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Preface

No, this is not the first paper on the design of highway networks-—-not by
far. Actually, there is a good 1974 book by Steenbrink [26], devoted to this
subject and inlcuding a tentative implementation to the integral Dutch highway
system. Two questions arise: (a) If planning methods exist, why do so many
highway networks continue to "plan themselves”? (b) What is the inherent
reason that the good people of the Netherlands could assume a leading role in
the effort to implement a satisficing highway network design procedure? 1In
the opinion of this author, the answer to both questions is basically the
same: the procedures for the design of a single highway published to date are
not yet adapted for fast computerized preliminary design, and all the models
which assume given costs are doomed before they even start. That is, of
course, if you do not happen to have a very flat country with very high
transportation demands. If you do, you can aproximate projected highway costs
rather accurately and you also have the necessary motivation to solve the
problem. |

In order to appreciate both the need for exact cost evaluations for
single highways, and the justification for heuristic network design
procedures, we refer to a paper by Pearman [24]. According to Pearman the
network design problem is rich in good suboptimal solutions. The conclusion
is that heuristics are apt to do very well, and in view of the complexity of
the problem, which is one of the toughest NP-complete problems (see [171]),
heuristics are our only choice here, at least for medium—size problems and up
(see also [21]). What does that have to do with the need for exact cost
estimation? Obviously if many different network configurations yield
solutions with nearly equal values, as suggested by Pearman, then the solution

must be highly sensitive to the input data! We may conclude that this is the



most important practical issue to solve. However, there is another question
which needs to be asked: Why is the issue of optimally locating road
junctions so neglected? The answer may be that even in the Euclidean case
(i.e., flat country and no constraints), and with fixed flow-independent
costs, this problem is very tough mathematically (see [22, 13, 6, 10, 29]),
and it seems that the possible savings are not more than 2.5%, on average (see
[19]). It has been conjectured that there is an upper bound of 13.4% on these
savings (see [34]). However, 2.5% may represent an impressive amount of money
here, and it seems that better planned junctions may have other
transportational advantages as well. Hence, this issue should be addressed as
well. Note, however, that if we pick up this particular glove, our candidate
highways set is no longer even countable, not to mention finite.

It is the purpose of this paper to address the problem of a highway
network design for any terrain, including treatment of the junctions location
issue, by a method which can be computerized and solved at reasonable cost
(i.e., the computer runs should not cost more than, say, 10% of the design
budget). This approach would not be feasible without very fast mainframe
computers (2 MIPS or so would be a rapher low figure here). However, the
problem certainly justifies the use of such mainframes. True, the procedure
has some heuristic features, and it is therefore a satisficing solution and
not an optimal onme. But, since it is not very likely that we will live to see
a practical and optimal solution for this problem, this can, perhaps, be

tolerated.



1. Introduction

The general problem we discuss in this paper is as follows. For n given
nodes (points, city centers, etc.), upon a not necessarily planar terrain,
construct a highway network capable of satisfying all the bilateral
transportation demands in such a manner that the construction costs (including
earth moving, paving, right of way, ecological or social penalty costs, etc.),
together with the projected capitalized users' costs (such as fuel, time
value, accidents, mechanical wear and tear, etc.) and the capitalized
projected maintenance costs, will be minimized. Extra nodes, i.e., road
junctions, are to be located as beneficially as possible to that end. (We
refer to these generalized Steiner points as G-Steiner points.)

Our formulation allows for constraints on the location of highways, since
these can be taken care of by proper penalties. Other technical constraints
can also be accommodated. A budget constraint on the actual construction and
right-of-way costs (not including penalties) can be dealt with by varying the
rate of return used for capitalization of future costs. This rate serves as a
Lagrange multiplier.

The effect of the network design on the flow demand can be conceptually
accommodated by iterative application until an economic equilibrium is
achieved (i.e., a local minimum).

The problem (and the model we suggest) can be adapted to the (more
important) case of improving an existing network. It should be noted that
when G-Steiner points are allowed, the existing networks connection case is no
longer a special case of the "regular” network design (see [28]), although
without them it is so--e.g., see [7].

An important version we do not try to solve, but must mention, is that of

a dynamic planning when a budget is spread over a few years, or (even worse)



if future budgets are anticiapted but not known in a deterministic sense.
Since we have to settle for a satisficing solution anyway--i.e., use
heuristics——this issue should be somewhere in the background when we evaluate
them, however.

