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Correction

Line -12: "Chatterjee and Samuelson (1879)" should be
"Chatterjee and Samuelson (1983)".

Line -7: '"repitition" should be "repetition".

Line -4 from the bottom: "rate convergence" should be

"rate of convergence".

4 . " n u mn
Line 9 from top: Z;_ 4+ Zj,q should be zj—l’ Zsp1
Line 3 below eq. (2.12) should read: ". . . for (2.12).
Ineqgualities (2.11) and (2.12) are n
Line -11: "Theorem 1" should be "Theorem 3.1".

Line -4 from bottom: "ws(zl,a)]" should be "ws(zN,a)]".

Eg. (4.04): "i=1,...,N" should be "j=1,...,N".

Line 3 below eq. (5.04): "Table 1" should be "Table
5.1",

Line 6 from top: "a*-mechanism" should be "u*-
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mechanism".
Line 10 from top: "chnages" should be "changes".
Line -9 from bottom: "Section 4% should be "Section 2".

Line -4 from bottom: "Eg(xi)" should be "ETa(xi)".

Line -1 from bottom: "wB(xi)" should be "wB(xi,a)".
Eg. (6.03): "o (F" should be "eF".
Line 8 below eq. (6.07): the formula should be: "cf(t)

+ [TMONO/(MO+NO)][ﬁ(t)-ﬁ(t)]2 > cf(t)"

Lines -8 and -7: the positions of "N=tN_." and "M=tM_."

0 0
should be exchanged.
Line 1 from top in eg. (6.12): "1 - DT(t)]" should be
n - "
1 TpT(t)] .
Line 2 from top in eqg. (6.12): the final upper limit of

integration should be "-¢(n)", not "¢(n)".

In eg. (6.14) the lower limit of integration should be
a", not a'.

The proof of Th. 6.4 is incorrect beginning with the
sentence following eq. (6.15)., The following should be

substituted beginning with that sentence.

Consider the two integrals whose region of integration covers

the interval [-¢£(n),¢(n)]. Let T' be the distribution fuction of

CT1/2(

T—gp) where
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l/2
(M0+N0)

l/2

C = .
!
0(£p)/{(M0+NO) r (£p)}
The distribution functions TpT and 7' have the property that

1/2 1/2t,

t) = T(t) for all t € [a',b']. Let u = CT ¢! =

1/2

T'(CT

C'rl/2

¢(n), and C' = (CT )_1. Therefore

'Jg(n)[l—TpT(t)]dt - J?S(n)Tpt(t)dtl
C‘IIZ'[I—T'(u)]du - I?S,T'(u)dul (6.16)
C"Ig'{[l—T'(u)]—[l—@(u)]}du + 5 11-¢(u) 1aqu

- [ o w - (wy1au - I?€,¢(u)du|

C'IJE;,[Q(u) - T'(u)]dul

because

[¢ t1-e(wy1au = [° ¢(w)au. (6.17)

Theorem 6.3 applies to the right hand side of (6.16); therefore

’Is(n)[l -1__(t)lat Iog(n) Dt(t)dt|
= c'ljf;,[¢(u) - T'(u)]dul (6.18)
< 2¢c'¢! sEp I@(u) - T'(u)l = o[L&E_%LEQ%
because C't' = ¢(n), €(n) = O[(2n n)*/2/n'/?] and
sup_[#(u)-T"'(u)| = 0(1/n%/?). Finally, combining (6.15) and

(6.18),
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/2

] + 2(b' - a') (6.19)
n

/2

1 i/2
_ (xn n)
B 0[ n

) - o[ r]

This completes the proof..
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Table 6.1: The headings of columns 2 and 3 should be
exchanged. Also the denominator of the last entry in

column 6 should be "T(MO+NO)—1".

Line -9: "(6.02)" should be "(6.03)".

In eg. (6.26): ng should be ng .

Line 2 of Th. 6.5's proof: "(6.27)" should be "(6.26)".
Eq. (6.36): "t." should be "¢_ ",

ag. ( ) §p ﬁpw

Eg. (6.37): the left-hand side should be "EPT—gP".
Line -1 from bottom: "p°' and g " should be "p' © and
aT(X "

Lines -5 and -4 above the displayed equation: "because

monotonic." should be "because wB(x,a)—x < 0 and
ws(x,a)—x > 0."
The displayed equation's integrand should end with
"h(z)dz". .
Line -2 from bottom: "Theorem 6.2" should be "Theorem

6.5",

Displayed equation at the bottom: the integral should
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be ”KMIZ wB(x,1)57*(x) £ (x)dx".

Line 1 below eq.

Line 4 below eq.

(7.05):

(7.10):

"sellers" should be "buyers".

"thus o

asymptotically pB".

Eq. (7.12):

n
B should be

"thus

“I"(c)(t—c)z" should be "(1/2)I"(c)(t—c)2".

Similarly "J"(t-c)2" should be "(1/2)J3"(c)(t-c)>2",

Line 1 of eq.

(7.13):

"x(&,T)" should be "§(a,T)"

Line -2:

"E(O,w)" should be "E(O,T)".

Line -1 from bottom:

the last sentence should be

"Therefore solving (7.14) gives,

for large T1.,"

Egq. (7.16): "limT*m a'(t)"” should be "u'(T)".
Eg. (7.18): The second equation within (7.18) should
be:
£2% - (F-1)f'%
- F-1 o
X o+ + o
o f 2
f
. h?z - Hh'z
_ H jod o4
=z, t§i t«A 5
h
Line 2 below eq. (7.18): "3a" should be "a3u".
Line 3 below eq. (7.18): "as o" should be "as T1".
Line 4 below eq. (7.18): "as T » " should be deleted.
Eq. (7.19): "[1+4f-(f-1)h]" should be "[fH-~(F-1)h]".
Line 2 below eq. (7.19): "(7.18)" should be "(7.15)".
Eg. (7.20): "a'{(T)dTr)" should be "u'(T)dT"
Line 2 from the top: "MO[C'K'" should be "MOI'K'"
Egq. (7.21): "+(1/K)" should be "-(1/K)", "+(1/2K)"
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should be "-(1/2K)", and "02(0,w)" should be "cg(o,w)".
Theorem 7.1: "Theorem 7.1" should be "Theorem 7.2" and,
on line 3 of the theorem, "efficient would" should be
"efficient trading mechanism would".

Line 2 below eqg. (7.25): ‘"terms of on" should be "terms
on".

The right side of eguation (7.29) should be:
I = 2 = 2
—TNo[(c—z)[hzaa+h'(za) 1 - h(z) ]

—TMO[(ﬁ—c)[fﬁaa+f'(§z)2] - f(ia)z]

Eq. (7.33): "[a(T)]%" should be "(1/2)[a(T)]12".

Line 2 of eg. (A.02): "+Zj" should be "+(1/n)Zj".

Line 1 of eg. (A.05): "«" should be "=".

Line 3 of eqg. (A.23): "é(—Ln)" should be "e(L )",

Line -1 above eqg. (A.30): "F'(wp)" should be “F'(ED)".
Line 1 below eg. (A.32): "(A.41)" should be "(A.32)".
Eg. (A.37): "T1/2" should be "T_1/2".

Line 1 below eq. (A.41): "(A.44)" should be "(A.35)".
Line 1 below eqg. (A.43): "(A.52) and (A.53)" should be
"(A.42) and (A.43)".

Line 3 below (A.44): "ng" should be "gﬁT".

Line -5 from the bottom: "ivdividual" should be

"individual".

Line ~1 from the bottom: "seller's" should be
"trader's".

Line 4 from the top: "(1981)" should be "(1983)".
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Line 6 from the top: "(1982)" should be "(1984)".
Footnote 22 should read as follows: "The reason that we

o

make (7.12) conditional on T being large is that &T {(a)
> 0 and p (b) < 1 for small T, i.e., they are improper
distribution functions. As T becomes large &Ta(a) - 0
and p *(b) » 1 quickly. Specifically, Theorem 6.1
implies that both g “(a) and 1-p *(b) are O(e '). For
large T these guantities are negligible and we nmay
neglect them."

The following three citations should be added: (i)

Gnedenko, B. 1962. Theory of Probability. New York:

Chelsea Publishing Co. (ii) Ledyard, J. 1986. The
scope of the hypothesis of Bayesian equilibrium. J. of

Economic Theory 39: 59-82. (iii) Mvyerson, R. 1984.

Two-person bargaining problems with incomplete

information. Econometrica 52: 461-88.
Line 5 from top: "B. "Optimal" should be "B. 1981.
Optimal™.
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Introduction

If the number of buyers and sellers trading within a market is large,
then the market almost surely becomes perfectly competitive and therefore ex
post Pareto efficient.1 Left open by this result is the question of how many
traders are required in a market to make it "large” enough that rational
traders find it in their interests to behave for all practical purposes as
price takers. Our goals in this theoretical paper are, first, to outline a
technique for studying this question within a simple market and, second, to
show through application of this technique that as the number of traders on
each side of the market increases the relative amount by which the final
allocation deviates from the ex post efficent allocation is asymptotically

O((ln T)/TZ) where t is proportional to the total number of buyers and
sellers.

The simple market of n traders that we study is composed of N sellers who
each have one indivisible unit of the traded commodity, M buyers who seek to
purchase a single unit of the commodity, and money. The monetary reservation
values buyers and sellers place on one unit of the commodity fully describe
their preferences for the traded commodity. All traders' preferences are
linear in money. Trade takes place through a trading mechanism. Each trader
simultaneously and noncooperatively signals the value he or she places on a
unit of the traded commodity. The trading mechanism, which is a set of rules,
then processes the signals, allocates the N objects to N of the traders, and
prescribes what money payments the traders should make among themselves.

Each individual's reservation value is private and unverifiable by the
other market participants. Traders have Bayesian priors about all other

traders' reservation values and these priors are common knowledge among all
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the traders. It is common knowledge that all traders believe that the
reservation values are independent of each other.? This unobservability of
reservation values means that the trading mechanism allocates objects and
money based on the values traders report, which may or may not be their true
values. Consequently in a small market each individual has influence on price
and may in equilibrium exaggerate his or her value strategically in order to
manipulate the price up or down in the expectation of securing a greater share
of the available gains from trade. In the language of Williamson (1975), each
trader may be expected to be opportunistic.

It is this manipulation that causes the market we study to be
noncompetitive and ex post inefficient in its outcome. This can be seen by
considering the case of a market with a single seller and a single buyer.
Suppose the reservation value of the seller is 48¢ and the reservation value
of the buyer is 52?. Ex post efficiency requires that the trade be consumated
since the object is more valuable to the buyer than the seller. Nevertheless,
depending on the seller's and buyer's beliefs about each other's reservation
values, the trade may fail to take place. For example, if the buyer is quite
confident that the seller's reservation value lies in the interval 25¢ to 55§,
he may hold out for a price less than 50¢. Similarly, if the seller is quite
confident that the buyer's reservation value lies in the interval 45¢ to 75¢,
then he may hold out for a price greater than 50¢. But if this happens no
trade occurs and the outcome is ex post inefficient. Note that this
inefficiency is a direct consequence of each individual not being able to
observe the other individual's true reservation value.

As the number of traders on each side of the market increases, then how
quickly does this inefficiency approach zero? We approach this question in

four steps. First, we model the trading problem as a game of incomplete
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information where the appropriate equilibrium concept is the Bayesian Nash
equilibrium.3 Second, we outline a generalization of Myerson and
Satterthwaite's results (1983) for bilateral trade to the case of multilateral
trade. For the case of one buyer and one seller they used the revelation
principle to characterize all individually rational, incentive compatible
trading mechanisms and developed a technique for calculating ex ante

efficient, individually rational, bilateral trading mechanisms.4

We present
parallel results for arbitrary numbers of buyers and sellers.

