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LEAST SQUARES AND STOCHASTIC DIFFERENCE EQUATIONS

by

1
Bernt P. Stigum—/

I. INTRODUCTION AND STATEMENT OF RESULTS

In this paper we study asymptotic properties of least squares
estimates of parameters in a stochastic difference equation. The results
we obtain represent an extension of results previously obtained by
H. B. Mann and A. Wald [ 2 ], H. Rubin [ 5 ], T. W. Anderson [ 1 1,
M. M. Rao [ 4 1, and T. J. Muench [ 3 1}.

The basic result obtained before can be stated as follows:

Theorem 1: Let {x(t); t = - n+l, - n+2,...} be a family of

real-valued random variables which satisfy the conditions

X W.pr. 1 (= with probability 1),

mn

(1) x(t)

t -n+1,...,0;

(ii) Ex(t)2 <o, t=1,2,...; g/and

(iiti) ; akx(t-k) =T(t),t = 1,2,...,
k=0

where the xt and the ak are real constants with ap = 1, and where

fMey; £ =1,2,...1 is a family of non-degenerate, independently and

identically distributed real random variables with mean zero. Next, let

~

aE (al,...,an) and let a(N)

~

(a,(M),...,a (N)), N>n, be a sequence

1

of random vectors which for each N and "amost all" realizations of the

x(t) satisfy



-2-

=

N n A 2
(1.1) “(x(t) - = ak(N)X(t-k)) = min
t=1 k=1 a

n 2
(x(t) - = akx(t'k)) .
1 k=1

Nt

PR e AN o
1’ n

Then a(N) converges in probability to -a, i.e.

(1.2) plim a(N) = -a.
Noeo
This theorem was originally established by Mann and Wald under the additional
4
assumptions that E TM(l) < « ,and that the moduli of the roots of the

characteristic polynomial

n-k
a z

(1.3) A(z) = "
1

BT R}

k

are all less than 1. Anderson established the theorem for the case when
the roots of A(z) all have moduli greater than 1, and Rao proved the
theorem for the case when A(z) has two roots, one with modulus less than
1 and one with modulus greater than 1, Finally, Rubin proved the theorem
for n =1, and Muench proved it for an arbitrary n.

In this paper we will establish the following theorem:

Theorem 2: Let {x(t); t = - n+l, - n+2,...} be a family of real
random variables which satisfy conditions (i) - (iii) of Theorem 1. More-
over, let a(N) and A(z) be as defined in (1.1) and (1.3) respectively,
and assume that the moduli of the roots of A(z) are all different from 1. Then

(1.4) lim a(N) = - a w.pr. 1

N
The proof of the theorem is given in Section two of the paper. It is
based on the validity of five auxiliary lemmas which we state and prove

in Section three. —



II. Proof of Theorem 2: It is easy to show that, if

:((t) = (x(t),...,x(t-n+l))', t = 0,1,..., then

~ N ~ ~ N -~
(2.1) aM)"' = { T x(t-1)x(t-1)"'} L T ox(t-1)x(t)
t=1 t=1
N ~ ~ L N~
= -a' + { T x(t-1)x(t-1)"} T ox(e-1) 7 (t).
t=1 t=1
To prove that a(N) converges to - a we must consider three different

cases separately.
Suppose first that the roots of A(z) all have moduli less than 1.

Then

X(e-1) T (£).
1

;(c-l);(t-lf}‘lN'l
1 t

2.2 (am) +a)' = (8!
t

(4 &
nes 2z

Moreover, Lemma 1 in Section 3 shows (cf. equation (3.1)) that the matrices

vl k(e-1)x(e-1)

1

N =2

t

converge W.pr. l to a matrix that is well known to be invertible. Finally,

Lemma 2 in Section 3 shows (cf. equation (3.19)) that the vectors

N1z x(e-1m(e)

1

n o=

t

converges to the zero vector w.pr. 1. Consequently, from (2.2), and from



A

Lemmas 1 and 2 it follows that, when all the roots of A(z) have

moduli less than 1,

(2.3) lim (a() + a)' = 0 w.pr. L.
N

Suppose next that all the roots of A(z) have moduli greater than

1, and let
! -a -a -a
! 1 2 n
: 0 0
AR { 0 1
\ :
\ :
\ 0 0 1 0 /
Then
N ~
A~ - N ~ ~ "N "1 -N
(2.4)  (a@N) +a)' = A NN o x(e-Dx(e-1) AT} A le(t'1>“ (t).
t=1 t=