Much has been written about the network design problem, usually without
considering G-Steiner points. A very extensive and illuminating survey of
this problem (and problems to which it can be reduced directly), has been
recently published by Magnanti and Wong [21], including a "three figures"”
references list. Magnanti and Wong describe in detail the integer programming
formulation of the problem and several Bender's cuts which can be used to
accelerate its solution. For small problems——up to 30 nodes and 100 arcs--
they recommend solving the problem analytically. (Note that 30 nodes imply
435 possible bilaterial arcs in our case. Choosing a hundred arcs would mean,
in effect, using a heuristic without admitting it!) For medium sized
problems——up to 50 nodes, 150 arcs--they suggest similar methods, however,
when the lower bound obtained by the Bender's cut is approached nearly enough,
the solution may be considered satisficing. For large problems--50 to 100
nodes and 400 arcs, say——they recommend faster heuristics. Delete and/or add
algorithms are mentioned by them in this context (and are recommended in this
paper as well). Actually they say these may require excessive time, too!
(This is true if we do not stick to pure deleting or pure adding strategies;
pure strategies are polynomial by nature and for an important enough problem,
such as ours, can be pursued until a local optimum is achieved.) Following
Magnanti and Wong's paper it almost seems pointless to refer to earlier
results which khey cite, but we mention briefly a subset of these. Steenbrink
[26] wrote a comprehensive book on the subject, where many earlier

contributions are also mentioned, and includes a tentative application of a



heuristic he developed to the integral Dutch highway network. Transportation

Research devoted a special issue to the problem, edited by Boyce [3]. Claus
and Kleitman [5] discuss various heuristics to a similar problem where the
flows are taken into account when the cost is calculated. ([7] and [26]
consider flow dependent costs, too.) A budget constraint version (i.e., where
we choose the best fixed cost arcs we can from a given set s.t. a budget), has
been proven to be NP-complete by Johnson et al. [17], and some branch and
bound analytic and heuristic procedures have been applied to it by Dionne and
Florian [9].

As for the Steiner issue, it was usually dealt with in relation to
minimal tree networks [22, 13, 6, 29], i.e., without flow—-cost effects. A
notable exception is a 1967 paper by Gilbert [12], recently followed by
Trietsch and Handler [34]. Even without flow-cost considerations the problem
is NP—hard [10]. The versions of the Steiner problem mentioned this far are
with Euclidean distances. Other versions exist, i.e., Steiner trees (without
flow—cost effects as above) embedded in graphs, introduced by Hakimi [14] and
included in the NP-complete equivalence set from it's "birth" so to speak—-
i.e., included in Karp's seminal paper [18]. Yet another version, with
rectilinear distances, has been introduced by Hanan [15] (before [14]), and
may be considered as a special case of the graph version. This version,
perhaps not surprisingly, is also NP-complete [1l]. Magnanti and Wong [21]
show that the flow dependent cost case (which they call the fixed charge case)
is NP-complete, and we reiterate a similar result in this paper as well.

With or without Steiner points, our problem is difficult enough as is—-if
what we want is the joy of facing difficult problems. However, any model we

might have is of doubtful practical value if it does not address the issue of

approximating the costs associated with the highways with some accuracy. 1In




this paper we use an adaptation of a highway preliminary design procedure
described in [32}, and based on some theoretical results by Trietsch and
Handler [33], for this purpose. (The procedure can also serve as a basis for
more exact alignment design, as described in [31]. Similarly, with the
plecewise linear network we are going to obtain here, the same methods can
serve for a more exact design.) Other published results about preliminary
highway design include papers by Turner [35] and Parker [23] (or, see [32] for
a discussion of these).

Appendix A is a summary of the particular method we use here.

In brief, this paper suggests the use of a honeycomb grid (see Figure 1)

Figure 1



covering the whole area under consideration. TFor each hexagon we have 12
directions (which we prefer over 6, or over using a square, 8-directional grid
as in [35, 23]); for each such direction we compute two parameters which serve
as the intercept and the slope of a cost approximation function for a highway
(there and in that direction) as affected by the flow projected on it (which,
unfortunately, we cannot know in advance). Then heuristics are suggested to
"extract” a "G-Steiner network” from the grid, complete with a flow
assignment. This solution can then be refined iteratively by more exact
highway design techniques. We also develop a lower bound on the cost of a

highway which "justifies™ the linear approximation, and can serve in turn for
a lower bound on the value of the whole network. However, we use the linear

approximation mainly for tractibility.

2. The Network Design Problem with Extra Nodes

Let N be a set of n nodes given on a surface, and n(n - 1)/2 bilateral
flow demands 9 5 > 0 between the nodes also be given. Finally, for any pair
of points X,Y (not necessarily in N) on the surface and for any q > 0, let a

function f(X,Y,q) be given such that
€D f(X,Y,0) = 0; ¥ X,¥Y,
2) f(X,Y,e) > 0; ¥ >0, X% Y.