Our third step is to apply this theory to a specific example. For a
simple market ranging up to twelve individuals on each side we calculate the
properties of the ex ante efficient, incentive compatible trading mechanism
that maximizes the expected gains from trade. The key assumption of the
example is that each individual's reservation value is drawn from a uniform
distribution over the interval [0, 1]. This, for the case of one buyer and
one seller, is precisely the same example that Chatterjee and Samuelson
(1979), Myerson and Satterthwaite (1983), and Wilson (1982) have used in their
papers.

The results of the example are this. If the ex ante efficient mechanism
(that maximizes the expected gains from trade) is used repeatedly with the
reservation values of the single buyer and the single seller being drawn
independently and uniformly each repitition from the unit interval, then the
total gains from trade realized by the participants would average out over the
long run to 84.367% of the value to which it would average out if, for each
draw, each individual's true reservation value were common knowledge and the
traded object were always assigned to the individual with the higher
reservation value. If the number of individuals on each side of the market is

increased from one to six, then the ex ante efficient mechanism realizes in
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expectation 99.31% of the gains from trade that an ex post efficient mechanism
would realize. For twelve individuals on each side of the market this number
rises to 99.83%. These numerical results follow the pattern that as the
number of individuals on each side of the market increases, then the ex post
gains from trade that the ex ante efficient mechanism fails to capture
decreases almost quadratically. Consequently by the time this specific market
reaches five or six individuals per side the inefficiency is inconsequential.
The fourth step, and main result of the paper, is to prove that this
almost quadratic convergence is a general pheneomenon for simple markets where
traders' utility functions for money and one unit of the traded commodity are
'separable and linear in money. We show that as an original market with My

buyers and Ny sellers is replicated a large number of times, then

%
_TCa ,7) _ An<
1 T({,t) 0(12 )

where v is the number of replications, T(a*,T) is the gains from trade that
the ex ante optimal mechanism realizes, and T(0,1) is the gains from trade

that an ex post optimal mechanism would realize if one existed. This result
holds whenever traders' prior beliefs concerning other traders' reservation

values satisfy a regularity condition.
2. The Model

We study the rate convergence to ex post optimality by replicating an
initial market with M; buyers and N sellers. An index t identifies the
number of replications. Therefore M = 1My and N = 1Ny respectively represent

the number of buyers and number of sellers in the market created through =
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replications of the initial market. Let n = MH#N be the total number of
traders. At points within the paper we use n and 1 interchangeably depending
on which is most convenient. There are N iaentical objects, each of which is
owned by a distinct seller. Each buyer seeks to buy a single unit of the
object, each seller seeks to sell his or her single unit. Buyers pay for
their purchases with money.

Buyer i's reservation value for the object, which is the maximum amount
that he can pay to purchase it and not reduce his utiliy, is x;. He or she
knows this value, but it is an unobservable quantity to all sellers and to all

. as distributed with

other buyers. Sellers and the other buyers regard x;

positive density f(+) over some bounded interval [a, b]. Similarly seller j
knows Zi» his or her own reservation value. Buyers and other sellers regard
it as distributed with positive density h(s) over [a, b]. Let the
distribution functions of these densities be F(+) and H(s) respectively.5 All
buyers and sellers consider the reservation values of other buyers and sellers
to be independent both of each other and their own values. The inital numbers
of buyers and sellers, the densities and associated cumulative distribution
functions constitﬁte the essential data of the trading problem that we
consider. Therefore we call the quadruplet <Mj, Ng, F, H> the trading
problem.

A trading problem <Mjy, Ny, F, H> is regular if: (i) F and H have
continuous and bounded first and second derivatives on (a, b), (ii) a
competitive price ¢ € (a, b) exists such that Mg(1-F(c)) = NgH(c), and (iii)
the functions x; + (F(x;) - 1)/f(x4) and Z3 + H(zj)/h(zj) are both
nondecreasing over the interval (a, b). The price c is the competitive price

in our market because M(1-F(c)) is the asymptotic expectation of the number of

buyers whose reservation values are greater than ¢ and NH(c) is the asymptotic
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expectation of the number of sellers whose reservation values are less than

c. Therefore c (or some price infinitesimally close to it) is the price that
balances supply and demand when the market becomes very large. The purpose of
this regularity assumption is to restrict the set of admissible trading
problems sufficiently to permit us to derive an asymptotic bound on the rate
of convergence to ex post efficiency.

Before defining what we mean by a trading mechanism, we must introduce
some notation. Let x = (Xy, + « «, X)), 2 = (27, o + «, 2Zy), X =
(xl, « o ey Xjo1s Xi4]s + o s> Xy), and z_y = (Z1s o o o5 2515 Zi4]s * ¢ o>
zN). The density g(x,z) = i=1f(xi) . H§=lh(zj) describes the joint
distribution of all the reservation values, the density g(x_i, z) = g(x,
z)/£(x;) describes the distribution of reservation values buyer i perceives
himself as facing, and the density g(x, z_j) = g(x, z)/h(zj) describes the
distribution of reservation values seller j perceives himself as facing.

A trading mechanism consists of N+M probability schedules and N+M payment
schedules that determine the final distribution of money and goods given the
N# declared valuations of the buyers and sellers. Let the probabilities of
an object being assigned to buyer 1 and seller j in the final distribution of
goods be p;(x,z) and q;(x,z) respectively where 1 indicates the replication to
which the probability schedules apply. Let the payments to buyer i and seller
j be rz(x,z) and s;(x,z) respectively. A negative value for r; indicates that
buyer i pays negative rI units of money for receiving one unit of the traded
object with probability pI. The rI and s; payments are not necessarily
conditional on whether buyer i actually receives an object or seller j
actually gives up his object.6 A trading mechanism for n traders is therefore
a 2M+2N vector (p, g, r, s) of probability and payment schedules. We assume

that the number of replications T, the joint distribution of reservation
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values g, the probability schedules p and q, and the payment schedules r and s
are common knowledge among all traders.

The payment and probability schedules are constrained so that in the
final distribution of goods and money all N objects are assigned to some

trader and payments exactly offset receipts. Thus:

M T N T _

Xi'—'lpi(x’z) + Xj=1qj (X,Z) =N (2.01)
and

M T N T _

Xi=1 r/(x,z) + Xj=lsj(x,z) =0 (2.02)

for all (x, z).7 The reason for this latter constraint is that trading
connotes individuals freely cooperating with one and another without
intervention or aid from a third party. The trading process is initiated when
all players simultaneously declare their reservation values. Given these bids
and offers, the N objects and money are reallocated as the trading mechanism
(p, q, r, s) mandates.

Each trader has a von Neumann—Morgenstern utility function that is
additively separable and linear in money and in the reservation value of the
traded object. Thus buyer i's expected utility, given that his true

reservation value is x; and the vectors of declared reservation values

i
are ; and ;, is
T (x,, %, 2) =r5(x, 2) + xp’(x, 2)e (2.03)
iti i 171
Seller j's expected utility, given that his true reservation value is Z; and

the declared values are x and z, is
T.G., x, 2) = s¥x, z) -z, +2z.q%x, 2). (2.04)
J J, b J( b J JqJ( b
The buyers' utility functions ﬁi are normalized so that if (x, z) are such
that buyer i is certain not to receive an object (pf = 0) and is not required

to make a cash payment (r; = 0), then his expected utility is zero. The

sellers' utility functions are normalized similarly.
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We place two additional constraints on the mechanisms that we consider.
First is individual rationality. It requires for each trader that, given any
admissible reservation value, the expected utility of participating in the
mechanism is nonnegative. 1If this constraint were violated, those individuals
with unfavorable reservation values would decline to participate in the
trading, thus contradicting our assumption that they do participate. Second
is incentive compatibility. An incentive compatible mechanism never gives any
trader an incentive to declare a reservation value different than his true
reservation value, i.e., declaration of true values is always a Bayesian Nash
equilibrium if the mechanism is incentive compatible. Imposing this
constraint greatly simplifies the analytics of the problem. We lose no
generality because the revelation principle states that for every mechanism an
equivalent incentive compatible mechanism exists.

Formalization of the individual rationality and incentive compatibility

constraints requires additional notation and definitions.8 Let

Ez(xi) = f...fp;(x,z)g(x_i,z)dx_idz, (2.05)

E;(zj) = f...fq;(x,z)g(x,z_j)dxdz_j, (2.06)

f;(xi) = f...frz(x,z)g(x_i,z)dx_idz, (2.07)
and

=T - T

Sj(zj) = f...fsj(x,z)g(x,z_j)dxdz_j. (2.08)

Conditional on buyer i's reservation value being x;, the quantities
Ez(xi) and ;;(Xi) are respectively his expected probability of receiving an
object and his expected money receipts. The quantities a; and ;; have
identical meanings for seller j. The expected utilities of buyer i and seller
j conditional on their reservation values are
U, (%) =t (%) + %07 (x;) (2.09)

and
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V.(z.) =s:(z.) -z, (1 - q:(z.)). 2.10)
J(J) J(J) J( qJ(J)) (
In terms of these definitions, individual rationality requires that, for all
buyers i and all sellers j, Ui(xi) > 0 for every X, € [a, D]
and Vj(zj) > 0 for every zj e [a, bl. Incentive compatibility is defined to
be that, for every buyer i and all X, and X, in [a, b]l,
_TA _TA

Ui(xi) > ri(xi) + xipi(xi) (2.11)

and, for every seller j and all z and z in [a, b],

V,(z) > 2 <£1'J?<£J.) - 1)+ §;<2j>. (2.12)

If (2.11) is violated for some X; and Xs s then buyer i has an incentive to

~

declare X; rather than his or her true reservation value, xj. The parallel
interpretation holds for (12). 1Inequalities (11) and (12) are therefore a

necessary and sufficient condition that the honest declaration of reservation

values is a Bayesian Nash equilibrium for the trading mechanism (p, q, r, S).

