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"Connecting Euclidean Networks——The Steiner Case"”

Abstract

On a Euclidean plane n networks are given. It is required to
interconnect the networks by links of minimal total length. The use of
Steiner points is allowed, and connections can be made anywhere along the
edges or to the vertices of the networks. We prove that the problem can be
solved in finite time by methods similar to those used for the Euclidean
Steiner tree problem. The problem can be generalized to include flow
dependent costs for the various links. However, even in the form discussed
here, it may be useful for computers, telecommunication or electricty networks
connection, to mention a few examples, if the projected internetworks' flow

does not justify more than the minimal possible investment.

Keywords: Steiner trees, network design



1. Introduction

The need to connect existing networks is encountered more and more.
Prominent examples are the fast abounding computer networks to which we may
wish to add new computers or even other networks; communication networks where
the international network actually connects local ones, etc.; sewage disposal
networks of several cities may have to be connected jointly to a common
treatment plant; highway networks such as those belonging to separate cities
may have to be connected, or we may want to add connections to some existing
ones; several electrical utilities may wish to construct a connecting network
so that they can support each other during respective peak hours which do not
coincide exactly, etc., etc. In many of the examples mentioned, extra
junctions are relatively inexpensive (this is especially true for networks
spanning great distances). For instance, in computer networks, the cost of
junctions (i.e., multiplexors and so forth) drops a lot faster over the yeaés
than does the cost of lines, and the cost of the lines thus becomes more and
more dominant. In large water networks, junctions were always cheap,
relatively. This leads us to (i) allow connections anywhere along the
existing arcs, and (ii) allow the use of Steiner points (i.e., extra
junctions). In addition, if we assume that the Euclidean distance is a good
approximation to the cost of an arc—-thus neglecting (in this paper) the fact
that these costs are functions of the flow—-we get what we call the Euclidean
networks Steiner connection problem, the subject of this paper.

If we consider single nodes (points) as "degenerate" networks, we can see
that the Euclidean Steiner tree problem [6, 4, 1, 9] is a special case of our
problem. If exactly one of the networks is not degenerate, we have an

instance of the network augmenting problem [8], described in some detail



below.

It is interesting to compare our problem to other network design problems
of similar nature, and see in what sense it is new and challenging. If we
allow connections along the arcs, but no Steiner points (a strange policy,
this one), then we have an instance of the "regular"” minimal spanning tree, a
very tractable problem indeed [7]. It is the Steiner points which cause
difficulties, which could be expected since they suffice to make the regular
minimal spanning tree problem NP-hard {2]. However, it is not trivial to show
to what extent the techniques of the Steiner tree problem apply here. Indeed,
it seems that some nice properties of Steiner trees which allow some relative
efficiency in its solution (see {9]) cannot be generalized, even to a convex
version of our problem (i.e., a counterexample exists for the only obvious
generalization).1 However, and this is the main result of this paper, we are
able to show that there is a finite procedure for the solution, using the
well-known Steiner construction, and guaranteed to converge to a global
minimum. It follows that the problem is NP-hard. Actually, in its
complexity, the procedure we suggest is comparable to a well-known algorithm
for Steiner trees [1].

Before we discuss our case, we mention some results of [8] in detail.

Two main results are obtained there: (i) an extension of the Steiner
construction which we also need here, where we represent the nodes by one
point and connect to the network in a locally optimal manner; and (ii) the
Steiner polygon concept, defined by Cockayne [1], is generalized to the case

of connecting n points to a segment. In the remainder of the introduction we

l1e seems that the results of [9] can be generalized for a "single
segment network” augmenting problem, but this is as far as it goes, and it is
not far enough.



briefly describe those results of [8] which we need for this paper. Then we
present new results in sections 2 and 3, and conclude with some examples in

section 4.

The Network Augmenting Problem

On a Euclidean plane, let a set N of n > 1 points and a network G(V,A) be
given, where V is a set of vertices and A is a set of straight edges which
span the verices of V. It is required to connect all points in N to G in
such a manner that the total length of the required links is minimized.