The Problem: Choose a superset P > N, construct a network G(P,A) (where A is
the arc set, and each arc a € A connects two nodes of P), and assign all the

flow demands to the arcs A in such a manner that the sum
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will be minimized, where Xla,X2a € P are the endpoints of a € A, and q, is the
sum of all the flows 9 (or parts thereof) assigned to arc a.
Note that if we set P = N, we get the regular network design problem with

flow dependent costs, as described in [21], for instance. TIf we set
%) £(X,Y,q) = Kd(X,Y); ¥q > O
where d(X,Y) is the Euclidean distance between X and Y, and K is a given

positive constant, we obtain the (Euclidean) Steiner tree problem. If we

choose a function g(q) such that

(5) g(0) =0

(6) g(q) > 0; ¥q>0

(1) glq; + gp) < g(qy) + g(qy); ¥ q1,95 > O,
(8) gla +e) > g(q); ¥e >0, q2>0,

and finally set

(9 £(X,Y,q) = g(q@d(X,Y),

then we obtain a generalization of the Steiner problem first suggested by
Gilbert [12], to which we refer as the Gilbert network problem, or

alternatively as the generalized Euclidean Steiner network problem (GESN).

(Clearly the solution should not be confined to trees here, and it is easy to
construct examples with cycles; e.g., for many closely situated nodes on the

circunference of a circle we would prefer the closed cycle to the regular



Steiner minimal tree.)
All the versions we mentioned are extremely complex. To complete the
picture about their NP-completeness (the Steiner case is NP-hard, formally),

we present the following (intuitively obvious) theorem (see also [21]).

Theorem 1: For P = N, the network design problem presented above is

NP-complete.

Proof: Let 9, € {0,1}; ¥ i<, 0; otherwise, and set f as in (4) with

qij =
K =1. To solve this special case of our problem we do not require cycles,
and we can connect as many nodes of N by a tree as we wish, as long as we also
connect all points such as i for which qin = 1. This is an instance of the

Steiner tree in a graph problem, which is (a "veteran") in the NP-complete

equivalence set as proved by Karp [1]. 0

(The proof cited above is due to Nimrod Meggido [private communication,
1981]. Another proof is given below, following Theorem 2, but it is
irresistable to use a proof which is a direct link to Karp's original set,

particularly to the Steiner tree there.)

3. Approximating the True Highway Costs

Using the method outlined in Appendix A, with a hexagonal search grid
(see Figure 1), and exact vertical aligmment for each arc (highway) as in
[31], we can claim that we have a good approximation to £f(X,Y,q); ¥ X,Y,q and
proceed to use one of the known network design techniques. Steiner points can
be inserted at the next stage if we are willing to settle on a satisficing
solution.

However, even without Steiner points, due to the fact that we do not know

q in advance, that might mean a lot of work. Furthermore, it is highly likely
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that the honeycomb grids which we would define for each pair, would overlap to
a very large extent, and it would cause much duplicated effort. This
motivates us to cover the whole area by one big honeycomb grid, for all the
network needs combined. Since the hexagons we use may range in diameter from,
say, 250 to 2000 meters, according to our specifications, the variability of
the terrain, etc., we can expect that our network will "miss"” most of the n
points (which we would like to be in centers of hexagons, ideally) by 125 to
1000 meters in the worst case (about 70% of that in the median case). This is
acceptable indeed.

Suppose we want to cover an area of a few thousand square kilometers by a
highway network——a reasonable size for a problem of this type. This calls for
thousands of nodes, and about six times that many arcs. For a given flow, on
a, say, 8 MIPS computer, we may expect to compute each of them during a few
seconds (recall that a month has about 2.6 million seconds, if the computer
operates around the clock). Alas, we do not have the flows in advance, since
their allocation is part of our problem. What we can do, however, is to
sample some flows for each arc (those could the same flows across the board)
and regress a flow cost function for it. When performing an additional
calculation, however, we can expect some relative savings if we start with a
"good guess” based on former calculations. With a sample of 2-5 wvalues, we
can use a linear regression model to approximate the cost f(q) associated with

arc a by a linear function with a positive intercept such as

(10) £,(q) = 2, + m,q; ¥ a € A

As an aside we mention here that devoting several days or even a few

weeks mainframe computer time to a single project such as ours is very
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defensible. The monetical expenditure (around $100,000 per month in 1983
prices) and the time required are both very modest considering the magnitude
of the project, and the expected design budget and duration.

As an example, following the Camp David accords, Israel planned a renewed
highway network in the Negev, at an estimated cost of around $1 billion——
certainly an investment of less than $1 million to support the design process
would be acceptable; and it could be done for a lot less than that if the
software would be there. (This example also serves to show that 2-37 savings
may be impressive--hence G-Steiner points are attractive.)