3. Characterization of Individually Rational Incentive Compatible Mechanisms

Theorem 1 characterizes all individually rational, incentive compatible
mechanisms. It exactly generalizes Myerson and Satterthwaite's (1981) Theorem
1 from the bilateral case to the general case of arbitrary numbers of buyers
and sellers. It provides the key to constructing ex ante optimal mechanisms
because it establishes that if the probability schedules (p, q) satisfy the
relatively simple constraint (3.01), then payment schedules (r, s) exist such
that the mechanism (p, q, r, s) is an individually rational, incentive
compatible trading mechanism. Therefore the construction of an ex ante
efficient mechanism reduces to a constrained maximization problem that

involves only the selection of the probability schedules (p, q).9

Theorem 3.1 Consider a given replication <t of a trading problen <M0, No»
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F, H>. Let p(e,e) and q(e,e) be the buyefs and sellers probability
schedules respectively. Functions r(e,+) and s(e,*) exist such that
(p,q,r,s) is an incentive compatible and individually rational mechanism
if and only if 5;(-) is a nondecreasing function for all buyers

i, €§(-) is a nondecreasing function for all sellers j, and

1 Fi(xi) -1 T

121 foor f(xi + "-?i-(—;i-;-—)pi (x,z)g(x,z)dxdz

| (3.01)
H.(z,)

f...f(zj + E;?ZJT)[I - q;(x,z)]g(x,z)dxdz > 0.
373

1
It~

j=1

Furthermore, given any individually rational, incentive compatible
mechanism, for all i and j, Ui(°) is nondecreasing, Vj(o) nonincreasing,

and

M . N M N
2 Ui(ai) + 2 v.(d.)) = 2 min Ui(x) + 2 min V. (z)

i=] j=13 3 i=1 xela,b] j=1 zela,b]

M Filx;) -1 ' '
= 2 f...f(xi + —~?—%;—7——)p;(x,z)g(x,z)dxdz (3,02)
i=1 it
N . H,(z,)
IRRERAS Fry L - agu2) 1gtx,2)dxdz.
j= j]

A detailed proof of this theorem that uses standard techniques is contained in
Gresik and Satterthwaite (1983). That proof includes explicit forms for the
payment functions r and s. Wilson (1982, 1983a) has also obtained the above

result.
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4. Constructing an Ex Ante Efficient, Individually Rational,

Incentive Compatible Trading Mechanism

A trader's ex ante expected utility from participating in trade is his
expected utility evaluated before he learns his reservation value for the
object. Thus ﬁi= fUi(t)fi(t)dt and V} = ij(t)hj(t)dt are respectively buyer
i and seller j's ex ante expected utilities. A trading mechanism is ex ante
Pareto optimal if no trader's ex ante expected utility can be increased
without decreasing some other trader's ex ante expected utility. Within our
particular model a mechanism is ex ante Pareto optimal if it maximizes the sum
of the traders' ex ante expected utilities or, equivalently, maximizes the sum
of their expected gains from trade.10 This follows from our assumption that
each trader's utility function is separable in money and the traded object's
reservation value. Within our model an ex post optimal trading mechanism is
one that assigns the N traded objects to the N traders who have the highest
reservation values.

Virtual reservation values play a crucial role in our construction of ex

ante efficient mechanisms. !l Buyer i's virtual reservation value (i = 1,...,
M) is

B F(Xi) -1

¢ (xi,a) =x ta- ——¥T§;3*—), (4.01)
and seller j's reservation value (j = 1,..., N) is

S H(z,)

¢ (zj,a) = zj + o o h(zj) (4.02)

where o is a nonnegative, scalar parameter. Let the vector of virtual
reservation values be ¢(x, z, «a) = [¢B(x1,a),..., ¢§(zj,a)].

Define Ri(x, z, a) to be the rank of the element ¢B(xi, a) within ¢ and
define Rj(x, Z, a) to be the rank of the element ¢S(zj, a) within ¢. For

example, if M =N =1 and ¢ = (.2, .4), then Rj-; = 2 and Rj=1 = 1.12 given
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this notation, given a trading problem <Mjy, Ny, F, H>, and given a replication
7, we may define a class of buyer and seller probability schedules that are
parameterized by o and that form the basis for the construction of the ex ante

efficient trading mechanisms that we study:

1 if Ri(x, z, a) <N

I
ety

pim(x,z) i=1,...,M; (4.03)

0 if Ri(x, z, o) > N

1 if R.(x, z, a) <N
Ta j
qj (X,Z)

I
—tm

i=1,¢..,N. (4.04)
0 if Rj(x, z, a) > N

Let p°% = (p;"s « + s p;a) and ¢"% = (q;% . . ., qg ). This pair of

probability schedules, which we call an g-schedule, assign the N available

objects to those N traders for whom the objects have the highest virtual

reservation values.

To T
)

For a given g-schedule (p ", q , Theorem 3.1 states necessary and

sufficient conditions for payment schedules (r, s) to exist such that the

resulting trading mechanism (pra, qTa

, T, s) is incentive compatible and
individually rational. Central to the theorem's requirements is inequality
(3.01), the incentive ompatibility and individual rationality (IC-IR)

constraint. For the case of an a—-schedule, substitution of (4.01) and (4.02)

into (3.01) yields:

¥

N
Gla D = foou f{ ] €, 00,2 - ) q,S(zj,l)[l-qJT"‘(x,z)]}g(x,zmdz (4.05)
| LY

e
> 0.
An g-schedule (p*%, q*%) is an a*-schedule if and only if an o* € [0, 1)
exists such that
a. either (i) G(a*, T) = 0 or (ii) G(0, 1) > 0 and o* = 0, and
b. Erg*(.) and E;a*(-) are nondecreasing over [a, b] for all buyers i

and all sellers j.
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An a*-schedule satisfies Theorem 3.1's requirements. Therefore payment

* * * % % *
schedules (r% , s*") exist such that the mechanism (pTa , ', £, s%) is
incentive compatible and individually rational. We call this mechanism the

a*-mechanism for the tth replication of trading problem <M0, Ny, F, B>.

In this section we assert that the ex ante efficient mechanism that
maximizes the gains from trade for a particular replication of a trading
problem is the a*-mechanism. Proofs of these assertions are contained in
Gresik and Satterthwaite (1983) and, in less detailed form, in Wilson (1982,
1983b). The proofs' techniques are standard for the incentive compatibility
literature and generalize Myerson and Satterthwaite's treatment (1983) of the
bilateral case. Theorem 4.1 states sufficient conditions for the o*-
mechanism-—-if it exists—-to be the ex ante efficient mechanism that maximizes
expected gains from trade. Theorem 4.2 states sufficient conditions for the
a*—mechanism to exist and be ex ante efficient for a given replication of a

trading problem.

Theorem 4.1 Suppose an a*-mechanism exists for the tth replication of
the trading problem Mgy, Ng, F, H>. The a*-trading

. a*  a* _a*  a*, . . . s
mechanism (p~ , @ , r , s ) is ex ante efficient, individually

rational, and incentive compatible. 1Its expected gains from trade are

positive.

Theorem 4.2 If <My, Ny, F, H> is a regular trading problem, then, for
every replication t, the a*-mechanism exists and is ex ante efficient,
individually rational, incentive compatible, and has positive ex ante

expected gains from trade.
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If the functions ¢B(-, 1) and ¢S(-, 1) are not nondecreasing as the definition
of a regular trading mechanism requires, then possibly, for some i or

i Eg*(O) or a?*(.) is decreasing. 1If so, Theorem 4.1 no longer applies and
the a*-mechanism is not incentive compatible. Therefore, for trading problems
that do not satisfy Theorem 4.2's conditions, we do not know (i) if incentive
compatible and individually rational mechanisms exist that result in some
trades being realized and (ii), if they do exist, what form the ex ante

efficient mechanism then assumes.
5. An Example

In this section we construct the ex ante efficient, incentive compatible,
and individually rational trading mechanisms that maximizes the expected gains
from trade for the special class of trading problems <M0, Ng, F, H> where Mgy =
Ng = 1 and all traders' reservation values are identically and uniformly
distributed on the unit interval. This distributional assumption
guarantees ¢B(-, 1) and ¢S(-,1) are nondecreasing as Theorem 4.2 requires.
Therefore an ex ante efficient g*—-mechanism exists for all replications 1. We
numerically calculate efficient mechanisms for replications ranging from one
to twelve and observe that, relative to the ex post efficient mechanism, the
expected gains from trade the ex ante efficient mechanism fails to realize
decreases in an almost quadratic manner.

The key step in constructing an efficient mechanism for a given number of
traders is to calculate the solution to G(a,t) = 0 that lies within the unit
interval., Given that traders' reservation values are uniformly distributed
over [0, 1],

¢B(Xi,a) = (1 + oc)xi - (5.01)
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and
cpS(zj ya) = (1 + oc)zj . : (5.02)

Since Ny = My = 1 the equation G(a,t) = O reduces to
Glay®) = v { i 0PI - fi ¢ (2,117 () h()dz } (5.03)
= ¢ { o - 1p™akix - [122(1 - %)z } = 0.

where all i and j subscripts have been supressed because all traders are
symmetric with each other. It may be rewritten as:

f5 {l2x - 115%) - 2x(1 - %1} dax = o. (5.04)
Calculation of the marginal probabilities p*(x) and q%*(z) is messy, but
straightforward.13

Table 1 presents the numerical results. For this special case of

uniformly distributed reservation values, the calculated values of o* have the
following interpretation., If buyer i with reservation value X; and seller j
with reservation value zj are each the marginal trader on his side of the
market, then necessarily i's virtual reservation value is greater than j's
virtual reservation value, i.e. ¢B(xi, ak) > ¢S(zj, a*). Substitution of
(5.01) and (5.02) into this inequality followed by some algebraic manipulation
shows that necessarily the marginal buyer's reservation value, X;» exceeds the
seller's reservation value, z., by at least a*/(l+o*). 1In other words, a
necessary condition for both buyer i and seller j to be the marginal traders
is

o*
- Z

X i > TF g% (5.05)

This required, positive difference in reservation values is the wedge that is
created by the asymmetric infomation within the market concerning reservation
values whenever the number of traders is small. Its presence is what makes
the achievement of ex post efficiency impossible. Note that as o* becomes

small the size of this wedge becomes essentially equal to the value of o*
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itself. The fourth column displays 1/a* and shows that o* is apparently
bounded from below by 1/2t. Therefore as the number of traders becomes large
the wedge apparently vanishes at the rate 1/21 approaches zero.

The column labeled "T(a*,t)"” contains for each replication the expected
gains from trade for the ex ante efficient, a*-mechanism. Recall that if o* =
0, then the mechanism would be ex post efficient. Therefore the column
labeled "T(0,71)" contains the expected gains from trade that an ex post
efficient mechanism would generate if such a mechanism were to exist. The
"Inefficiency” column is 1 - T(a*,t)/T(0,t); it represents the proportion of
the expected gains from trade that the ex ante efficient mechanism fails to
achieve relative to the expected gains from trade that an ex post efficient
mechanism would achieve. The table shows that-—-for this particular example of
a simple market——the inefficiency of this imperfectly competitive market
vanishes in an almost quadratic manner as the number of buyers and sellers
increases. By the time the market reaches ten or twelve traders, the

inefficiency is down to the negligible level of about 17%.

Table 5.1

Properties of the a*-Mechanism as the Number of Traders Increases
T a* a*/ (1+a*) 1/a* T(a*, 1) Gains(0, 1) Inefficiency
1 .3333 .2500 3.00 .14060 16667 . 1564
2 .2256 .1841 4,43 37746 .39999 .0563
3 .1603 .1382 6.24 .62572 .64286 .0267
4 .1225 .1091 8.17 .87527 .88887 .0153
6 .0827 0764 12.09 1.37507 1.38462 .0069
8 .0622 .0586 16.08 1.87504 1.88235 .0039
10 .0499 .0475 20,04 2.37501 2.38095 .0025
12 .0416 .0399 24,04 2.87501 2.88000 .0017
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6. Asymptotic Properties of the Distribution Functions Ea and aa

In Section 5 we presented numerical calculations for the case where
reservation values are uniformly distributed. These numerical results exhibit
approximately quadratic convergence to ex post efficiency as the number of
traders increases. Our goal in this and the next section is to establish the
generality of this observation. We prove that asymptotically the expected
gains from trade that the a*—mechanism, which is ex ante optimal, fails to
realize relative to the expected gains from trade that the ex post optimal
mechanism would realize if it existed is at most O((ﬂn 1)/12). This result is
true for all regular trading problems. In other words, it is a result that is
robust to chnages in the underlying distributions F and H. We have not
investigated if the result is robust with respect to the assumption that
traders' utilities are linear and separable in money and their reservation
values. The specific contribution of this section is several theorems
concerning the asymptotics of the marginal distributions ETa and ata. Section
7 uses these theorems to prove the main result concerning the order of the

unrealized gains from trade.