Moreover, Lemma 3 in Section 3 shows (cf, equation (3.24)) that the

matrices

-N

A -N

;(t-l);(t-l)'A'
1

™~ =2

t

converge w.pr. 1 to a random matrix that according to a result of
T. Muench (cf. [3, pp. 11-14]) 1is non-singular w.pr. l. Finally, Lemma 4

shows (cf. equation (3.44)) that the vectors

N
N AN 5 X(e-Dn (o
e=1
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converge to the zero vector w.pr. l. Consequently, since N%quq converges
to the zero matrix, it follows from (2.4), and from Lemmas 3 and &4 that,
when all the roots of A(z) have moduli greater than 1, (2.3) must be
valid, Actually, in this case the tonvergence in (2.3) occurs at an
exponential rate. —

Lastly, suppose that A(z) has at least one root with modulus less than
1 and one with modulus greater than 1. To establish the validity of (2.3)

for this case we proceed as follows: Let A(z) be factored as in

L

@.5) A@) =1 (z-z)) 1,

e
It = A
—

p—

where zj > 0 and

=
[

. = n, and suppose that the zj have been

[

numbered so that

(2.6) ]zj\ <1, 3=1,...,h, and

2.7 \zjl > 1, j=htl,... 0.

ta o

£
£.,,P=E - 4., and let b= (b
3=1 1 j=h1 3
c = (cl,...,cp) be defined by

Moreover, let m = ...,bm), and

1}

m -k h L,
(2.8) z bkz g 1 (z-z,) J, and
k=0 j=1 J
p ) ) 2.
2.9 zczP®= 1 (z-z) 3 .

k=0 j=hbl ]



Finally, let

P
(2.10) y(t) = = CkX(t-k), t = - mtl, - mt2, ’
k=0
m
(2.11) u(t) = = bkx(t—k), t = - ptl, - pt2,..., and
k=0
0 0 1 0 0
b1 1 0 c, 1
by “1
(2.12) R = b_ ¢ 1
bm 1 cp ¢y
bl
K
\
\\ 0 0 b 0 0 c
m P
Then: {y(t); t = - mt1l, - m¥2,...} satisfies
m
(2.13) z ka(t‘k) = M), t=1,2,...,
k=0

and also Conditions (i) and (ii) of Lemma 1. Moreover,

{u(t); t = - ptl, - p+2,...} satisfies the equations
P
(2.14) = Cku(t—k) =T{), t =1,2,...,
k=0

and also Conditions (i) and (ii) of Lemma 3. Finally,

N e e e e e e



\

/oN- - N~ - \

7 u(t-Du(e-1)" Tu(e-Dy(e-n'
;ot=1 t=1 i
N~ - , )

(2.15) R' I x(t-1)x(t-1)' « R = . [ .

t=1 : ;

LN~ - N~ ~ //

V7 y(e-Du(t-1) Ty (e-Dy(e-1)'/

1

\ t=1 ¢

It is easy to verify that R 1is non-singular (for a proof see

{7, p. 30]). Consequently, if we let

D =] s, N=ntl,...,

where I 1is the m x m 1identity matrix, and where

1 P
0 0
Cem 0 ’
0 6 10
. 5/
then (2.15) and (2.1) imply that =
N ~ ~ N ~ ~ /N
- - ' < _ 213! ~ \
t§1U(t Du(t-1) t;,11.1(t Dy (t-1) / Elu(t-l)ﬂ ) |
t=
~ -1 N
(2.16) (a(N)+a)-D'NR[DN { D'N] D LN - :
N N | oD <c>/
S y(t-Du(e-1)" I y(t-Dy(t-1)' \
t=1 t=1



-8-

Now Lemma 5 in Section 3 shows (cf. equation (3.50)) that the matrices

ol

¢V oo Le-Dy(e-1)

1

| [ I

t
converge to the zero matrix w.pr. 1. From this fact, from Lemmas 1 and 3, and

from Muench's result referred to above it follows that the matrices

'N,.,, ~ ] N~ ~ L IR

T ou(t-1) (t-1) S ou(t-1)y(t-1) \

t=1 t=1 \ ,
o¥ ' p N

N . ,/

LT y(e-Du(e-1)
\ t=1 t

0 s 2

§(t-1>§(c—{i//
1

converge w.pr. 1 to a random block-diagonal matrix that is non-singular w.pr. 1.