In [33], it has been shown that for a given width choice and vertical
alignment the combined fuel and time expenditures on a highway yield a
positive nondecreasing convex function. (A result well-known for time alone,
but false for the fuel alone. The result is based on the assumption that the
driver's speed choice implies a lower bound on his time evaluation.) Since
for this case the other costs, such as construction, are virtually fixed, it
follows that £(q) is such a convex function as well. However, since we are in
the design stage, there is no reason to assume the same vertical alignment or
width choice. It has also been shown there that the vertical alignment
problem is convex (i.e., it calls for minimizing a convex functional). It
stands to reason that for larger flows we would be willing to pay more in
earth moving and have a highway with milder slopes; however, if and when we
decide to add a lane we may revert to a steeper design, since the traffic flow
per lane is reduced, and the users suffer less from congestion. A similar
logic applies to the horizontal aligmment issue. In both cases, if we have
flat terrain, we would be able to determine the alignment independently of the
flow. To sum up, the more difficult the terrain, the more we can expect the

traffic flow to influence the optimal design. We should stress here that we
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are talking about optimal design, and not design as per some obsolete "cook
book” filled with choking standards that must be adhered to blindly. (See [2]
and [33] for further independent discussions of this issue.) To continue, we
have actually demonstrated that for flat terrain we can expect f to be less
linear than for a hilly one, since we cannot compensate for high flows by mild
slopes or curvature, etc. For this "easy-bad"” case we show that a lower bound
exists in the format of (10). The bound is based on the assumption that the
construction costs for this flat case is also in that format (as a function of
the width choice) and that by adding a lane, we increase the capacity
proportionally. The gritty details are deferred to Appendix B, but the result

is depicted in Figure 2 here.

Figure 2
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4. Designing a Network Embedded in a Graph

Having used a honeycomb grid with around 6 arcs per node on average, and
where each arc has a flow cost function, (10), associated with it, we now wish
to extract a network from it, connecting our n original nodes (which are just
a small fraction of the grid's nodes), and using any additional nodes as
required, not just along highways, but also as planned intersections.

This G-Steiner network embedded in a graph is an obvious generalization
of the Steiner tree in a graph problem. In this paper we confine ourselves to
heuristic polynomial procedures for the solution. However, we can certainly
solve it by an integer programming model, so we have exponential analytic
solution procedures such as those mentiomed in [21], with some
modifications. This is even easier if we revert to a budget constraint
version, which we do not choose to do (as we are trying to solve a real
problem satisficingly, rather than discuss a less realistic model which does

not lend itself to an efficient solution, either).

Some ILower Bounds: If we formulate the problem as an integer programming

model, we may obtain lower bounds such as those discussed in [21]. However,
we prefer to discuss here some simpler version (also mentioned there in the
context of transforming the network design problem to well-known simpler
problems). Clearly if we set 2, =90; ¥ a€ A, all we have to do is assign all
the flows to their respective shortest paths, taking the length of a path as
im,. This can be solved rather efficiently by well-known methods (e.g., see
[8])- To this we add the minimal Steiner tree in a graph for our n nodes,
this time with m; = O; ¥ a € A, taking ZR, as our objective function. Thus we
obtain a lower bound on the "pure flow" costs and another lower bound on the
"fixed" costs. The sum of those is a lower bound for our problem.

If we use such values of Ra and m, which constitute a lower bound on the



- 14 -

real f,(g), we now have a theoretically valid lower bound, except for any
errors due to our piecewise linear representation.

However, there is a slight problem: for this bound we require the use of
the NP-complete Steiner tree in a graph problem. So if we want a practical
lower bound we have to look further.

If we substitute the regular minimal tree (see [25]) for the Steiner
tree, then our bound will be very easy to calculate, but not solid
theoretically. If we take half this valus, we obtain a theoretically wvalid
bound due to a theorem in [13]. This, however, might be a too low estimate.
Practically we could settle, perhaps, on a heuristic result for the Steiner
tree. We describe such a heuristic in some detail here, since we are going to
suggest the use of a similar one for the network later. The heuristic is a
greedy one (similar to a heuristic suggested by Chang [4] for Euclidean
Steiner trees), and starts with the regular minimal tree as defined for the
complete shortest paths graph for our n nodes (where the distances we use are
still the %, parameters, similar to the former application for m, which we
used to get the flow cost's lower bound). This tree is the one we suggested
halving before, but now, if we do not propose to do that, we may (or may not)
find that some arcs belong to more than one path, and were counted more than
once-—which should be corrected as a first step. Note now that if some arcs
were indeed joint ones, our regular minimal tree would already be a (not
necessarily minimal) Steiner tree! ©Now look at the angles formed between
adjacent links in the tree (especially the more acute angles, and those formed
at intersections); some immediate gain may sometimes be achieved by inserting
a Steiner point of rank three (i.e., choosing a node of the honeycomb within
the angle), and connecting it to the three endpoints associated with the two

paths involved (two paths have 2 + 2 endpoints, but one, the apex of the



- 15 -

angle, is mutual). In the case of an intersection not at a node (it can occur
in the 12 directional grid, or the 8 directional one for that matter, but it
would not happen for the 6 directional grid, or the 4 directional one,
respectively), we have to go a little further and insert two Steiner points
simul taneously, but we omit this technicality in this paper. The greedy
heuristic is to look for the best such gain, insert the Steiner point
associated with it, and reiterate until no further immediate gain is
available--thus obtaining a local minimum.