In Section 4 we defined ﬁta(xi) to be the marginal probability that a

. . . . 4
buyer i with reservation value X, receives an obJect.1

i Its interpretation in

terms of a simple random trial is this. Fix a. Draw independently

M-1 = TMO—I buyers' reservation values from F and N = TNO sellers' reservation
values from H. Transform these reservation values into virtual reservation
values using ¢B( ,o) and ¢S( ,a) respectively. The probability Ez(xi) is the
probability that buyer i's virtual reservation value ¢B(xi, a) is greater than
the Mth order statistic of the M#N-l virtual reservation values of the other

traders-15 1f ¢B(xi)——the virtual reservation value associated with xi—-is
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less than the Mth order statistic, then it does not rank among the top N
virtual reservation values and buyer i is not assigned an object. Denoté
with Epr this Mth order statistic.16 Then Era(xi) = Pr{gpT < ¢B(xi,a)}.
Thus, in order to understand ETa we must understand the Mth order
statistic Epr'

A standard result is that the Mth order statistic of a sample of
n = 1(M0+NO) random variables independently drawn from a single distribution
function is asymptotically normally distributed.!’ A second, less well-known
result is that the expected value of the Mth order statistic of a size n
random sample drawn from a distribution converges asymptotically towards the
population quantile of order My/(My+Ny) at a rate O(l/n).18 Two reasons exist
why these results cannot be applied directly to our problem. The first is
this. The M-l buyers' reservation values are drawn from the distribution F
and transformed into virtual reservation values by ¢B. Similarly the N
sellers' reservation values are drawn from the distribution H and transformed
by ¢S. Therefore the resulting sample of virtual reservation values are not
drawn, as the standard theorems require, from a single distribution; it is a
sample of nonidentically distributed random variables. The second problem is
that p'® is the distribution for the Mth order statistic of a sample size n-l
= M+N~1, not a sample of size m = MtN. In other words, as <t increases the
ratio of buyers to sellers in the sample underlying p'® changes. This section
resolves both problems.

In order to consider the first problem some amended notation is
necessary. The sample in which we are interested is the vector of virtual
reservation values {xl,...,xM, zl,...,zN} where M=1M,, N=1Ng, each virtual
reservation value x; is drawn independently from ﬁ, and each z; is

J

independently drawn from H. The distribution ¥ is the distribution that is
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obtained by drawing a reservation value from F and then transforming that
value into a virtual resevation value by means of &B( y ) q is similarly
defined. Let [a',b'] be the union of the supports of F and H. The dependence
of ¥ on « is suppressed because we are interested only in the asymptotic
behavior of ETa for fixed values of a. Note that here

{xl,...,xM, zl,...,zN} is the vector of virtual reservation values, not the
vector of reservation values as has been the case up to this point.

For any t € [a',b'], define the random variable
Z () = T I(x, <t) + 1. Iz, <t) (6.01)
T i=1 i j=1 h)

where I( ) is the indicator function. It is the sum of two binomial variates,
the first having sample size M=1My and probability of success F(t) and the
second having sample size N=1N; and probability of success H(t). The sample

distribution function is
r(t) =<~z (t) (6.02)
T n T

and the average distribution function is

r(e) = o(F(e) + (1 - o) (r) (6.03)
where 0 = MO/(MO + NO). Our assumptions concerning the underlying functions F
and H, from which ¥ and H derive, guarantee that T is strictly increasing on
[a', b']. The population quantile of order p is

g =inf {y: T(y) > pl. (6.04)
Py

and the sample quantile of order p is

ng = inf {y: FT(y) >pl. (6.05)
y
Whenever 1(M0+N0)p is an integer EPT is the T(MO+NO)REE_Order statistic of the

sample as well as being the sample qdantile of order p.19 Note
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that F(gp) = rt(ipr) = p for all integer t(MyH¥y)p. Finally, for given values
of 7 and t, the expected value of ZT(t) is

Zr(t) = t(My + NyIT(t) = nl'(t) (6.06)
and its variance is

o2(t) = w0 F(O) 1-F(e)] + N (o) [1-7(e)] ). (6.07)
The quantity ol(t) = o(t) = [cJ%(t)]l/2 is the standard deviation of the random
variable Z;(t).

Some intuition concerning the effect of sampling from F and H in fixed
proportions can be gained as follows. Consider an alternative sample
{yl, .« o ey yn} where n = 1(MyHNg) and each element yiyis drawn from T, the
average distribution function that averages F and H. The expected value of
the random variable ZiI(yi < t) is nl'(t) = ZT(t) and its variance
is ci(t) + P(l—p)[ﬁ(t)—ﬁ'(t)]2 > Gi(t). Thus drawing the sample {x1, . . ., ZN}
from ¥ and H in fixed proportions rather than from the average function T has
the effect of reducing the variability of the statistic Z .

The following three theorems are straightforward generalizations of
theorems found in Serfling (1980). His theorems are for the case of
independently and identically distributed random variables. Our theorems are
for the case where N = N elements of the sample are independently drawn
from F and M = My are independently drawn from H. The proofs are in Appendix
A. The first theorem, which adapts Serfling's Theorem 2.3.2 (p. 75) to our
context, places an exponential bound on the probability

~

of ng - gpl exceeding any given positive e.

Theorem 6.1l. Suppose p € (0, 1) and gp is the unique solution of T(t) =
p. Then, for every ¢ > O,

-2Tt(M

. + No)éi
Pr(lgp,E - gp|> £) < e

0
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where 56 = min {P(gp +€)-p, p - T(Ep,— e)}.

The second theorem, which adapts Serfling's Corollary B in Section 2.3.3 (p.

77), establishes the asymptotic normality of ng.

1
Theorem 6.2, If p € (0,1), T has a density I' in a neighborhood of gp,

and I'' is positive and continuous at Ep, then, for all t,

1/2,5
(g, = &)

/2
T (Ep)}

[t(M, + N )]
0 9 <t)=a(t).

lim Pr(
T c(gp)/{(Mo + Nj)

The third theorem, which adapts Serfling's Theorem C in Section 2.3.3 (p. 81),

establishes a rate at which Ept converges to asymptotic normality.

Theorem 6.3, Let p € (0,1). If, in a neighborhood of gp, T has a

positive, continuous density I'' and a bounded second derivative I, then

1/2 2
[t(M, + N)] (.= E) _
sup |Pr 0 0 15; P < t) - &t)] = 0(~ l/2).
—ot L c(Ep)/{(MO + Ny) F'(Ep)}

Theorems 6.1 and 6.3 allow us to show that the expected value of épr
converges to 5p at the rate of 0{(An 1)1/2/1} as 1 > «» This bound is slower,
but not greatly so, than the rate of 0(l1/t) that has been shown for the case
of samples composed of independently and identically distributed random
variables. We conjecture that our bound is not sharp and the faster rate is

in fact true.

Theorem 6.4. Let p € (0,1). If, in a neighborhood of gp, T has a
positive continuous density I'' and a bounded second derivative I, then,

as 1 + o,
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1/2
2 _ _ (in 1)
e, - &)] = o2}

Proof. By Taylor's theorem, for any € > 0, a gé € [gp,gp + €] exists

such that P(gp + g) - P(gp) = P'(gé)e. Similarly, a g; € [gp - g, gp] exists

such that P(Ep) - P(gp - €) P'(&;)e. This means, according to Theorem 6.1,

that for all £ > O that are small enough

. —zn[r'<ap>]2e2

Pr('ng - gp|> e) < 2 (6.08)

because r(gp) = p, g; and g; both approach gp as ¢ > 0, (6.08) is a looser
bound by a factor of 2 than the bound stated in Theorem 6.1, and

n = t(My + Ng). If we wish to pick e so that Pr(lng - §p|> g) < 1/n, it is
sufficient that ¢ satisfies, for large n,

—2n[r'<gp)]282

2e €

. (6.09)

= T

Therefore, provided n is large enough, if ¢ is selected so that

1/2
e > L (6.10)
2n{T' (£ )}
P
then Pr(lng - §p|> e) < 1/n. Therefore define the function e(n) to be
e(n) = K{£2§§E}1/2 (6.11)

where K = 1/r'(gp); it has the property that, for large enough n,
Pr e - > e(n)) < 1/n.
(Je,, = & ))

Let T,. be the distribution function for (gpt - Ep). Its expected value

is:20

A

b
E(gpT - gp) = fo [n - TpT(t)]dt - fgu Tpf(t)dt
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_ g(n) - _ 0
=57 I e(B)1de = [7 o T (e)dt (6.12)

+ jzzn) [ -1, (£))de - j;f(“) T (£)de.

where a" = a'-gp and b" = b'-§p. That T

P is nondecreasing implies that

i y (L= 1 (©)1de < " = @)1 - 1 [e()]}

e(n
= (b" - a(n))Pr(gpT - g, e(n)) (6.13)
< (b - a")Pr(l&pT - gp] > e(n))
v ooy L
< (b a') .
Similarly
fret T (6 < (' - a) L (6.14)
Therefore

BCe,, - 2] < f5® - 1 (olae - 21 (o

e(n) pT

b7 -e(n)
+ Ifg(n) 1 - TpT(t)dt| + |jaf(n Tpt(t)dtl (6.15)

< Ije(n) (1 -1 ()]de - joe(n) Ledde| + Zihl_i_éll,

Consider the two integrals whose region of integration cover the interval

[-e(n), e(n)]. They may be rewritten as:

|je(n) [1 -1 (e)]de - j_e( y T (t)dt|

= |f€(n) [1 -1, ()] - [1 - a(t)]}de + js(n) (1 - &(t)]dt
0
" oy 1Tpe® - @t - L0 atda] (6.16)
= | () _
|f_€(n) {a(t) TpT(t)}dt|
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because
e(n) _ (0
/s [1 - &(t)]dt = j_a(n) a(t)dt. (6.17)

Theorem 6.3 applies to the right hand side of (6.16); therefore,

e(n) _ _ 0
|75 I T, (©)1de = 7 TPT(t)dtl
= Ufir(lr)l) {a(t) - T(t)}dt| (6.18)
1/2
< 260w |a() - T, (0] = AL

because e{(n) = 0[(&n n)l/z/nl/zl and suptl@(t) - Tpr(t)l = 0(1/n1/2).

Finally, combining (6.13) and (6.18),

a 1/2 v a0
1/2 1/2
_ i n) _ arln 1)
S oy (U »

This completes the proof.e

Theorems 6.1 through 6.4 deal with the problem of the virtual reservation
value being nonidentically distributed. We now deal with the second problem,
the changing proportions problem. Specifically, Theorems 6.1 through 6.4
spell out the asymptotic properties of ng, which is the Mth order statistic
of the sample {xl,...,xM, zl,...,zN} of M + N virtual reservation values. The
changing proportions problem is that we actually need to know the asymptotic
properties of EPT’ which is the Mth order statistic of the sample
{xl,...,xM_l, zl,...,zN} of M + N - 1 virtual reservation values. The
remainder of this section shows that épr and sz have identical asymptotic

properties.
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Table 6.1
Construction of Samples that Generate %pr
Number of Number of Sample Mth
T Sellers Buyers 8(1) p(1) Order Statistic
1 o -1 N My - 1 M, _
- 0 M. +N —=1 _
My Ny - 1 M+ Ng - 1 &1
24, - 1 2, N
2 My - 1 2N, - =
20, TNy -1 Z0f FN) - 1 &2

K p ~ 1 ™o M, FN) - 1 My N - 1 &

Table 6.1 tabulates for increasing values of T the essential data
characteristics of the random samples that generate EPT. The "Number of
Sellers"” and the "Number of Buyers" columns lists the number of draws from F
(for buyers) and H (for sellers) respectively that compose the total sample of
M+N-1 virtual reservation values. T(t), as defined by equation (6.02)
involves the parameter 8. It is the proportion of the sample drawn from F.