If G degenerates to a single point, our problem is reduced to the well-
known Steiner tree problem. Therefore, we have a generalized version of that
problem, and may refer to the optimal solution as the Generalized Steiner
Minimal Tree problem (GSMT). Note that the links incorporated in the solution
may or may not form a spanning tree by themselves, but together with G, they
do span N U V, and if G is a tree, then the GSMT is also a tree. In our
discussion, we may refer to G as a single supernode (to which we assign the
index 0), so that in a sense the GSMT is a tree, even if G contains cycles.
However, there is no reason to expect that the GSMT will be a proper Steiner
tree (let alone an SMT) for N u V.

Simple and Compound GSMTs: If N is ultimately connected to G through one

link exactly, we call the GSMT a Simple GSMT. All other cases are named
Compound GSMTs and are actually combinations of partial, simple GSMTs. For
example, in Figure 1 a case of a compound GSMT is depicted but it can be
broken down to four simple components, namely the connections of {1,2,3,4},
{5,6,7}, {8} and {9,10} to G.

We refer to the case where 'NI = 1 as "the basic case.” 1In order to
solve it, we have to find the nearest arc of A to the node (where each arc

includes its endpoints); if the connection is not through an endpoint, it must



be by a perpendicular link. Thus, in order to solve the basic case, we have

to check up to ,A' arcs.

Figure 1

For some less trivial cases, we need the extended Steiner construction,
which is applicable to a set of M ¢ N of m < n nodes connected to G by a
simple GSMT with m - 1 Steiner points exactly. This is actually a full
Steiner tree, or a GFST. Note that for m = 1 a GFST is a single link.

According to Cockayne [1], a full Steiner tree can be represented by a
notation which indicates a pairing order of nodes of N (where a pairing
implies representing two points by another point on the apex of an equilateral
triangle based on the segment associated with the pair). Cockayne also showed
that node n (or any other node) can always be left alone and thus become an
endpoint of the segment which represents the whole FST at the end of the
pairing process. (As an example, take a Cockayne notation such as
((1,2), (3,4)), 5; this would indiate representing 1 and 2 by (1,2), 3 and 4
by (3,4), and finally (1,2) and (3,4) by ((1,2), (3,4)), which, with 5, forms
a segment. What we do in our case is simply to leave G, the (m + 1)th node,

as such an endpoint, and connect it to the other node——representing M-—as per



the basic case (thus locating the exact point to which we should make the
connection). Note that it is very easy to apply this extended Steiner
construction not only to cases where G is a single segment, but also to any
network, as long as we assume that we are looking for a GFST with a given
configuration.

As in the regular Steiner construction, degeneracy may occur, thus

indicating that a certain configuration does not exist for M u G.

An Example: Let N = {1,2,...,10}, as depicted in Figure 1, and let

M = {5,6,7} c N. It can be shown that for this subset, the GFST depicted in

A (5,6) 7 o

((5,6),7)

(a) (b)

Figure 2

Figure 2 is the GSMT, and the Cockayne notation associated with it is
((5,6),7), 0. TFigure 2a illustrates the extended construction, where nodes 5
and 6 are represented by (5,6), which is represented in turn, with 7, by
((5,6),7); ((5,6),7) is connected to G perpendicualarly, as per the basic
case. (Part b of the figure describes the generalized Steiner polygon for
this subset, for the discussion of which the reader is refered to [8].)

At this stage, we can present an algorithm which solves our problem in



finite time, as follows: Look for all possible subsets M ¢ N which can be
connected by GFSTs to G; each such M, along with the minimal GFST associated
with it implies a super-network (which includes G and the minimal GFST), and a
set N - M of nodes which we still have to connect (unless N - M = §§); clearly,
if we continue in a similar manner (find a subset, etc.), we must ultimately
obtain a solution, and the best of these solutions is the required optimum.