Solution Heuristics: The procedure we suggest for the G-Steiner network is to

find a regular network (with unintentional G-Steiner points perhaps), and then
insert G-Steiner points as described above for the tree. We begin with the
first part.

One of the heuristics we suggest for the first part is similar to an
algorithm suggested by Barbier [l1] (or see {21]), and we refer to it as the
deletion procedure. The idea is to start with the "maximal”™ graph, i.e., the

network which makes it possible to minimize the flow costs Zm which we

aqa’
obtain as described above. If we compute the Zfa (fixed) costs associated
with the arcs required in our maximal graph, we have an upper bound, since
this maximal graph is a feasible solution. We also obtain a lower bound (the
one with the heuristic solution of the Steiner tree is suggested). Now,

define an index j, initialized at j = 0,; let ud denote the upper boﬁnd (we

now have UO); Let L denote the lower bound and proceed to step (a).

(a) Let J = j+ 1, and we are in the jth iteration. If Uj_1 - L < gy,
stop. (Note: by setting €7 = 0 we may avoid using this stopping
criterion, which we can do since our procedure is inherently finite.)
Else, go to (b).

(b) By a proper method (discussed separately), choose a leaving path, adjust
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all the other paths to their new minimum (if they shared arcs with the
leaving path), reassign all the flows which used the leaving path,
calculate UJ according to the new situation, and go to (b). IF there is
no candidate to leave, stop.

(¢) 1f Uj—1 - i« €9 (or Uj_'m - vl < €9, for any m), stop. Else go to

(a). (Again, we may choose g9 = 0.)

It remains to discuss proper methods to choose a leaving path. We
discuss two methods suggested by Barbier, show counterexamples to both (which
is not surprising; we are disuccsing heuristics here), and proceed to suggest
two more heuristics. Both are better but require more computing power,
especially one of them which could not have been seriously suggested for the
computers Barbier could access in 1966. We still take care to have polynomial

convergence, though.

Method A: Choose the path p (connecting two nodes of N) for which mpqp/lp is

minimized (where m_ = Im

P 4 and RP = Zla over the arcs in the path), provided

there 1s an immediate gain.

y

12/ 12 (5,1

(2,0.8) (7,1.8)

(1,1

(2,0.6)

(d) (o) (v (a)
Figure 3
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Counterexample A: In Figure 3 four possible topologies are depicted, where

the data in parentheses in part (a) of the figure is (qij’ d(i,j)); e.g.,

q14 = 7, d(1,4) = 1.8. Let f be as in (9), with g(q) = 1.55 + q; q > O

(0; otherwise); e.g., if we assign a flow of 6 to arc (1,4), it would cost
(1.55 + 6) x 1.8 = 13.59; a flow of 7 would cost 15.39 there, etc. At the
beginning we assign the flows to the direct arcs (in this example arcs and
paths connecting pairs of N are identical), these being the shortest
distances, to obtain U0 = 28.75. (b), (c) and (d) would imply costs of 27.4,
27.36 and 27.4, respectively, so (c) is optimal; but according to Method A we
have to delete arc 1,3, since it is the one which minimizes the ratio, and now

we are stuck in (b), since there are no more candidates to leave.

Method B: To overcome that problem, Barbier suggested the following method
(wvhich would indeed work properly for the case above): delete the arc with

the maximal flow first, if there is an immediate gain.

Counterexample B: As before, but g(q) =1 + q, yielding 26, 25.2, 25.6 and

26.2 for (a) through (d), respectively. Now (b) is optimal, but Method B

would lead us to (c)!

The following method is not much more expensive than either of the above,

and it is really the least we can do.

Method C: On each step choose according to Method A or B, whichever ylelds a
larger immediate gain.
And if the problem justifies some more expense, and ours certainly does,

then Method D should perhaps be chosen.

Method D: Check all arcs, one by one, and choose the one with the best

immediate gain.
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In our simple example, Method C and D would outperform A or B equally
well. In more complex situations D should tend to do better than C. Since we
chose to delete arcs successively, without considering interim additions, the
polynomial convergence of any of them is assured. Note that n is the number
of concern to us here, and not the number of nodes in the honeycomb grid--
although that number affects the length of the minimal path searches.