Next observe that Lemmas 2 and 4 imply that the vectors

=~

A

\
ot =2

2
l\)‘\‘
=)
2z
nd
—

I~ 2

“rr
—

\

u(t-1)7 (t)

(e-Dn(e) [/
/
%

<

1
converge to the zero vector w. pr. 1. Since N°* DN is uniformly bounded

in N, it follows from this fact, from the result obtained in the preceding

paragraph, and from (2.16) that (2.3) 1is valid when A(z) has at least

one root of modulus less than 1 and one of modulus greater than 1.

Since there are no other cases to consider, the proof of Theorem 2

is complete.

Q.E.D.



IIT. Auxiliary Lemmas. In the proof of Theorem 2 we made use of five

auxiliary Lemmas. These are stated and proved in this section.

The first two lemmas were needed to show that Theorem 2 is valid when
the roots of A(z) all have moduli less than 1.

Lemma 1: Let {y(t); t = - ml, - m2,...} be a sequence of real

random variables which satisfy the conditions:

(i) y(t) §t w.pr. 1, t = - ml, - m2,....0;
.. 2
(ii) Ey(t) < =«, t =1,2,...; and
m
(iti)  © byy(e-k) = T(t), t = 1,2,...,
k=0

where the vy and b are real constants with bO = 1, and where the T (t)

t k
m
are as specified in Theorem 1. Moreover, let B(z) = = bkzm_k, and
k=0
assume that the roots of B(z) all have moduli less than 1. Finally, let
2 2 =
S = EN (1), let y(t) = (y(t),...,y(t - m1))' ,t = 1,2,..., and let
-bl -b2 -bm\
// 1 0 0
B " 0 1 . ]
0 0 .1 6 ///
/
Then . 2
on 0 0\
-1 N ~ ~ ' @ S'f 0 0 e \
G.D lim N T y(e-Dy(e-1) = 3B . ) . B'®  w.pr.
N"GD t=1 S=O i )

'\ 0 0 .o 6//

Proof: It follows easily from Condition (iii) of Lemma 1 that



(3.2) ;(t)

~ t"l ~
= 8% ) + = B% M(t-s), t = 1,2,...,
s=0
where
M) = M(),0_ D', €= 1,2,...,
and Om_1 denotes the (m-1) - dimensional zero vector. Thus
-1 N ~ ~
(3.3) N T y(t-Dy(t-1)' =
t=1
. . N ~ -2 ~ £-2 .
-1 RS B3 £-1
= N {y(@)y) '+ = [B " 'y(0)+ = B°T (£-1-s)]1[B" “y(0)+ T BT (t-1-s)]
£=2 s=0 s=0
N ~ ~ N t‘z ~ ~
=n s B oy et e w s s 850y (e-1-5) 'S
=1 t=2 s=0
N2 . ~ 9
+N T BT (e-1-s)y(0) "B
t=2 s=0

-10-

By (t-1) + T(t) = ...

+N s s B°T (t-1-s) M (t-1-1)'B'"

= a(N) + B(N) + y(N) +o(N).

It is quite obvious that

(3.4) lima(N) = 0 w.pr.

N

Next we will show that

(3.5) 1lim B(N) = 0 w.pr.

NAe

}
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To do that we first note that by Lemma 2 in [ 6 ] there exists a

“W“e (0,1) and a finite constant Kl such that

(3.6) 18°| <k \®, s=0,1.2,...,

1

s
where ]B l denotes the matrix whose components are the absolute values

s
of the components of B . Then we let

e = (1,0 ),

m-1

and compute

(3.7) tr. EB(NB(N)" =

N t-2 r-2

- N 2trE s v < 357y 0y M (t-1-8) "B 5BV N (r-1-v)y(0)'B' T}
t,r=2 s=0 v=0
N t c-2 ~ ~
2. - - +r- -
= an tr N < - [Bt ly(O)eB'SBS r te'y(O)B'r l]
t=2 r=l s=t-r
N-1 & t-2 - -
-2 2 - - -
N %oper. T < By (0)en' 585 T ey 0y Bt T L
t=2 r=t+1 s=0
N t t-2 N-1 N t-2
-2 2 (s+c- +r- -2
SKNL 2 s DR SR DN s s 2Dy o,
t=2 r=2 s=t-r t=2 r=t+l s=0

where K2 is a suitably large constant. From (3.7), and from the
Borel-Cantelli Lemma it follows that (3.5) 1is true as stated. A similar

argument suffices to show that

(3.8) 1lim y(N) =0 w.pr. 1
N

as well.