It can be shown that the proposed algorithm is exponential in |N|, and it
is by no means presented here as an efficient algorithm. It is comparable,
however, to the regular Steiner tree algorithm [1], since both "check” all the
partitions of N.

Now, our premise is that G consists of a finite number of connected
segments, and for any subset M ¢ N and full topology (or configuration), we
can easily locate the best segment to connect through. However, in the choice
of M, we can sometimes save much time by intelligent inspection, and by the

use of the Steiner polygon [l], which we reintroduce here for completeness.

The Steiner Polygon (Cockayne): For a set of N points, connect all

n(n - 1)/2 pairs by straight segments, and let P, be the convex hull polygon
of all the segments (and N). Obviously, Po is formed by a subset of the
segments, and a subset of N is on its boundary. This completes our initial
preparations, and we proceed with stage 1.

In stage i (for i =1,...), P;_; is given. If for any edge on the
boundary of P;_j, say k,%, there exists a point m € N such that Am,k,% does
not contain any other point of N, and such that <k,m,2> 120°, then P; is
obtained from Pi 1 by dropping k,{ and incorporating k,m and m, R in its

stead. If no such boundary edge exists, P;_; is the Steiner polygon.

Now, let P, denote the convex hull polygon of N (or of M c N, as the case

may be); let P be its Steiner polygon; and finally, let Q denote the Steiner



polygon as defined for NU V (or M U V)., Then:

Theorem 1: When solving for any set M, only those edges of G which are

accessible from P, by straight uninterrupted lines need be considered.
Proof: Trivial. i}

Theorem 2: 1If Q is partitioned by various chains of edges in G to some
disjoint faces, the GSMT can be obtained by solving separately for the edges

of each such face and the subset of N which is contained in it.
Proof: See Theorem 6 in [8].

Theorem 3: If P, is intersected by G to some disjoint parts, it suffices to

solve the problem separately for the points of N in each of these parts.

Proof: Clearly the condition is sufficient (but not necessary) for Theorem 2

to hold. a

Note: Theorem 1 will then serve to identify the edges of A which need be
considered for each subset of N.

Theorems 1 and 2 may be used in a straightforward manner to facilitate
the solution procedure. Theorem 3 is not strictly necessary since its
applicability implies the applicability of Theorem 2; however, when solving
manually, it is sometimes clear at a glance that Theorem 3 applies and it is

easier to apply than Theorem 2.

2. The Network Connection Problem

In this section we describe our current problem, and prove that the best
"basic solution” (defined below) is our optimum. This makes possible the

extension of the technique described above for the solution. We proceed with



some formal definitions and results.
The Problen

Let G = {Gi(Vi,Ai)} } be a set of internally connected but

ier={1,2,...,n

mutually disjoint networks on a Euclidean plane, where Vi is the set of
vertices of G;, spanned by a set of straight arcs A (connecting pairs of

vertices of V), and finally let Vv = {V,}. ; and A = {A } We assume that

iel’

any intersection of two arcs implies a vertex ("planar graph").

which connect all the networks

Definition l: A set of (new) links L = {Lj}jEJ

together is called a solution.

If we assign a cost to any possible link which may be included in L, our
problem is to choose links for L so as to minimize its total cost. 1In this
paper the cost of a link Lj is taken as its Euclidean length——d(Lj), and we
are looking for the set which the "total length,” namely, Zd(Lj), is
minimized. We refer to this case as the Steiner case.

A solution may be a tree, a forest, a network or a set of disjoint

networks. 1In the Steiner case, however, only trees and “"simple forests"”

(defined below) need be considered.

Definition 2: A set of disjoint trees (i.e., a forest) is called a simple

forest if there is no cycle through the networks (though any network G; may

have internal cycles).

If all the networks in G are trees, and the solution is a tree or simple
forest, then G U L is also a tree. If we regard networks G; as supernodes,
then our problem is to find a Steiner minimal tree for those supernodes.