Sometimes, it should be noted, it is clear that a certain arc must be
part of the solution. E.g., if the flow demand 9 3 is high, and if the
shorteset path without (i,j) is long in terms of Im,, i.e., if mj is the

P

minimal m distance between i and j when a = (i,j) is excluded, and if

11 > +
(11) m.p q.. Xa m.aqi

ij j’

then a should be part of any optimal solution. This would tend to introduce
large flow "central” arcs to the "fixed"” set. On the other hand, points on
the periphery, with small total flow demand may be connected through a nearest
"inside" neighbor, again fixing some arcs, and changing the demand of the
neighbor (in effect we can then forget these nodes). ‘The fact that some arcs
are fixed may enable us to fix other arcs in a second wave, etc. We would do
that if the fixed arc is on the shortest path of the m costs for a neighboring
node(s), and the additional & costs required are low relative to the higher
cost implied by not using the fixed arc for that flow (using the same
rationale of (11)). Incidentally, such considerations can also serve with
branch and bound techniques, where the inclusion of certain arcs may imply
others, thus pruning the search tree a bit.

The second heuristic we consider is based on additions (versus deletions

before). Now we start with a "good” spanning tree, and add arcs to it as
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required. According to Dionne and Florian [9], a similar algorithm did not
perform very well. However, they use the budget constraint version, and start
with the regular minimal spanning tree——not necessarily the best heuristic
choice for the initial solution. They also allow deletions interleaved with
additions (which should improve the result, but jeopardize the poly-
nomiality). In some more detail, starting with j = O, a spanning tree of some
kind (discussed further, below), with an upper bound u0 implied by it, and L

as before. Proceed to (a).

h

(a) Let j= j+ 1, and we are in the jt iteration. If UJ—1 -L < ¢

1’
stop. Else, go to (b).
(b) Choose the best path, i,j; i,j € N, to improve UJ. If there is no

candidate, stop. Else perform the addition, calculate Ud and go to (c¢).

(e¢) 1If UJ_.1 -ud« €, (or vd™ - gl ¢ €9, etc.), stop. Else go to (a)-

If it seems that the addition heuristic is more attractive than the
deletion one (if!), it may be due to the fact that it imitates the natural
"no—-design” network design process, where new highways are added, hopefully as
per (b), whenever a budget can be found. However, with some reflection we
conclude that the deletion heuristic can be easily adapted to serve as well,

and give a better picture of the "future,” by going backwards from the optimal
solution and continue to delete arcs according to a minimal loss criteriom.

Another important issue we should discuss further is how to choose the
initial tree. This problem is not trivial at all for the flow dependent costs
case! E;g., we may think (not correctly perhaps), that the minimal spanning
tree is a good start (as in [9]). But, although it is true that if the

minimal total distance spanning tree (i.e., the regular one) is sought, then

the regular algorithm suggested by Prim [25] can serve well to locate it; the
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real problem of finding the minimal spanning tree with flow dependent costs is

tougher, as per the next theorem.

Theorem 2: Even if we restrict the solution of the network design problem to

be a tree, we still have an NP-complete problem.

Proof: Set 94 = 1; ¥i,je N, and %, = 0 (or any other constant); ¥ a, and
we have an instance of the minimal total paths tree problem, which is

NP-complete [17]. i

Note that if we set %, = M, where M is large enough, then the tree
restriction is satisfied automatically! Hence, this proof suffices for
Theorem 1 as well.

In addition to the minimal spanning tree, other possibilities should be
explored, and even if we want to confine ourselves to "polynomial” ones, our
choice is rather large. The regular shortest path tree for one of the
"central” points may be attractive in some situations; we may like to enter
large direct flow arcs first; criteria such as ma/kg could be used (where B is
some positive parameter), and the minimal spanning tree for these values may
serve, arcs implied to be fixed by (11) may be the basis of the tree, etc.

Since we have not yet introduced the Steiner points except, perhaps, some
which made their way in "uninvited,” so to speak, we should also consider the
SALMOF method by Steenbrink [26], the Dantzig et al. [7] decomposition method,
the method suggested by Dionne and Florian [9], after adaptation to the flow
dependent cost case (though it is exponential), and so on, as elaborated by

Magnantl and Wong.

Inserting Steiner Points: Briefly stated, the method described above, for the

Steiner tree in a graph (in connection with the lower bound), can serve for
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the network case equally easily. This can be done interactively very
efficiently and though there is no reason not to do it automatically, the
required programming effort may not be justified. It would be so if we
compared many networks after the Steiner insertion, but so far our procedure
is to first design a regular network and then insert the Steiner points.
Incidentally, in the Euclidean Steiner tree case an analog procedure [4, 19],
saves about 2.5%Z on average. In the flow weighted case there is some evidence
that the savings may be slightly less over the optimal costs (see [34]), but
some examples show that it will not be significantly less even if we do start
with the optimal network. However, starting with the optimal network is
easier said then done, and if we start with a suboptimal one, we can sometimes
save more; and in the network case we may have to start with a suboptimal
network by necessity, as opposed to the tree case. In addition, there are
some reasons to prefer the Y junctions implied by the Steiner insertion (see

Figure 4). Appendix C deals with that issue.