We can also show that, if

1 N £-2 s - r
N D T B M (t-1-s)T (t-1-x)'B' ",
t=2 s,r=0

s#r

wl(N)

then

(3.9) lim @1(N) =0 w.pr. 1.
o

To do that we compute

(3.10) N %¢er. E ®y (Mg (V)

N te2 q-2

-2
=N “tr. S z T B%'eB'"BVe'eB ME[N (t-1-8)
t,q=2 s,v=0 v,4=0
s#r v#4

T(t-1-1) 7T (q-1-v) M (g-1-4)]

- t g2 } ,
= 20‘%N 2tr.{ B 5 BV+(t q)e'eB'£+(t q)Bve'eB')@

It =2

t=2 q=2 v,4=0

v#L

N-1 N q-2
+ T_, E E Bw(t-q)eleBlz+(t_q)BveleBl£}

t=2 q=t+l v,f=q-t

V#L
. N t q-2 ) N N-1 N 5
< KNT[ 1 5 s R2vRA(t-9)) . 5o (v+£+(t-q))}=()(N-l)’
t=2 q=2 v,2=0 t=2 gq=t+l v,l=q-t

<

“H.
(@]
3

£

2
where K3 is a suitably large constant. If we now let Nm = m , then it

follows from (3.10), and from the Borel-Cantelli Lemma that
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(3.11) lim o, (N ) = 0 w.pr. 1.
1" m
hivgdel

On the other hand, for each and every m

{ i - 2 - N '
(3.12) EY max tr-[Ql(N) (Nm/NXyl(Nm)][@l(N) (Nm/N)w(Nm)] }
N< NN
m mt+l
N
_2 ITH']. t—2 q"2 S/\ ~ r VA
< N_tr.E ) 8 ° I8N (e-1-8) M (t-1-1)'B' "B T (q-1-v)
t,q=N +1 s,r=0 wv,£=0
s#r v#4
N(g-1-£)'B'" ]
N N
w1 t-1 q-2 mt+1 -2
-2 t ﬁ L2 (vHLH (- 4 +L+(t-
< KN { | s , 2t (t-q9)) + - > >2(V L+ (t Q))]}
t:Nm+1 q=Nm+l v,£=0 q=t v,L=q-t
v#L v#L

= ow, )= 0@y,

From (3.12), and from the Borel-Cantelli Lemma it follows that

(3.13) ;i: o, () - (N /N)o(N )| =0 w.pr. 1 for N < N<N_..

the second factor in (3.13)

Since, for all N e [Nm’Nm+l) ;iz (N/Nm+1) =1,

can be replaced by (N ) so that

3 i - =
(3.14) :;: loy (1) w(Nm)l 0 w.pr. 1 for N <N<N_

From (3.11) and (3.14) we conclude that (3.9) is true as stated.
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To complete the proof of the lemma we must show that, if

—]_ N t"2 s ~ A~
0, (M) = N T T T B M(t-1-s) 7] (t-1-s)'B' S,
t=2 s=0

then / 2
) 0 0

FT
. ( 0 0 0

(3.15) lim o, (N) = = BS\ . ) . ] B w.pr. 1.
N s=0 . .

To do that we note first that

N-2 N

(3.16) o, (V) = vlos = B T(t-1-5)7 (t-1-s)'B'®
s=0 t=s+2
-1 N-2 N-s-1 &7 ~
=N~ = BN (v)'B'®
s=0 v=1
-1 Yo §-s-1 s~ A s -1N-2 N-s-1 o N
=N x T B ME@IT(v)'B'HN "5 r BN (N (v)'B'°
s=0  v=1 s=N+1 v=1

Oy () F o, ().
2N, 2N

Next we observe that, by the law of large numbers

/'102 0 PR 0
0 / U
Bs 0 0 .o 0

Z

(3.17) lim g o) =
N 2NO s

It

l
0 1
\ .
\ 0 0 .o 0

and that



_1 N N"S‘l SA ~ s
(3.18)  lim Joq. (M| = lim N} = S BN ()N (v)'B'
Mo 0 s=Ng+l  v=1
N N-s-1
- 2
= lim Nl s 7 B%'eB'ST (v)7]
Mo s=Ny+1  v=1
_ N-s-1 S
< lim N ) s |Be'eB'7| M (v)
M s=Ng+l  v=l1
N -1 N-s-1
< limg, 1 AN s W)
g s=NO+l v=1
N-No+1 N +1 N
- 0 -1 2
< lim X, { 1—5—,———- Ia 0 "y T (V).
- 4 1-x
N : v=1
- X oz/l-x)xN0+l w.pr. 1
47 . .pr. 1.