The "8(t)" column lists this proportion for each 1. The "p(1)" column lists

the order of the quantile that is identical to the Mth order statistic.

Theorems 6.1 through 6.4 cannot be applied directly to the sequence of

sample quantiles {gpl’ ng""’ EPT,...} because p(t) and 9(x) vary with =;

they can, however, be applied to each ng individually. Theorem 6.2 gives

large sample, asymptotic approximations for the mean and variance of a given

ng. Thus, for a given T, E(ng) B ng where
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I'(t,t) = 6(0)F(t) + [1 - a(0)]f(L), (6.20)

ng € (a', b') is the asymptotic expectation of E%t satisfying

T(EPT,T) = p(1). (6.21)

and 6(t) and p(t) are from Table 6.1. Its asymptotic variance is

2_
(B _F )% = [0 )-117" Ty (6.22)
E g —g = T M0+N - b .
PT Pt 0 w-HrmG )2
= D (7 (2 )
where
2 ,= B _ L e o S Lo
] (ng’T) = Mo(l TMO)F(l F) + NOH(l H). (6.23)
and F = ?(EPT) and H = ﬁ(EpT). These asymptotic approximations become good as

T becomes large.

As 1 > « the distribution of EPT approaches the distribution of épt'
Recall that ng is the Mth order statistic of the sample (xj,. « «, Xy,
Z]s« « +, zy) and that Theorems 6.2 through 6.4-apply directly to épT.
Asymptotically ng is normal with asymptotic expectation Ep satisfying

P(Ep) = p where T(t) = 6F(t) + (1 - @)i(t) and p = 6 = Mg/ (Mg + NO). Its

asymptotic variance is

2
5 o (Ep)

. ) g
ECE, 80" = eyl (6.24)

My ) [T (8 )1
where cz(gp) = MOF(I - + Noﬁ(l - fi). Note that, for any 71, the sample from
which gpt is calculated differs from the sample from which Eﬁt is calculated
only in that the EPT sample does not include observation xy while

the ng sample does include observation xy. This difference becomes
negligible in the calculation of the Mth order statistic as 1 + =; therefore
the asymptotic distribution of E%T is identical to the asymptotic normal

distribution of EPT' Consistent with this conclusion, note that, as T =+
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w, 9(t) > 9, p(t) » p, gpt > Ep’ and cz(épt’ T) =+ cz(gp). This argument is

summarized in the first part of the following theorem.

Theorem 6.5. Let gpt be the Mth order statistic of a sample
(xl,...,xM_l, zl,...,zN) where M = w3, N = 1Ny, all x; are drawn from §

and all z; are drawn from H, Let n = My + Np) and p = 0 =

(Mo/(MO+NO). If p € (0,1) and, in a neighborhood of gp, T has positive

continuous density T'' and bounded second derivative I, then, for any t,

1/2

lim Pr oy * o)) S‘z” ~ %) <t) = &t) (6.25)
THo o (ap)/{(Mo+N0) P'(Ep)}
and, as T > =,
1/2
= 2
IE(EpT - ap)l -ofn®) ? | (6.26)

The theorem is stated from the buyer's point of view. A simple relabeling of
the variables permits us to apply it to sellers.

Proof. The asymptotic normality of gpt is established by the argument
given immediately above. With respect to the rate of convergence (6.27), the
argument is this. Fix t. Theorem 6.4's asymptotic result implies that, for

any large value of T, that

/2

1
> 3 _ . (8n 1)
|E<apT apT)I = (=T, (6.27)

Rewritten in more explicit form this becomes

(in T)1/2

i = (6.28)

|EE,, - E, 0 <x

where KT is a constant that is specific to the value of 1. Pick K such that
K> supT(Kl, Kgyeoo, KT,...). Inspection of the proofs of Theorems 6.2

through 6.4 shows that, given F(s), ﬁ(-), Mg, and Ny, some upper bound exists
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for the sequence {Kl, KZ’ K3,...}. Therefore, for all t, a K exists such that

1/2
|BE,, - & )] « e, (6.29)
Now
[EE,, - gl < [BE _-E |+ |EE, - )] (6.30)

Since the first term is O{(Xn 1)1/2/1}, if we can show that the second term is
of at least as small order, then the theorem is proved.
Above we showed that gpr converges to gp as t + », Therefore, the only
question is the rate of convergence of ng to gp. The definition of ng is
F(EPT,T) = p(1). (6.31)

Expanding this with the definitions of T,8(<t) and p(t) gives:

M -1 w3 N N
R TR T T e w A Rl vy | (6.32)

This‘implicitly defines gpr as a function of 1. Multiply both sides by
(M + N - 1) and differentiate by =:

- TE! F+uhe' +nH = .
M- 1) fng + M. F Nhng NH=M (6.33)

0 0 0

h ~=~_ ~=~— ~=~'— ~=~'— —' =— N
where F F(gpt), H H(gpt), f=F (gpr), h =H (ng), and dgpr/dr
This may be solved for Eér.

i _MO—MOF—NOH

- . (6.34)
PT - DF + xh

Equation (6.32) implies that M, - M F - NH = -F/t. Therefore

0 0 0
.- e (6.35)
T { -oF + Nyh}
The boundary condition for this differential equation is EPT = gp at T = o,
Therefore, for large =,
- o 1
|2, - &l = 0D (6.36)

because (i), for large 7, (MO - 1/%) » My, (ii) F(+) and H(+) have continuous
positive densities and bounded second derivatives in a neighborhood of gp,

and (iii) the solution to (6.35) for large <t is
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=R

T = (6.37)
pT ~ ~
‘U(Mof + Noh)

when ¥, T, and h are treated as constants. Therefore |Ep1_ gp| is of smaller

1/2

order than 0{(fn 1) ’'“/t} and the proof is complete.®

7. The Rate of Convergence

This section shows that for regular trading problems the ex ante optimal
trading mechanism converges aymptoticaliy to ex post efficiency at a rate of
2 . . .
at least 0(&n /%), i.e. a constant K > 0 exists such that asymptotically

_ T(a*, 1) Ao T
L- 1o <K 2

(7.01)

where 1 is proportiomnal to the number of traders, T(a*, 1) is the ex ante
expected gains from trade that the optimal mechanism for n traders realizes,
and T(0, 7) is the ex ante expected gains from trade that an ex post efficient
mechanism—if one existed—-—would realize.

The first step in the proof, which Theorem 7.1 summarizes, is to show
that, for any «' > 0, no matter how small, the number of traders can be made
large enough so that the g-mechanism parameterized by o' satisfies the IC-IR
constraint, G(a',t) > 0. Thus the ex ante efficiency of the optimal mechanism
can be made arbitrarily close to full ex post efficiency by making the number

of traders large enough.

Theorem 7.1l. Pick an a € (0,1). If the trading problem <M0, Ny, F,
H> is regular, then a replication t' > 0 exists such that, for all

replications ©t > t', G(a,T) > 0. Moreover lim_,, G(0,t) = 0.

Proof. Before proceeding with the proof we must show how Theorem 6.5

T

applies to Ea amd aat. Consider some buyer i. For i to be assigned an
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object his virtual reservation value must be greater than the Mth order
statistic of the virtual reservation values of the N sellers and the other M-1
buyers. Denote by ¢%§) this order statistic and let Aza be its distribution
function. Theorem 6.5 applies to ¢%§). It is asymptotic normal with an
asymptotic expected value E%ﬁ) and asymptotic variance O%/T-

The density function ETa(-) describes the distribution of the random
variable x(a, 1) =.[¢B]—1(¢?§)) where [¢B]-1(°) is the inverse of ¢B(-,a); it
is the critical value that i's reservation value must exceed if i is to be
assigned an object. The variate x(a,t) is also asymptotically normal with
asymptotic expectation x* = [¢B]—1($?g)) and asymptotic variance J20§/T where
J = 6[¢B]—1/6xi evaluated at E%ﬁ). Consequently as 1 becomes large the

distribution of x(a,t) approaches a step function with the step at x*,

Sa

Define q,s(g) , A

s aiﬁ), cg, z(a,1), and z* in parallel fashion. As =
becomes large the distribution z(«,T) approaches a step function with the step

at z* where z* < x*, The reason for the inequality, z* < x*, is as follows.

04

First, as T becomes large, 'E?M) -

&%M)l approaches zero because the samples
that generate ¢%§) and ¢?§) become essentially identical as < increases.
Second, for all y in the ranges of ¢B(-, a) and ¢S(-, a), necessarily
B.,-1 S,-1 . . . B S

[¢°] “(y) = [¢°] "(y) > O because regularity implies that ¢°(e+,a) and ¢’(e, )

are monotonic. Third, (4.01) and (4.02) imply that if ¢ > 0 and w € (a, b),
B

then ¢S(w, a ) = ¢ (wy, ) > 0.
>0

We can now prove the theorem's second part: lim_ G(0, 1) = 0. One form

in which the IC-IR constraint, equation (3.01), can be written is:

&(a, t) = Mf:q,B(x, 1)p " ()£ (x)dx - Nqu;S(z, 1)[1-3 "%(z) 1h(z)42.01)

> 0.
Theorem 6.2 implies that as ¢ increases the variances of Eta(-) and ata(.)

approach zero. This means that in the limit, if « = O, both distributions
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become step functions with the step at the competitive price, c. Thus

—~eo() _ 0 if x <€ ¢

P o) ={ i > (7.02)
and

=0, . _ (0 if z < ¢ '

e @ =1{ 5,5 e (7.03)

Substitution of these into (7.01) and integrating the resulting expression by

parts shows that, for ¢ = 0 and © + «, the IC-IR constraint is satisfied:

lim G(0,7) = M 12¢B(x,1)5°°0(x)f(x)dx-N qu,S(z,l)[l-a“O @) In(z)dz

Tro

=M :[x + Fé}({}){;l cho(x)f(x)dx - NJZ[Z + I:lg;][l—amo(z) (z)dz
= ufD G (00 Mx - N2>+ (2) )z - [ (7.04)
= Mf;dxF(x) - N JZdzH(z) -M fgdx

= M[bF(b)-cF(c)] - NlcH(c)] - M(b-c)

because H(a) = 0, F(b) =1, M(1-F(c)) = NH(c), etc. Therefore in the limit,
when the number of traders becomes infinite, the competitive price, c,
satisfies the IC-IR constraint, describes the ex ante efficient mechanism, and
is ex post efficient.