Final Touches: At this stage we have a piecewise linear network, with the

deterministic given flow demands assigned to it. This is the time to apply
such methods as described in [31] to obtain a network with smooth curvature-
contraint—abiding highways. (But see [32] for a discussion of the curvature
issue in the piecewise linear version as well. The solution suggested there
extends directly to our case, without any problem whatsoever.) When we obtain
these smooth highways, we may find that the Steiner points have to be shifted
around for a while until a local optimum is obtained. However, the solution
is not very sensitive to the exact location of these, since in the vicinity of
the optimum the function concerned is rather flat usually. At this (more)
exact design stage, we may wish to use Wardrop's second criterion, rather than

the first (i.e., user optimized path choice as opposed to system optimal one,
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Weaving area

Figure 4
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which may be unrealistic). The issue does not arise with linear (or concave)
cost functions for the preliminary design stage, but it does arise after we
settle on a width choice and the users confront personal costs which are not

identical to society's costs. We can also consider the suply-demand effect on
34 now-

With some effort the method can also be adapted to augmenting existing
networks [27], though in the presence of Steiner points this is no longer a
case of regular network design. The problem is somewhat complicated since
connections can be made along highways, and not just to nodes of N. 1In the
honeycomb network representation distances along existing highways should now
reflect the costs of changes rather than of new highways, and for some flow
values it may mean no intercept value. Also, these existing highways will

usually not be deleteable (though due to the Braess' paradox this may be

indicated sometimes).
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Appendix A

Designing a Single Highway Between Two Points

for Given Traffic Flow

In [32], it has been shown that the vertical aligmment problem (also
refered to as the "red line" problem), including considerations such as earth
moving cost and projected capitalized and users' costs (mainly fuel and time
value, but also accidents and mechanical wear and tear) is to minimize a
convex functional. Constraints on the curvature can be accommodated, and do
not change the picture as far as convexity is concerned. Constraints on the
slopes are not required any more, since the users' costs are a function of the
slope (and of the traffic flow), and the choice of the best slopes is hest
left to the optimizing procedure itself. (Note that really excessive slopes,
which some vehicles cannot negotiate, imply infinite users' costs, and are
thus automatically avoided. Another interesting feature here is that for
similar traffic flow and terrain the design may be different for different
countries due to different time values, rates of return, and so on. The need
for such differentiationrand of taking the traffic flow into account in a
direct manner was independently noted recently in [2], where the issues
addressed are curvature and slow lanes.) TIn [31] a method is shown how to
solve this convex functional by natural cubic spline functions and a quasi-
Newtonian search method with derivatives. A similar method, but without
derivativess (due to the nature of the problem), is extended there to the
horizontal alignment problem, where the input is a piecewise linear
trajectory, and the output is a smooth, curvature—-constraint—abiding curve in

the neighborhood, which is locally optimal. Other constraints on the
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trajectory, to the amount they are not taken care of by the picewise linear
trajectory, can be accommodated with ease. (Sometimes such constraints are a
blessing in the manual design process; in the automated process, with
computing costs being what they are today——or even less in the future, most
probably——we can take it or leave it.)

It remains to discuss how to obtain the piecewise linear trajectory
required for the process described. For short stretches, it may very well be
appropriate to start with a straight line. This is certainly true if the
distance is much less than twice the allowed radius of curvature (see the
discussion of a bound on the search area in [32]). However, in our case here,
where we are ultimately concerned with the design of very long stretches and a
complete network of these, we need a search grid of some kind. E.g., Turner
[35] suggested a square grid with eight directions from each node (the nodes
are placed in the squares' centers). All kinds of costs are assigned to the
squares (he does not dwell much on how this is done), and a shortest path is
sought. In [32] several other methods are also discussed, in addition to the
square grid method mentioned, specifically and a honeycomb grid, with twelve
directions associated with the hours of a clock is introduced there (see
Figure 1).

Now, such a grid (square or honeycomb) can take care effectively of
important costs such as right of way (including such constraints which
actually mean prohibitive right of way costs), ecological and social penalty
costs, earth quality, etc. Some other important costs depend on the length of
the highway and possibly its general location but are not very sensitive to
the exact alignment, e.g., pavement costs and capitalized maintenance costs;
these costs can also be accounted for satisfactorily by a grid. The problem

arises when we wish to approximate the exact-alignment-sensitive costs, and
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these include earth moving costs and capitalized users costs as affected by
the highway slope. It is in order to approximate these costs satisfactorily
that the honeycomb grid is indeed superior to the simpler square one, as
elaborated in [32]. A possible way to take these costs into account is by
solving the exact aligmment problem for each arc of the grid. To ensure
compatibility of the endpoints elevations we can choose several ways: (i)
extend the arcs to both sides before solving for the alignment, and then chop
off the extra margins—~-this will tend to make the conditions in the
neighboring hexagons affect the design properly; (ii) solve for a set of
possible elevations (that is, obtain the arcs' costs as functions of the end
elevations); or finally (iii) impose the endpoints elevations from the
beginning by a proper heuristic. Be that as it may, the problem is tractable
(when we consider its importance).