From (3.17) and (3.18) it follows that (3.15) 1is true as stated. Q.E.D.

Lemma 2: If f{y(t); t = - mtl, - m2,...} 1is as specified in Lemma 1,
then
-1 N ~
(3.19) lim N = © y(t-1)T (t) = 0 w.pr. 1.
N t=1

Proof: It follows from (3.2) that

N -
(3.20) N1 5 ye-17(e) = nL
t=1 t

t-1" ¥ t-2 oA
B- y(O)T (£) + N - 7 2 BT (t-1-s) T (t)
1 t=2 s=0

R s -
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Moreover, it follows easily from (3.6) and from the fact that T (1) has
N

t-1 . .
finite variance that 7 T (t) converges with probability one to a
t=1
random vector with finite covariance matrix. Consequently,

(3.21) lim Yl(N) =0 w.pr. 1.
N
To show that
(3.22) 1lim WZ(N) =0 w.pr. 1

N

as well, we proceed in the following way. We first note that

z z Bsﬂ (t-l-s)% (u-l-r)'B'rﬂ ()M (u)

1 -2 N t'2 u"2 ~
(3.23) tr. E YZ(N)YZ(N) =N "tr.E =
u

t,u=2 s=0 r=0
- N t-2 u-2 s .
=N "tr. Z ) T B e'eB'"'ETN (t-1-s8)T (u-1-r) 1N (£) 7N (u)
t,u=2 s=0 r=0
_ /. N t-2
=N " o,tr. Z T B'e'eB'
‘ t=2 s=0
- ow'h

But if that is so, then arguments similar to those used to establish (3.9)
can be used to verify the validity of (3.22). For brevity's sake we will
omit the necessary details here and consider the lemma proved. Q.E.D.

The next two lemmas were used to show that Theorem 2 is valid when

all the roots of A(z) have moduli greater than 1.

Lemma 3: Let f{u(t);t= - p+l, - p+2,...} be a sequence of real random

variables which satisfy the conditions
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u
el
£
o
La}
—
a)
"

(1) u(t) = - ptl, - pt+2,...,0;

(ii) Eu(t)2 <=, t=1,2,,

P
(iii) - Cku(t-k) =0y, t =1,2,...,
k=0
where the Et and the ¢, are real constants with CO = 1, and where
P
-k
the T(t) are as specified in Theorem 1. Moreover, let C(z) & = ckzP ,
k=0
and assume that the roots of C(z) all have moduli greater than 1.
Finally, let u(t) = (u(t),...,u(t - p+1))’', t = 1,2,..., and let
\
-cl -c2 -Cp \
1 0 0
0 o
C = /
; /
0 0 1 0
Then
N ¥~ - -N
(3.24) 1lim C 2 u(t-Du(e-1)' ¢!
Nt t=1
© o~ © % ~ © or % ' -s
= ¢ %u) + zcTTN(@Mu@ + 2Tt () ¢ wapr. 1,
s=1 r=1 r=1

where

*
mo(t) = (ML), Op_l) t=1,2,...

Proof: It follows easily from Condition (iii) of Lemma 3 that

(3.25) u(t) = Cu(t-1) + 7 (t)

1
CST (t-s), t =1,2,...

~ t
= ctu(o) +
S

a8
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Thus
N ~ ~
(3.26) ¢z u(e-Du(e-1)yrer N
t=1
PP N ~ t-2 ~ t-2
- i . ) . N
= ¢ Mu©@u@ '+ = [T+ = 1101 a2 e (e-1-0)] 1!
t=2 s=0 6=0
ST t-1 -N
=c "V C  u@u) et .t
t=1
N t-2 _ .~
i} i . )
+c Ny st lune-tesy e oY
t=2 s=0
N t-2 -
+c Ny s cST(e-1-s)u(0)yrc T 7N
t=2 s=0
N t-2
- . ‘ )
+c Vs v e®nF (e-1-9) 1" (t-1-m) T 0N
t=2 s5,r=0

= a(N) + B(X) + y(N) + o(N).