We now prove the first half of the theorem. Fix the value of a any place
in the interval (0,1). The a-mechanism that this o defines transforms the
vector of traders' reservation values (Xl""’XM’ Z],+++,Zy) into a vector of
virtual reservation values (¢B(x1,a),...,¢s(zN,a)) and assigns the N objects
to the N traders who have the highest virtual reservation values. Suppose,
for some %, G(a, %) < 0. As <t increases from % the

distributions p'% and q'* approach step functions. Therefore, as with (7.04),

lim G(a, T) = lim{Mf Z¢ ?x, l)p—Tex)f(x)dx

T Tro
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-8 ¥z, DO - T In(2)dz)

fE dxF(x) - Nfz* dzH(z) - MfE dx
x* x*

M[bF(b) ~ x*F(x*)] — Nz*H(z*) - M(b - x*) (7.05)

M(1 - F(x*)) - z*NH(z*)

(x* - z*)M(1 - F(x*))

>0

because: (a) asymptotically M(1 - F(x*)) is the expected number of sellers
whose reservation values are greater than ¢?§) and are therefore assigned an
object; (b) asymptotically NH(E*) is the expected number of sellers whose
reservation values are less than ¢?§) and are therefore assigned to sell their
objects; (c) M(l - F(Q*)) = NH(z*) > O because the balance of goods constraint
requires that supply equal demand; and (d) x* - z* > 0 is shown at the proof's
beginning. The asymptotic normality of Aia and Aia and the differentiabiltiy
of ¢B(-, a) and ¢S(-, a) imply that, as <t increases, G(a,T) approaches
lim_, G(a,7) continuously. Therefore, a t' must exist such that, for all
T >1', G(a, 1) 2 0.0

The second step in establishing the rate at which ex ante efficient
mechanisms converge to ex post efficiency is to show that « converges to zero
at the rate 0{(fn 1)1/2)/1}. We establish this through an analysis of the
asymptotic properties of the IC-IR constraint, G(a,t) = 0. Recall that, for a
given 1, the ex ante efficient mechanism is the a*-mechanism where o* is the
root of G(a,t) = 0. Rewriting (3.01) and reversing its order of integration

gives
G(a,t) = MfZI(t)pB(t;a,T)dt + NIZJ(t)pS(t;a,T)dt - NK (7.06)

=0
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where
1(t) = [2 ¥, DE@ax, I = 2 3, Dh)de, (7.07)
pg(x30,1) = dp " (x)/dx, pg(z3a,1) = dq " (z)/dz, (7.08)
pT(x) = [7 py(tsa,m)dt, 1"%(2) = [Z pg(t;a, D), (7.09)
b S
K = [, ¢ (z,1)h(z)dz. (7.10)

The functions Py and pg are probability density functions

for ETG and ara’ respectively. As the first part of the proof of Theorem 7.1

% and ara are asymptotically normal distribution functions with

21

points out, ET
variances that are 0(1/t); thus Py and pg are normal densities.
Taylor series expansions around c, the competitive price, may be taken of

I(t) and J(t) and substituted into (7.06):
G(a,t) = Mj:{l(c) + I'(c)(t—c) + I"(c)(t—c)2 *‘RB(t)}gB(t;a,T)dt
NP + 3@ () + (o) +R®) o (Dt - WK (7.11)
=0

where I'(c) and J'(c) are first derivatives of I and J evaluated at c, I"(c)
and J"(c) are second derivatives, and Rg(t) and Rs(t) are the remainder terms
for the expansions. Two sets of terms may be dropped. First, a derivation
similar to that of equation (7.04) shows that, for large =,

MY 1(@)pg (30, mat + N2 J(e)p, (t3a,v)de = NK = 0; (7.12)
therefore these three terms may be dropped.22 Second, the two remainder
terms, Rg and Rg, may be dropped because, for large 1, they are
inconsequential in comparison with the remaining terms. This follows from
three facts: (i) both terms are o[(t—c)z], (ii) the densities

pB(o; a, t) and ps(-; a, T) become spikes centered on ¢ as T becomes large

and as o approaches zero, and (iii) the region of integration is a bounded
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interval. Integrating each remaining term and dividing both sides by 1 gives:

G(a,T) _

: My {17 () [x(a,D)=c] + 31" () [ Gla, 1)=e)* + i(a,v) ]} (7.13)

+ N [F(a, D] + 37 [0, -0 + (0, ]}

where E(a,T) is the mean of pB(t; o, T), o%(a,m) is the variance of
B> z(a,T) is the mean of pg» and oé(a,m) is the variance of pge

Qur target is how o varies with 1. Equation (7.13) implicitly defines «
as a function of 1. Therefore let o = a(zx), o' = da/dT,

Ea = 3x(a,1)/3a, ET = 3x(a,t)/dt, etc. Differentiation of (7.13) by 7 gives

ol ol
MO{I'(;{aa"";T) +-§-I"[2(§(a,1)-0)(;: a'+x )+ —i a' + ji]}

2
&% &%

{J (z a'+z ) + = J"[Z(z(a,r)—c)(z a'+z ) t ot 1} (7.14)

= 0.
The plan is to solve this equation for a' and evaluate it at the limit
as T > @ and a = 0. Setting a = 0 is correct because, according to Theorem
7.1, as 1T goes to infinity the ex ante efficient mechanism is the a-mechanism

for which a = 0. Solving for a' gives a differential equation whose solution

can be bounded for large t. Lemma 7.1 summarizes this step.

Lemma 7.1 Consider a regular trading problem <My, Ny, F, H>. The
parameter a* of the ex ante efficient a*-mechanism is at most

0((2n 1)1/2/1) for large .

Proof. As described above our plan is to solve (7.14) for «' when o =0

and 1 » ». Note that, when a = 0, lim_,X(0,7) = x* = lim_,.Z(0,=) =

c. Therefore solving (7.14) gives
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3 do,
MI'x_ + NoJ'z_ + %-(MOI" —6-311 + NyI" 5 %)
lim a'(g) = - x T TZ Tz (7.15)
T _ _ 1 boB acs
| | - n n
MyI'x  + NoJ'z + 3(MgI" 5=+ NJ" ==)

We need to integrate its right hand side.

Consider the x and o% in the denominator. They respectively refer to the

mean and variance of the random variable x(a,t) whose distribution is ETG(-).

«
M)

the Mth order statistic of the virtual utilities of M-l buyers and N

Exactly as in the proof of Theorem 7.1, x(a,t) = [¢B]_l(¢% ) where q%S) is
sellers. Theorem 6.5 applies to ¢?§); it is asymptotically normal with
variance that is 0(l/t). We use this fact to pin down the asymptotic behavior
of x(a,t).
Let z(a,t) = [¢S]—1(¢?§)). Therefore ¢B[x(a,1),a] =
¢S[5(a,1),a] = ¢?§). The standard result that the asymptotic expectation of
a function of a random variable equals the function of the variable's

asymptotic expectation applies to x(«,t) and ;(G,T). Therefore, for large =,
Bz _ .S~
¢ [X(a"‘:)’ ('l] = ¢ [Z(G,T), (Z] (7.16)

where x(a,t) is the expected value of x(a, 1), etc.

For any realization of reservation values, exactly M traders mist have
virtual utilities less than or equal to the realization of ¢?§). This means
that the expected number of traders with virtual reservation values less than
or equal to ¢%§) is M. Therefore, asymptotically,

M - DF[x(a,7)] + Mi[2(a,7)] = M (7.17)
where F[x(a,t)] is the probability that buyers will have a reservation value
such that ¢B(xi,a) < ¢%§), M-1)F[x(a,t)] 1is the expected number of the M-1
buyers who will not be assigned an object because their virtual utility values
are too low, etc.

Equations (7.16) and (7.17) implicitly define ﬁ(a,T) and z (a,1)e
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Holding T constant, they may be differentiated with respect to a:

(M - 1)fx + Nhz =0
¢4 ¢4

*Z% + (F - DE'%
i + & “ (7.18)

where H = H(e), F = F(e), £ = f(e), h = h(e), f' = df(c)/xi, h' = dh(c)/dzj,
ia = 3%(0,1)/0a, Ea = 3z(0,1)/da, and ¢ is the competitive price. The
derivatives are evaluated at a« = 0 and ¢ because, as « becomes large,

a » 0, X » ¢, and Ea > cas T + » Solving the system for X_ and evaluating

a

it for large T at a = 0 gives

- _ N[l + f - (£ - 1)h]
Xa T 7
Nhf + (M - 1)f

~ K
o = K (7.19)

where K' is some constant. Similar calculations show that Za = K",
6cﬁ/aa = 0(1/1), and aoé/aa = 0(1/t). The denominator of (7.18) is
therefore dominated by constant terms and, for large <1, is 0(l).
For large <t both sides of (7.15) can be integrated because its

denominator is constant:

2 2
_ - 6qB 30,
' ' 1 " w__S
M I'x +NJ'z + 5(MI— + N, J'—>)
T _ T 0 T 0 T 2V 07 B3 0" o7t
[ a'(s)dT) = - fw 5 5— d7
_ aaB da,
M I'x +NJ'z_ + l(M I"— + N J"——S-)
0" "« 0" "a  2V07 da 0" da
(7.20)
1 T = T =
= -y 1/ x_dv + NoJ' [ z dt}
2

2
- M1 [T °% dt + N J" fT-Efgd }
Ml” Jo 57 dT + NgI" [, 5o dn
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where ;1’ ZT, 60%/61, and 605/61 are evaluated at a = 0 and where
K = MO[C'K' + NOJ'K". Therefore, for large T,

a(t) = al) + %g

(o)

1'(x(0,7) = %(0,®)) + @' (20,0 = 2(0,=))
+ OI"(O'i(O)T) - 02(0)00))

+

N~ DN~
AL L

9" (65€0,7) = (0, =) (7.21)
1

/2

1/2
= O((ln T) ).

T

This follows from three facts. First, when a = 0, x(a,1) = z(a, 1) = ¢zg) and

. Ba _ . .
lim_,, (¢(M)) = ¢. Second, Theorem 6.5 implies that

1/2
|BGgEy- o] = o (2, (7.22)

Third, Theorem 7.1 states that a(x) = 0.9

The paper's main result is:.

Theorem 7.1. Consider a regular trading problem <Mj, Ny, F, H>. The
gains from trade that the ex ante efficient trading mechanism fails
to realize relative to the gains that an ex post efficient would

realize are asymptotically O(kn 1/12), i.e., fOor 7 + @

1 - T((x*,‘f) - O(XHZT). (7.23)

T(0,T)

Proof. A Taylor series expansion of the ex ante expected gains from

trade, T[a(t),t], that an g*-mechanism realizes is:

2
T(0,t) + a(r)gL%%Lzl + [a(‘l:)]2 QLILELE%LEL (7.24)
oa

where e(t) € [0,a(t)]. Three facts allow us to derive (7.23). First, for

large T, the ex post optimal mechanism assigns the N objects to those N agents



- 38 - 01/11/85

whose reservation values are greater than ¢, the competitive, price.
Therefore

T(0,t) = rMOIZ(t—c)f(t)dt + TNOf;(c—t)h(t)dt = 0(1) (7.25)
for large <.

Second, the last two terms of on the the right-hand-side of (7.24)
represent the ex post gains from trade that the ex ante optimal mechanism
fails to realize as a consequence of a(t) being greater than zero. Let S(a,T)
represent these two terms. S may be evaluated, for large 1, as follows.
Recall from the proof of Lemma 7.1 the meaning of x(a,t) and z(a,t). For
large T the number of buyers excluded from trading as o increases from zero to
alt) is

TMofi(a’T) £(t)dt (7.25)
and the gains from trade that are lost from this exclusion are
Tmojf(“’f) (t-c)E(t)dt. (7.26)
A similar expression exists for the gains from trade that the o*-mechanism
fails to realize on the sellers' side. Consequently, for large T,
$(a,T) = N, ff( )(C-t)h(t)dt + My fi{(a’T)(t—c)f(t)dt. (7.27)
z(a, T

Differentiation gives:

ds(a, 1) _

= TNO[C—Z(a,T)]h[Z(a,T)]Ea + TMO[E(Q,T)—c]f[E(a,T)]Ea (7.28)

and

625(a,1) -

2

—_— —_ — 2 —- 2 -
aa '\:NO((C -z) [hzoca+ h(za) ] - h(za) )za (7.29)

+ oty (R - Ol + £ + £GP K .

where z = 2(x,7), h = h[Z(a, D], Z_ = 02(a,t)/0a, z = 222 (a, 1) / 0o,

h' = dh[Z]/dz, etc. Evaluated for large t and a = 0 these derivatives are
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dT(0,7) _ 28(0,7)
da da

= 0 (7.31)
and
327(0,7) _ 8°5(0,%)

2 2
da du _ _ 1 - 1
because a(t) > 0, x(a,t) + ¢, z(a,t) > ¢, X, K , and z, K as 1 > =,

= o(-Ngh(e)(z ) + M E(e) (X)) = 0() (7.32)

Finally, the third fact is Lemma 7.1's result that, for large -,
1/2
a(t) = o{(2n 1) / /t)e
These facts are sufficient to evaluate the expression of interest:

2
10,7 + (T 4 [g())? LT

ORI o
T(0, 1) T(0, 1)

2 2

- lals)]” 27TC0,7)

- T?OTT) 7 (7.33)

oa

_ fo(¢on o) 1/2 /1)}_, (7) = O{ln T)

0(v) 2

which proves the theorem.?

