriction on the possible functions relating two ratio
scales may not apply if the functions contain dimensional parameters. We
can be sure that our functions P or w will contain no such parameters since
w can depend only on the abstract game, by Axiom 2. Dimensional parameters
say something about the real world and must be found by empirical
investigation, e.g., the fact that a material has a certain half-life
requires observation, but Axiom 2 makes the strong assumption that the
probabilities are invariant when the utilities in the game are changed in
‘certain ways, irrespective of any changes in the utilities for outcomes
outside the game. In the domain of two-person conflict, the observer might
conceivably use an external utility standard such as death or enjoyment of
the world's wealth, but Axiom 2 disallows these considerations.

Proof of Lemma 3. Since by Axiom 2 P. jepends only on the utilities of the
outcomes, and since by Lemma 2 w(a) depends only on the outcome a, we can

express w(a) as w(u, v.). Consider two 2x2 unanimity games <ab> and <a'b'>
where the latter is generated from the former by multiplying the first

player's utilities by a positive constant k. Using the formula of Lemma 2

for P¢ap>(a) and p<aqy>(a') and rearranging gives

W(kue_,va) = [w(kup,vp)/wlup,vp)] wlug,va). (1)

Since the above can be derived for any outcome b, the factor involving
b must be a function of k alone, so we may write it RK(k,v ) or K (k)
. . a), or Ky(k),

vhere v, has been written simply as v. Thus from the above formula we have

wiku, ¢) = Ry(k) wlu,,v)
Choosing u_ = ] gives Ky(k) = w(k,v)/w(l,v) and the above equation

becomes
w(kua'v) = w(k,v)w(ua,V)/W(l pV) .

Let t () be the fugction log[w(.,v)/w(l,v)].
Then t_(xu,) = loglw(ku,,v)/w(1,v)]

wik,v) w(ug*¥)

log
w(l,v) w(l,v)

tv(k) + tv(ua) .
The function P is continuous in kup® SO it can be shown that w and thus

t, are continuous. The above eguation for t is an instance of the L.
functional equation f(xy) = f(x) + £f(y) and therefore under these continuity

conditions it has the unique solution

ty(u) = b(v) log u for some b independent of u, so that

wlu,v) = c(v) ub(v), (2)
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By symmetry of the players implied by Axiom 2, w(u,v) = w(v,u), so it is
also true that

w(u,v) = c(u) yb(u) (3)
Setting v = 1 in the two formulae and comparing gives
c(u) = c(1) vb(1),

Substituting this value of c(v) in the first formula for w(u,v) yields

w(u,v) = c(1) vb(1) ub(V), (4)
and we can similarly derive
w(u,v) = c(1) ub(1) yb(u), (5)

Equating (4) and (5), letting g = b(l) and taking logarithms,
[b(v) - gl/log v = [b(u) - gl/log u.

Since u and v can be varied independently both sides must equal a constant
d independent of u or v. Therefore b(u) = d log u + g. Substituting this
formula in (5) gives

w(u,v) = ¢(1) uvg vd log u, (6)

By inserting (6) in (1) we can derive that d = 0 and thus that w is a
power of the product uv. Using this expression in the formulae in Lemma 2
gives the results, Q.E.D.

Proof of Theorem l. The critical probability in Matrix 1 for player i

is defined as the threshold probability such that at values higher than this
player 1 should choose to refrain, and at values lower should choose to
attack. Any operation on the payoff matrix that does not change the
critical probability will not change player 1l's best reply function, and the
probability is not changed by adding a constant to the two payoffs of player
l in a single column., Likewise player 2's critical probability is not
altered by adding a constant to 2's payoffs that appear in a single row.
Thus by Axiom 5 we can transform one matrix into another by these operations
without altering the best reply function, and if it is a unanimity game, use
Lemma 3 to calculate the probability function.

By adding aj to l's payoffs in column 1, rj; t° 1's payoffs in column 2,
389 to 2's payoffs inrow 1 and ry to 2's payoffs in row 2, Matrix 1 becomes
Matrix 4.

ral, as 0, 0

rj-a1, r2-az
2 2

0, 0

Matrix 4.
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Applying Lemma 3 to Matrix 4 gives pG(War) as in the theorem. Q.E.D.

Proof of Theorem 2. It is easy to verify that the probability of war as
given in Theorem l can be expressed as 1/[1+(4/CII)8]. It follows that all
increase with CII and thus all are ordinally equivalent to each other. Q.E.D.

Proof of Theorem 3. The critical risk of player i can calculated to be

2ai/(ai+ri) and the critical odds to be 2a-/(r--a]-h). The expression for CII
the i

: At LAY
is seen to be 1/4oyj0, and is thus monotonic with nverse of the product

of the critical odds. Q.E.D.
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Applying Lemma 3 to Matrix 4 gives pG(War) as in the theorem. Q.E.D.

Proof of Theorem 2. It is easy to verify that the probability of war as
given in Theorem 1 can be expressed as 1/[1+(4/CII)8]., It follows that all
increase with CII and thus all are ordinally equivalent to each other. Q.E.D.

Proof of Theorem 3. The critical risk of player i can' calculated to be

231/(a1+r :) and- the cr1t1ca1 odds to be 2a; /(r The expression for CII1
is seen to be 1/4°]ad2 and is thus monotonic Wit 1h t e inverse of the product
S.

of the critical Q.E.D.
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