It is easy to see by a change of variable that

N ~ ~
(3.27) lim a(N) = lim 2 ¢ Su(0)u(0)'cC’
N4 N t=1

-t

By Lemma 2 in [ ¢ ] there exists a p ¢ (0,1) and a finite constant K¢

such that

3.28) c7% < gt

Consequently,
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(3.29) lima() = - ¢ fu(@u@'c' b <.
N t=1
Next we observe that
N-1 v ~ )
(3.30) B = = o @y (qyre M), i
v=1 g=1
N-1 N-q s~ « -s _
= ¢ P @'c? . e
q=1 s=1
N-1 - . s g N-1 -1 e~ . . -
= = cCu@ N (@rcT e s r ¢TPu@n (q)'c e T8
s,q=1 q=2 s=N-q+1
We will show that
(3.31) lim EZ(N) =0 w.pr. 1.
Nal-]
To do that we note that, if
ep & (1,0,_1),
(3.32) tr. EEé(N)Eé(N)' =
N-1 N-1 N-1 - -
= tr. E 7 = 5 C—Su(O)elC'-(S+E)C-(r+q)efu(0)'C'-rT](E)T](q)

£,9=2 s=N-4+1 r=N-q+1

N-1 N-1 ~ ~
- c%tr. s z C-Su(O)elC'-(S+£)C-(r+£)eiu(0)'C'-r
2=2 s,r=N-4+1
N-1 N-1 2 (s+4+1) 2N
- S r
< K7 z : 6 = Q (LL ).

£2=2 s,r;N—£+l
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for a suitably large constant K7. From this, and from the Borel-Cantelli
lemma it follows that (3.31) is true as stated. But if that is so, then

(3.30), (3.31), and (3.28) can easily be seen to imply that

-]

® ~ * - -
(3.33) UmBE) = Lim B, (M) = = = C w(®T @'C' Y- c'”? wopr. 1.
N s=1 gq=1
A similar argument suffices to show that
@ @© ~
P = v - ~"S,=q o F 1At”S
(3.34) lim y(N)= % Z2C C TN (Qu(0)'c w.pr. 1
Ngd- s:l q:l
To concluce the proof of Lemma 3 we now observe that
N-1 v-1
— - * * -
(3.35) o) =c N 5z w-) 1 (weryiet e N
v=1 s,r=0
N-1 v
- -y % * - -
=N s o T o @t o
v=1 £,q=1
N-1
- -0 % * - -
¢V s T @V ™
v,4,q=1
N-2 N-1 . .
A A OO R MR COREM I
v,4=1 gq=v+1
-N N-2 N-1 Y V-4 N

ze"EnT @y (@retV et

-C z z
v=1 £=v+1 q=

0, () - 0y () - o).

It is easy to see that
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(3.36) tr. E o3(N) @3(N)' =

N-2 N-1 v N-1

r
S o (v - (Nevg) - (Nere)

v,r=1 g=v+l q=1 s=r+l t=1 Ll
- (-t
ete ¢’ TTIET ()1 @)1 ()T ()]
-2 - i
o6 NI mRT vk |, gen (Sevh)
M v,r=1 g=max(vtl,r+l) gq=1 b
C_(N—ﬁq)e'e c! (N‘I“*‘ﬂ )]
11
N-1 N-1 min (N-s,N-t)
< K8 5 . - P2(5+E+q+t)
S,t=2 }l—'“maX(N-S'*'l,N-t'*‘l) q:l

2
=O(LL N)y

for some suitably large constant K8’ and hence by the Borel-Cantelli lemma

that

(3.37) lim g (N) = 0 w.pr. L.
N

It is also easy to see that

1 N-2 N-1

- - - - * ¥* - -
(3.38) o, = = ¢ % : ¢ty (@ oS
s=2 £=1 q=N-s+1
N-2 .
s P et ert®
N £=N-s+1
s=2
N-l O N-2 N-1 . i .
e A R KOO NI COR RN