Obviously this need not necessarily be a regular Steiner tree.

Definition 3: A chain of links in L which connects two networks Gi,Gj € G,




without passing through any other network of G, is called a direct chain.

Note that a direct chain need not necessarily be a single link, since it

may pass through Steiner points.

Definition 4: A point x € G — V (or A — V) is called an inner point. In

contrast, a vertex of V may be referred to as an endpoint.

Definition 5: A direct chain is called a basic (direct) chain if it starts or

ends at endpoints. 1In contrast, a direct chain connecting two inner points is

called a nonbasic chain.

Definition 6: A solution where all the direct chains are basic, is called a

basic solution. If one chain or more are nonbasic, the solution is nonbasic.

Definition 7: A solution where all angles between adjacent links of L are

120° at least, and all angles subtending links of L and adjacent arcs of A are

not acute is called a stable solution. Else, it is called unstable.

Note that in a stable solution links of L adjacent to the arcs of A at
inner points must form two right angles there, and at Steiner points we have
three angles of 120° (as in regular Steiner trees).

If all angles between links and adjacent arcs are strictly obtuse, we may

refer to the solution as strictly stable. This cannot happen if any

connections are made through inner points. Hence, a strictly stable solution
must be basic. We illustrate these concepts in Figure 3, where part a depicts
a nonbasic but stable solution (with basic ones in dashed lines), part b
depicts an unstable but basic solution, and part c depicts a better solution

than that of part b, which is strictly stable and basic.
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Figure 3

Lemma 1l: The optimal solution is stable.

Proof: Optimal implies locally optimal which in turns implies stable. i}

The set of all the possible solutions is uncountable~—even if we confine
ourselves to trees or simple forests——since there are uncountably many inner
points through which connections can be made. If we confine ourselves further
to stable solutions (as we may, using Lemma 1), the number of solutions is
still not necessarily countable——as is illustrated by Figure 3a. However, the

number of basic and stable solutions is finite.

One of the main results of this paper is that we can confine ourselves to
this finite set without risk of losing the optimum. In order to show that,
however, we need some more preparation, such as the following inductive

definition of parallel shifts (see Figure 4):

Definition 8: For a (basic or nonbasic) direct chain of one link, a Earallel

shift is defined by moving the link to a parallel position at a distance of ¢
(e > 0) from the original position, in such a manner that the shifted link
will still connect the same arcs of A as before (through inner points or
endpoints).‘ (Note that such a shift cannot alter the connectivity of our
system. Also note that the parallel shift can be executed in two directions,

and there is always an ¢ small enough to make it possible. These observations
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Figure 4

will also hold for the general parallel shift-—for chains of more than one
link-—as defined below.) Now assume that the parallel shift has been defined
for any (basic or nonbasic) direct chain of k - 1 links (k = 2,3,...). It is
required to define it for chains of k links. To that end, choose any Steiner
point along the chain (at least one exists for k > 2), and there are three
links incident to it: two links belong to the direct chain, and a third link
to a point of G UL (say, c); extend the third link as far as possible within
conv(G), in the direction away from ¢, without crossing G U L again or
crossing any other extension of the same kind associated with the two parts of
the chain (as divided by the selected Steiner point). Now, each part of the
chain is a chain of k = 1 links or less, so we have defined (and can execute)
parallel shifts for them. Furthermore, if we choose the same & and direction
for each part, the two shifted chains will still form one connected chain, and
they will be connected at a point along the extended link associated with c.
However, e must be chosen in such a manner that on neither subchain will a

link be connected out of the segment or ray it was connected to before (be it
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an arc of A or an extended link associated with one of the Steiner points).
Finally, the new breaking points (angles) of the shifted chain replace the old
Steiner points, and they are all connected to G U L through their respective

extended links to the same connection points as before (such as c).

A parallel shift can always be executed, and in two directions. However,

in each direction there is a maximal value & can assume.