Conclusions

This paper has three substantive parts. First, we have outlined a
general technique for computing the ex ante efficient trading mechanism that
maximizes the expected gains from trade when the number of traders on each.
side of the market is arbitrary and each trader's reservation value is
independent of the other traders' reservation values. Second, using these
techniques we computed examples of this ex ante efficient mechanism for
markets where (i) traders' reservation values are uniformly, independently,
and identically distributed and (ii) the number of traders on each side of the
market ranged from one to twelve. These calculations showed that the

efficiency of this ex ante optimal mechanism approaches ex post efficiency in
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an almost quadratic manner. Third, we showed that (subject to a regularity
condition on the underlying trading problem) the gains from trade that the ex
ante efficient mechanism fails to realize relative to the gains that the ex
post optimal mechanism would realize if it existed are O((Rn T)/Tz)
asymptotically. Thus convergence to ex post optimality is asymptotically
quite rapid when an ex ante efficient mechanism is used.

This result, interesting as it may be, leaves a several groups of
important questions open. First, are our aymptotic results useful when
studying trading problems? While the numerical results of Section 5 are
supportive of the idea that even for small numbers the asymptotic rate is a
good approximation, we can not conclude without further investigation that it
is an equally good, small number approximation for prior distributions other
than the uniform. Second, if traders are risk averse, does
the O((Xn T)/Tz) result continue to hold? A recent paper of Ledyard (1984)
emphasizes the importance of this question.23 He shows, within the context of
a somewhat different model, how careful selection of utility functions for a
fixed set of agents can lead to almost any desired equilibrium behavior.
Third, if agents' reservation values are not independent of each other, but
rather are positively correlated, then does our convergence result hold?
Milgrom and Weber (1982) have shown in their studies of auctions that such
distinctions are important.

A fourth and very important question relates to our focus on optimal
mechanisms calculated using the revelation principle. Direct revelation
mechanisms are seldom used in practice to allocate goods. The reason is that
a direct revelation mechanism's mechanics are sensitive to the traders' prior
distributions concerning other traders' reservation values. Generally the

rules of a trading mechanism——for example on a stock exchange-—are not changed
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each time traders' expectations about each others' reservation values

change. Consequently the results Wilson (1982, 1983a, 1983b) has proven
concerning the optimality of specific mechanisms are very desirable.
Specifically, he (1982) has shown that if traders' priors concerning other
agents' reservation values are uniform, then the double auction approaches ex
ante optimality as the number of agents increases. In addition, he (1983a,
1983b) has shown that the double auction is interim optimal--as opposed to ex
ante optimal--provided the number of traders is large enough. These results,
coupled with our result on the rate at which ex ante optimal mechanisms
converge to ex post optimality, suggest that a general theorem on the
asymptotic rate at which the double auction converges to ex post optimality

may exist.
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APPENDIX A

Proofs of Theorems 6.1, 6.2, and 6.3

Proof of Theorem 6.1. This proof is an adaptation of the proof that

Serfling (1980, pp. 75-76) presents for his Theorem 2.3.2. Let & > 0. Write
P £ - =P £ + + Pr . - . A.01
r(|gpT gp|> €) = Pr(g, > E + ) (8,, <& = © (A.01)
The definitions and basic properties of distribution functions imply:

Pr(EpT > Ep + ¢) = Pr(p > PT(EP + €))

]
|

Pr(p > zil(xi < gp + g) + ZjI(zj < gp + €)) (A.02)

f

Pr(n(l - p) < L Ix > gp + g) + zjl(z > Ep + €))

J
Define V? =I(x >E + ) and V: = I(zj > E + €. Then E(Vf) =1
F(gp+ ), E(Vy) =1 H(gp+ £), EiE(Vi) M(1 F(gp+ e)), and sz(vj)
N(1 - ﬁ(gp+ £))e. This, coupled with the definition of T, means
1 zy1 _ 1 o e
b4—+—T\I—{21E(v’i‘) + sz(vj)} = RN MF(gp o) - Mg + £} (A.03)
=1 - P(gp + €).
Equation (A.02) may now be rewritten:
2 _ _ b4
Pﬂ%1>%+e)—H@G p)(?ﬁ+%§)
=h@a—p)-m1-ﬂ%+gn<%@+»y§—%mﬁ)—%mﬁn (AO4)
_ _ - _ VA
= Pr(a(r(g, + &) - p) < LV, + zjvj? LEVD LEWV)
= _ _ z
= Pr(ng) < 5V} + zJ.v? LEWD) LEW))

where 61 = P(gp + ¢) - p. In a parallel manner,

A

Pr(g

- < Ep - €] <Pr(p < PT(EP - €)) (A.05)

= pr(ns, < S.W, + SW> - SE(W) - LE®W?))
2 ii i3 i i i 3j
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z - - -
where W? = I(xi < Ep - €), Wj— I(zj < gp - ¢), and 62 P P(gp €)e

Hoeffding's lemma (see Serfling [1980, p. 75]) therefore implies:

A —ZHG%
Pr(&pr > EPT +e)<e (A.06)
and
A "'2n 6%
Pr(ng < gp - g) <e . (A.07)

Let 68 = min{6 62} in order to complete the proof.s®

l,
Proof of Theorem 6.2. This proof is an adaptation of the proof that

Serfling (1980, p. 77) presents for his Theorem A, Section 2.3.3. Fix t. Let

A > 0 be a normalizing constant whose value will be set below. Let

1/2 1/2,2 1/2,2
My +NDT(E - E) n (g - E)
R R U <t)=ne—~%?—ji<tl (A.08)

A

A (£) = Pr(

Manipulation of (A.08) gives

o -1/2
AT(t) = Pr(gpT < gp + tAn / )

Pr(p < T (¢, + tan 1/2y) (A.09)

Z +
Pr(np < 1:(F,p tAn

because ZT(A) = nPT(A).

1/2

Let ATt = &p + tAn . Define the standardized form of ZT(A):

ZT(A) - ZT(A)

®
Z (A) = (A.10)
T 22 5(m
=5 1/2 % . R .
Therefore ZT(A) = Zr(A) + T ZT(A)U(A), which may be substituted into (A.09):
A (£) = Pr(np < Zr(Art))
Z (A_) - np
- * _ Tt 3t
=Pr{z(a,)> 72 (A.11)
K 9 Tt
*
= Pr(z (a.) > )

where
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Z (A_) - np
c = (2oCe ). (A.12)
Tt 11/2 ol A )
Tt

The Berry-Essen Theorem states that

* Pa (A)
sup Pr(z_(a) < x) - d(x) <C =¢c X (A.13)
—ol{x{® | K ' Tl/ZOS(A) 11/2
where C is a universal constant, 63(A) = [6(A)]3,
o, = Elz,(8) - T, (0], (A.14)
and y(A) = p(A)/63(A). Equation (A.11) implies that
*
&(t) - A (t) = Pr( z (8.) < _Crt) - [1 - &) ] (A.15)

*
= - — —_ <+ - .
Pr(ZT(ATt) < CTt) e(-c ) + &) - & )
Inequality (A.13) then implies
Y(Amt)
[ () - a(e)| <c -:j7§—-+ EORER-CHIE (A.16)
As t > » the variance GZ(ATt) remains strictly positive and
approaches az(gp) because I is continuous at gp and P(ip) € (0,1). Therefore
y(ATt)/'\:l/2 + 0 as © » ». Finally, we claim that C e +t as 7 > o, In order

to prove this conjecture write

11/2[(M0+N0)P(§p+tAn_l/2) - (M0+N0)r(gp)]
St T 6(A1t>
nl/z[r(g rean 12y - pee )]
= P Y (A.17)
o(A_ )/ (M +N )
Tt 00 “1/2
.. A - r(§p+tAn /) - r(ap).
1 =172
o(A_ )/ (Mg ) tAn
Therefore
lime , =t - S - T, (A.18)
e o(E,)/ (My#N )

Let
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1/2
G(ATt)/(MOH\IO)
r'(ap) ’

A = (A.19)

then lim1+m c;t = t as claimed. Therefore the second term on the left hand
side of (A.16) approaches zero, and the proof is complete.®

Proof of Theorem 6.3. This proof is an adaptation of the proof that

Serfling (1980, pp. 81-84) presents for his Theorem C. Three definitions that

are used throughout the proof are:

(%)
A= 11’/2 - , (A.20)
(MO + NO) r (ap)

1/2,%

n (g _ - E)
A_(e) = Pr ( PP <), (A.21)

and

L= B(n nyl/2 (A.22)

where B is a constant that is restricted progressively during the proof.
The first series of steps is to establish the convergence rate when It' >

'Ln. Careful inspection shows that the following equalities and inequalities

are true:

sup |AT(t) - @(t)’ = max{ sup IAT(t) - @(t)l, sup IAT(t) - @(t)l}
|t L t<-L L

N

max{AT(—Ln) +o(-L ), 1-4A @) +1 - @(Ln)}

max{AT(—Ln) tl-a(L), 1-a@)+1- (L )} (A.23)

N

A’c(_Ln) +1 - AT(Ln) +1 - @(Ln)

—1/2)

N

Pr(’ng - gpl > AL n +1 - &L ).
A commonly known fact, which is proved in Gnedenko (1962, p. 234) and which
allows us to establish the order of 1 - ®(L,), is that, for x > 0,

-1/2 2
1 - o(x) < QJ‘-)-;—- o~ (1/2)x" (A.24)
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Therefore,
2
-1/2 -(1/2)L
- 2m) n
1 @(Ln) < T e
" 2
-1/2 -(1/2)B
=2m) (A.25)
L
n
- O(n—l/z)
provided B2 > 1.
The first term of the last line of (A.23) is also O(n—l/z). The key to
showing this is to use Theorem 6.1 where & is asigned the value
_ _ -1/2
e, = (A aO)Lnn (A.26)

and € is arbitrarily chosen in the interval (0,A).

6.1 requires evaluation of 6en =

Taylor's theorem allows us to write

Application of Theorem

min{r(gp te)=p,P- r(gp - en)}.

T(g, + e = p = T'(g e, + 5 T (¥)e, (A.27)
where y* € [gp,gp + en). Similarly,
P - T(E, - g) = T'(E e, - 5 I(y*0)e, (A.28)
where y*#* ¢ (gp - e gp). Substitution into (A.26) then gives
2 . ' 22 ' " 3 1/ . 2 4
cn = min{(T (ip)) e + T (Ep)F (Y*)Sn + Z(F (y*)) € >
4
(rr(g ) es - 01 (g T (e + (0 e ) (4.29)
. 2
= 8121 P'(gp) min{lﬂ'(gp) + P"(y*)en + ;1- E——(_Y*—)l_ 82,

T'(g) - TU(y**)e, +

E T TCED) n
2 P

1 (I (y**) 2}

A r'(gp) Enle

Equation (A.26) implies that e approaches zefo as n approaches infinity.