2 g=1 q=N-s+1
q#f
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Since
N-1 N-2
2 —(s+ (st
(3.39) E\@21(N)]§_oﬂ 5 5 lC (s Z)eielc, (s z)]
s=2 4=N-s+1
N-1 N-2
2 (s+ 2N
§K9 = s M(sz)=O(Nu y,
s=2 f=N-s+1

for a suitably large constant K

9}
lemma that
(3.40) 1lim 521(N) =0 w.,pr. 1.
NAeo
To see that
(3.41) 1lim e, (N) = 0 w.pr. 1l
22
N
as well, we compute
- - 1
3.42) tr. Eq)zz(N)cozz(N)
N-1 N-2 N-1 N-1
= tr. z b) z . [C-(S+r)eieff-<8+q)c_(t+k)ei
s,t=2 r,4=1 gq=N-stl k=N-t+l
q#r k#4
cET @O0 @M WM (k)]
N-1 N-1 N-1
< Klo 5 5 5 u2(s+r+t+q)
s,t=2 r=1 g=max(N-s+1,N- t+l)
N-1 N-1 N-1
2 (s+
+ 5 5 - . (str+tt+q)

s,t=1 r=N-t+l g=N-s+l

1

it follows from the Borel-Cantelli

C,-(t+z)
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=0 (o,

for a suitably large constant KlO’ which together with the Borel-
Cantelli lemma implies the validity of (3.41). Now (3.35), (3.37),

(3.40), and (3.41) can easily be seen to imply that

(3.43) limg) = limg () = 3 C s ¢ty @e Y% Syl pe. 1.
N N s=1 £,q=1

-S

The validity of (3.24) now follows from (3.43), (3.34), (3.33),

and (3.29). So the proof of Lemma 3 is complete. Q.E.D.

Lemma &4: Let {u(t); t = - p+l, - p+2,...} be as in Lemma 3. Then
1.y V-
(3.44) 1lim N ~C Tu(t-1)N(t) = 0 w.pr. 1

N t=1

Proof: It is clear that

4.-n Y~ I AR
(3.45) N =C Sut-1)T (8) = N SC {u(@)N (1) + = [C Tu(0) +

t=1 t=2

t-2
+ 5C°T (t-1-s)17 ()}

s=0

B N ™~ 1. N t-2 %

=8 Ee Y sl e + 8N s s oS Fe-1-9) M ()
t=1 t=2 s=0

a(N) + B(N).

Now
~ A 2 -1 R t-1 _,-N
(3.46) tr. Ea(N)a(N)' = cﬂN tr. C > ¢ u(0)u(d)'c’ . !
' t=1
N - .
=on e, ¢ ¢ Vu(yu)etV = ow by,
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Consequently, by using an argument similar to that used to establish

(3.9) we can show that

(3.47) lim a(N) = O w.pr. 1.
NP

For brevity's sake we omit the detailed arguments here.

Next we observe that
t-2 r-2

A~ ~ N
(3.48) tr. BBQOB)' = N ler. z 3 20T N ere ¢ m (D
r=2 s=0 g=0

« ET (£)T (t-1-8) T ()T (r-1-q)]

N t-2
—oN ler, s 5 (S 'elcu'(N'S)
" t=2 s=0
N t-2
< K N-l o 5 2(N-s) O (N 1)
=11
=2 s=0

Hence, again we can use arguments similar to those used to establish (3.9)

to show that

(3.49) 1lim B(N) = 0 w.pr. 1.
Noeo

We omit the detailed arguments for the sake of brevity. The relations (3.47)

and (3.49) establish the validity of (3.44). Q.E.D.
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Lemma 5: Let f{y(t); t = - ml, - m2,...} and {u(t);t = - p+l,- p+2,...}

be as in Lemmas 1 and 3 respectively. Then

- -N
(3.50) 1lim N =C

N t

u(t-Dy(t-1)' = 0 w.pr. 1.
1

o~

Proof: By using (3.25) and (3.2) we find that

2y M- -
(3.51) N =¢C T u(t-1y(t-1)"
e=1
.. N - £-2 -
- - % -
- N B Ma(0)y) + 2 et lac0) + 1 c1F (e-1-8)](B5 Ty 0y +
£=2 s=0
-2 .
+ = B M (t-1-s)1'
s=0
1 N ~ o~ _
- %N s oy Bt
e=1
1 N t-2 .~ - .
+ 8N - e luo)m (e-1-s)B' S
£=2 §=0
1 N t-2 . ~ _
+ 8N -y ST (e-1-s)y 0y B BT
t=2 s=0
1 - N t-2 % ~
+82%¢N 5 s cSn%e-1-9) 7 (e-1-5)'B'S
t=2 q,s=0

* * * *
Sa N +B N +y (N) +o (N).