Needless to say, without some good DIM system, such methods are
useless. It does seem that DIMs are alive and well these days, though, so

this should not be a hindrance.



Apopendix 3B

A Lower Bound for f(q) in Flat Terrain Conditions

Assume that the construction costs CC are

(B1) CC =b+k s c; bye, >0,

where k is the number of lanes in each direction, b is a fixed cost (right of
way, design, etc.), and ¢ is the marginal cost here. (Except for the case of
slow truck lanes in upgrades, we may nowadays assume that there is an equal
number of lanes in each direction; and for the flat case we are discussing
there are no such lanes.) Further, assume low lane changing activity, but
enough to obtain equal load on the lanes. (This assumption is more and more
valid when the traffic increases, and that is when we really care anyway.)
Now clearly for any positive q we have to invest b + ¢ at least, for a
single lane (in each direction). As for the users' costs, the cost for each
user is a positive nondecreasing convex function of the traffic flow in the
lane. The function is fairly constant for low traffic, and then starts
climbing faster. (See [33] for a detailed description. Note that we are not
talking about time alone here, where these claims would be very basic
indeed. A similar result holds for these costs as a function of the slope,
but not necessarily for a function of these two variables together.) Denote
that function as TC(q), and since have q such users, the users' cost
assoclated with it, given that we just have one lane per direction, QC(q), is

as follows
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(B2) QC(q) = C * q * TC(q)

where C is a capitalization factor. Now, q is convex and monotone, as is
TC(q). It follows that QC(q) is likewise (to verify, take the second
derivative). Let TC,(q) denote the users' cost for k lanes carrying a total
traffic of q, and similarly for QCk(q). Then, under our second assumption,

for k lanes we get

(B3) QCy(g) =C g+ TC(q) =C + q « TC1(q/k).

Clearly (B2) is a special case and should be written with indices of 1.

Adding our fixed costs we obtain a function fk(q) as follows

(B4) f (@) = b+ k ¢ (c + C ¢ (q/k) * TC1(q/k))-

Now, the average cost per user, except for her or his share of b (which

can only decrease with q) is

(B5) (£ (a) - b)/q,

and we try to minimize it by taking the derivative by q. For k = 1, we get

(86) &£ ,(a) - B)/ql = $le/a + C + TC ()] = C » T¢;(q) - e/’
dgt*'1 dgq 1 1

And this derivative is zero (or changes sign if TC;(q) is not continuously

differentiable, a possibility we neglect henceforth) for qp such that
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(87) qg = arg{C . TC'(qO) . q2 = c}.

This value exists and is unique, due to the convexity of TC. The
geometrical interpretation is that the tangent to f1(qqg) passes through the
intercept b. But, extend this tangent further, and it turns out to be the
tangent of £5(2qq), f3(3qo), etc., i.e., it supports the whole set of

functions {fk(q)}k=1,2,-.. and it does that at k ¢ qg. As advertised, this is

a lower bound on our total costs function

(89) £(q) = min{f (O}, _; , .
. 2, .

Figure 2 depicts this result.
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Appendix C

Are Two Y's Better than one Regular Cross(roads)?

Yes. Figures Cl and 4 may suffice to make the point.

~x
<
3
(-

-

Figure Cl

By splitting a regular crossroads into two Y junctions the number of full
conflicts is reduced from 16 to a total of 6. Even considering the weaving

which results, the picture with regard to half conflicts is still rosy as
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well. Furthermore, half conflicts are not half-dangerous when compared to
full conflicts, since the relative velocity involved is very low! (A popular
stunt in wmovies is the side-ram, where two high speeding cars collide
clashingly, with non—-fatal dents the only damage usually. What the
nonengineering minded audience is not aware of is, that although the cars are
speeding, their relative velocity is low.)

However, if we do split crossroads to Y-pairs, we must maintain a
distance of 300-2000 meters between them depending on the traffic flow, to
allow for comfortable weaving [l6, Chap. 7]. Another point we should mention
is that when we use fully separated intersections the advantage is that no
full conflicts exist, but half conflicts persist. For a certain traffic flow
and up, these expensive separated intersections are justified, and then the

advantages of splitting disappear, but it may still yield a bhetter and shorter

network.
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