Therefore the € term dominates the sﬁ terms in the third and fourth lines of

(A.29) because, by assumption, P'(¢p) > 0. Thus, for large enough n,

2
en

where M is chosen so that

8 >'P(%)%(P(%)—bkn)

(A.30)
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sup |P"(g + y)l <M< = (A.31)
|yle, P

Such an M exists because I'" is bounded in a neighborhood of Ep' Consequently
—2n08% < -0l (2 (M (E) - Me ) (A.32)
€n n P P n
= 212 - e )21"'(5 )(r' (g ) - Me ).
n 0 P P n

Let gq = (1/2)A. Substitute the A as defined by (A.20) into (A.41):

2 o (Ep)
(MO +1,) r'(ap))

-Zﬁz <~53
en

(g (T (g,) ~ M )

I\)D—‘

1 &) d%ﬂmm/

- =B (Jznn)—-————,——-— {r( )——M
2 S CR I S r(e)
2 1/2

) ¢ (gp) o(E_MB(f n)
B“(fn n) f1- £ 7 ZIF}
) + 5, 204, +N,) (r (ép)

—1/2}

(A.33)

Since e, is less than ALnn—l/z, Theorem 6.1 implies that

A - 2 A
Pr([gpT - gpl > AL n 12y Pr(|gpT -g|>¢e)

2 1/2
MB( 2n
PILACY o MB(4n n)

- = {1 -
27 My + Np) 201, + N,) 1/2¢ 1 (z,)] 2,112

< 2n (Ao34)
—1/2)

= 0(n
provided B2 > (MO+NO)/52(§p). This completes the proof for It’ > L.

Consider now Sup't|<L lAn(t) - @(t)l. Inequality (A.16) in the proof
n

of Theorem 6.2 implies that

sup |4 (t) - &(t)] (A.35)
lejer

< (A_) a(t) - &(c )
ST T TR Jow - el
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where C is a universal constant,

- (A.36)
z (A ) - np
¢ =—t_Tt . (A.37)
Tt 11/2 o(A )
Tt
oA )
v(a ) = (A.38)
Tt 3(A )
o Tt
o(a ) = E|z,(a ) - ZI(ATt)|3, (A.39)

3 3 .
and o (ATt) = [G(Att)] . Given a large enough n, OB(ATt) > 0 because
?(gp) e (0, 1), ﬁ(gp) € (0, 1), and F and H have continuous first derivatives
and bounded second derivatives in a neighborhood of gp. Moreover, |t| <L,

implies

-1/2, 1/2

lATt! = lgp + tAn < lgp] + L _An (A.40)

1/2 *

Consequently, A . + Ey as n > =, This means y = sup'tl <L Y(Art) is finite
n

and Yo * Yo * p(gp)/o3(gp). This places the desired bound on the first term

in (A.35):
C _ ~1/2
;—17-2— Tltlj)q_‘ Y(A'ct) = 0(n )e (A.41)
n

The O(n—l/z) bound on the second term of (A.44) is established as

follows. Taylor's theorem permits us to write

12

[c(ATt)]—1 = [c(«‘,p)]_1 + g'(th)Atn- (A.42)

1/2

-— \
where g(z) = 1/0(z), z ¢ lies between gp and Ep + Atn , and g (th) = dg/dz

{ «» if n is large enough. Using Taylor's theorem once more, we may write:

rl/z(zl(ATt) - (M, + Ny )p)
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1/2 /2

(My + N )(P(gp + Atn

-1/2

) - Tz )0ty + )T
-1/2

= At 0

At (MO + NO)
-1/2
/2 P(gp + Atn ) -
-1/2
n

P(§p)

1
At(MO+N0) (A.43)

At

1/2 ( —1/2)

At(M0+ NO) r'(gp) + P"(EéT)Atn

where gét lies between g, and Ep + Aen~1/2, Equations (A.52) and (A.53) when

substituted into the definition of ctT imply that, for large n,

G0 ) - o1 + N p)
. =

Tt oA fa:)

1/2

Ay ) e ) + I‘"(gI;T)Atn-l/z}{[c(gp)]-l +g'(z Tt)Am‘l/z} (A44)

A (2) TR
c(ép)

1L+ o(gp)g'(zm)Atn‘l/z}

=t

1+ P'(%T) pen /2
r (%)

-1/2 w,2 -1
el + dltn T +dr )

where dét = A((T"/T') + og') and die = AZ(F"og')/P'. Recall
that ltl < Ln = B(Ain n)l/z. Therefore, as n » =, Itn_l/zl + 0, which means
-1/2 . 2 -1
that the Itn | term dominates the |t“n l term. Both Z ot and gpt approach
Ep as n » =, Thus, for large n,
2 -1/2
~ ' . .
Cor t + tht n (A.45)

Define:

D_= liTan lar,| (A.46)

and note that D, is O0(1) with respect to n. Therefore, for large enough n,
Ip_ 1 n'l/zl < 1/2. (A.47)
T n
This permits lemma 2.3.3 of Serfling (1980, p. 81) to be applied. It states

that, for any scalar a and all x such that |ax| >1/2:

|a(x + ax?) - a(x)| <5 |a| sup(xo(x)). (A.48)
X
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Let a = d,‘vtn_l/2 and let x = t. We check that Iatl < 1/2 (for large n) as

follows: latl = |d%tn_1/2t| < 'd%tn_l/anI < DTLnn_l/zl < 1/2 because of

inequality (A.46). Since x2¢(x) is finite for all x,
—1/2t2

lo(e) - e | = [a(e) - @t +dln )| © (A.49)
< Sd%tn—l/zsup(x2¢(x)) = O(n_l/z)
X

for |t| < L, and large enough n.

Expressions (A.35), (A.41), and (A.49) together imply that
sup |4 (6) - a(e)| = 0(m™H/?) (A.50)
|t]<L
n
for large enough n. Expressions (A.23), (A.25), and (A.34) together establish

that

sup |A1<t) - @(t)l = O(n—l/z)

(A.51)
|t]>L
n

~-1/2

for n large enough. Therefore suptlAT(t) - @(t)' = 0(n ) = 0(1-1/2) for n

(and 1) large enough.o
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Notes

1o formal demonstration of this well-known result is contained in Roberts
and Postlewaite (1976).

21n auction theory this is known as the independent private values
model. See Milgrom and Weber (1982).

3Harsanyi (1967-68) introduced these concepts.

“The revelation principle has its origins in Gibbard's paper (1973) on
straightforward mechanisms and was developed by Myerson (1979 and 1981),
Harris and Townsend (1981), and Harris and Raviv (1981). Holmstrom and
Myerson (1983) contains a detailed discussion of ex ante optimality and
compares it with the related concepts of ex post optimality and interim
optimality.

SA11 of the theory developed in this paper through Section 5 can be
generalized to the case where (a) the reservation value of each buyer i is
distributed according to the distinct density function f; that is positive on

the interval [ai, b:], (b) the reservation value of each seller j is

il

distributed according to the distinct density hj that is positive on [cj, dj],

.« See Gresik and Satterthwaite

and (c) an i and j exist such that b; > c;

(1983).

6We would like to regard the payments r; and 85 to be certainty
equivalents of payments that are made only when an ivdividual is involved in a
trade. Such a no-regret property seems desirable, but we have not
investigated the conditions under which it can be imposed.

"Note that (2.01) requires a balance of goods only in expectation.

Balance of goods can always be achieved in fact by making the assignments of
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the N objects to the N + M individuals correlated across individuals. Thus,
for a given set of declared valuations, buyer 1l can be assigned an object with
probability p; through an independent draw of a random number in the [0, 1]
interval. Buyer 2 can next be assigned an object with probability po through
a second independent draw, etc. This process of assigning objects through
independent draws first to the M buyers and then to the N sellers can be
continued until either (a) all N objects have been assigned or (b) K objects
remain and exactly K buyers and sellers remain to have an object assigned to
them. If eventuality (a) occurs, then the remaining buyers and sellers should
be excluded from receiving an object. If eventuality (b) occurs, then the K
remaining buyers and sellers should each receive an object. This rule
guarantees that exactly N objects are distributed. The dependence that this
rule induces between the probability of buyer 1 being assigned an object and
seller N not being assigned an object has no effect on our results.

8The definitions that follow are based on the assumption that all traders
will in fact declare their true reservation values. This is legitimate
because we consider only incentive compatible mechanisms and we assume that
only the truthful revelation Bayesian Nash equilibrium is realized.

9The assumption that trader's utility functions are linear in money is
important in this simplification. Maximization of the expected gains from
trade is dependent only on the final allocation of goods, not on the payments
among the traders. Therefore the payment schedules for a mechanism are
important in our problem only insofar as they affect the constraints of
individual ratiomality and incentive compatibility.

10This is the ex ante optimal mechanism that results when all types of
sellers and all types of buyers are assigned equal welfare weights. A

seller's type is his reservation value. If other welfare weights were used,
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then other ex ante optimal mechanisms would be generated. We believe that
equal welfare weights is the natural assumption to make; as a consequence we
have not investigated what happens if we used nonuniform weights. See
Holmstrom and Myerson (1981) for a discussion of ex ante optimality, ex post
optimality, and a third optimality concept, interim optimality.

llMyerson (1982) introduced the concept of virtual utility. A virtual
reservation value is a special case of virtual utility.

121f several elements of ¢ have the same value so that it is ambiguous
which buyers and sellers should be classified as having virtual reservation
prices as ranking within the top N, then the probability schedules should
randomize among the several candidates so as to guarantee that exactly N
traders are assigned an object. Thus if seller 2 and buyer 3 are tied for
rank N, then each should be given a nonindependent probability of .5 of
receiving an object in the final allocation.

13petails are in Gresik and Satterthwaite (1983).

14The i subscript identifying the buyer is suppressed because, given our
assumption that each buyer's reservation value is drawn from F and given our
focus on a*-mechanisms, every buyer's pT* distribution is identical.

15The first order statistic is the smallest element of the sample, the
second order statistic is the second smallest element, etc.

16The meaning of the p subscript on EPT is made clear later in this
section.

17See Theorem 9.2 in David (1981, pp. 254-255) and Theorem A of Section
2.3.3 in Serfling (1980, p. 77).

18See Hall (1978), David and Johmson (1954), and expression 4.6.3 in

David (1981, p. 80).

19The order statistic ng differs from the order statistic sz in that
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the former is drawn from a sample size M + N while the latter is drawn from a
sample of size M + N - 1.

2056 Billingsley (1979, p. 239 and exercise 21.9 on p. 244).

2lgee footnote 22 for a qualification of this statement.

227he reason that we must make (7.12) conditional on 1 being large is
that ;Ta(a) and ;Ta(b) <1 for small 1, i.e., are improper density
functions for small 1. As 1 becomes larger, ;Ta(a) > 0 and ;T“(b) > 1 very
quickly. Specifically, Theorem 6.1 implies that both ;Ta(a) and 1 - ;T“(b)
are are 0(e""). For large T these quantities are negligible and we may
neglect them.

23Ledyard's argument as it stands does not address the focus of this

paper: how does a Bayesian equilibrium converge towards the competitive

allocation as the initial set of traders is replaced repeatedly.
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