It is quite clear that

(3.52) lim @ (N) = O.
NAo
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To determine the behavior of Bx(N) we compute

(3.53) tr. BB (N)B (M)

N  t-2 r-2
-1 - - ~(N-t+1)~ ~ - (N-
=N tr. D s[C ( )u(o)eBlquelu(O)ICl (N-r+1)
t,r=2 s=0 gq=0
ET (t-1-s) T (r-1-q)]
N t r-2 ~ ~
2 - - (N-t+ - - (N-
= N e, = 5 2 oMt 0yepr 9Tt gd 1y gy 1gr - (N-rHD)
t=2 r=2 q=0
N-1 N r-2 ~
2 - -(N- -
+ GﬂN ltr. b s s [C (N t+l)u(0)equ+(t r)
t=2 r=t+l g=r-t
qulu(0)|c|—(N"r'{'l)]
N t-1 r-2 -
SKlZN'1 5o{ 2z ¢ 2(WD-terZaR(tor)
t=2 r=2 0=0
N2y w 2q+
+ T < n ( )—t-r/\ q (t'r)}
r=t q=r-t
N t-1 r-2 N r-2
t=2 r=2 g=0 r=t gq=r-t
N-1
- 2
< kN stV = gah,
13 -1
where K12 and K13 are suitably large constants, and where B = max (u,\).

From (3.53), and from an argument similar to that used to establish (3.9)

it follows that
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(3.54) lim B (N) = O w.pr. L.
N

By analogy we also find that

(3.55) limvy (N) = O w. pr. 1.
el

To conclude the proof of the lemma we must show that

*
(3.56) limo (N) = 0 w.pr. 1.
N4

This we do in the following way. We first note that

N-l V-l ~
- *
¢ oo s Y (ves) T (v-q) 'B'Y
v=1 q,s=0
q#s

m\r—'

(3.57) o (N) = N

,L -N N-l V—l - ~
+8%c 2 zctn (w-) M (v-q)'B'd
v=1 q=0

e

= w{(N)'+w2(N)-

Next we compute

% 1 N-1 v-1 _ _
3.58) Elor )| <o2N? 1 3 jc” N Dareptq
2 =7 - 1
v=1 q=0
1 N-1 v-1
- N-q+ 3/2_N
<KWNF ozoozpg T o,
v=1 q=0

for a suitably large constant K14, which by the Borel-Cantelli lemma implies that

(3.59) 1hnw;(N) =0 w.pr. 1.
N
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Finally we compute

(3.60) tr. E @i(N)@i(N)'

N-1 v-1 t-1
= N-ltl‘. 2 z 5 [C-(N-S)eieB'qBre'alc‘ (N-2)
t,v=1 q,s=0 r,z=0
q#s r#4
ET (v-s) T (v-q) T (t-1) T (t-2) ]
N-1 ¢t v-1
= ZO%N—ltr. DR ) c'(N‘S)eiequ35+(t‘v)e|elc'-(N-q-(t-v))
t=1 v=1 q,s=0
q#s
N-2 N-1 v-1
+ ZG%N-ltr. Tz b [C-(N-S)eieB.quHt-v) .
t=1 v=t+1 q,s=v-t
q#s
e'e Cl-(:\l-q—(t'v))]
1
N-1 t v-1 N-2 N-1 v-1
< KISN-l{ rozoz BN+ v - p’h
t=1 v=1 q,s=0 t=1 v=t+1 q,s=v-t
3 2N
=0 (N B ),

for a suitably large constant KlS' From (3.60) and from the Borel-

Cantelli lemma it follows that

*
(3.61) 1lim @I(N) =0 w.pr. 1.
Mo
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Now (3.61) and (3.59) imply the validity of (3.56), and (3.56), (3.55),

(3.54), (3.52), and (3.51) imply the validity of (3.50). Q.E.D.
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FOOTINOTES

/ This paper was written while the author was a Fellow of the John

Simon Guggenheim Memorial Foundation.

2
z/ Throughout this paper E denotes the expectation operator. Thus Ex(t)

denotes the second moment of x(t).

3/
In this context we should mention that the asymptotic distribution of

~

(a(N) + a) 1is derived in [7].

Under the additional assumption that the limiting matrix of

~ ~ 1 ’-N
x(t-1) % (t-1) A
t=1

T. W. Anderson showed in [1] that (2.3) was valid for

4/

A

M ra 2

is invertible.

this case.
5/ I learned of the relation (2.16) from reading T. Muench's paper [3].