Definition 9: A parallel shift with the maximal value of ¢ in its direction

is called a maximal parallel shift.

A maximal parallel shift performed on a nonbasic chain connecting, say,
Gi and Gj’ must result in one of the following outcomes: (a) the shifted
chain becomes basic, i.e., at least one end of it merges to a vertex of V; or

\% or (b) the shifted chain is split into two subchains, i.e., one of the

E
Steiner points along the chain is merged into a point of G for some k # i,j—-—
in this case one of the following must occur: (i) the subchains are both
basic; or (ii) the subchains are connected to an arc of G at acute angles,
and the solution becomes unstable; finally (iii) it may occur that two of the
Steiner points (one or both of them on the chain) merge with each other~-and
again the solution becomes unstable, since angles of 60° are formed at the
rank four merged point!

We are now ready to state and prove Theorem 4, our main result for this

section:

Theorem 4: If an optimal solution is nonbasic, then there exists a basic

solution which is optimal too.

Corollary: The best basic solution is optimal.
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Proof: 1If we can show that parallel shifts performed on any stable and
nonbasic chain do not alter the value of the objective function, then, by
performing maximal parallel shifts on the nonbasic stable chains of our
solution, we either reduce the number of nonbasic chains by one for each
maximal parallel shift, or achieve an unstable solution. 1In the former case,
we will (utlimately) get a basic solution, while in the latter case—-by

Lemma l--our nonbasic solution was not optimal to begin with! We now proceed
to show (inductively) that this is the case: for nonbasic stable chains of
one link, our result is obvious, since the distance between parallel lines is
constant. For any chain with two links, the angle between the two arcs of A

connected by it must be 60° (see Figure 5). Draw a perpendicular to the

Figure 5

third link connected to the Steiner point through its connection to G U L, and
extend the two arcs as may be required, and we obtain an equilateral triangle,
with the Steiner point in it, and the three links from the Steiner points are
perpendicular to the sides of the triangle. Executing a parallel shift means
choosing another location for the Steiner point but still within the triangle,
and it would not change the sum of the three distances of the Steiner point
from the sides of the triangle—-but this sum is the contribution of the chain

and its Steiner point to the objective function, and we see that it remains



- 14 -

unaltered! Having proved for stable and basic chains of up to two links, we
proceed by induction, dividing any chain of k links to two smaller chains (by

a properly chosen perpendicular “cut"), to complete the proof. i

Using the results of the network augmenting problem we can now solve the
network connection problem in finite time. this is true because the optimal
solution must be composed of partial full Steiner trees, each spanning some
vertices of V--belonging to disjoint networks——plus at most one inner point of
- another network. Naturally we would have to check out all the legitimate
partitions and all the possible choices of the vertices——-a "highly”
exponential task, but a finite one.

In the next section we discuss some shortcuts and improvements to this

procedure.

3. Some Shortcuts and Improvements

In our procedure described above, similar to the algorithm in [1], we
have to generate all the possible partitions of G-—an awesome task.
Furthermore, after we have a partition, then for each part we still have to
choose the connection points p; to be connected by a GSMT (which should also
be full, or another partition will yield the minimum more conveniently). This
leads to a prohibitive number of possibilities.

What we can do is (i) use the Steiner polygon and Theorems 1, 2 and 3,
properly extended, to rule out some partitions in advance, and (ii) to find an
efficient procedure to the connection points choice problem.

As for the Steiner polygon, if we define it for V, we may be lucky enough
to get a partition of the problem, if any network G; connects opposite sides
of the polygon. If may also impose a cyclic order when used for G or for any

subset of it.
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To extend Theorem 1, note that we can now apply it for each of the
networks separately. To do that for, say, G;, all we have to change is that

P_ should be the convex hull of

o To extend Theorem 2, ‘again for

Vilia,jar
each network separately, define P as the Steiner polygon for the same subset
and Q as the Steiner polygon for V.

We devote the remainder of this section to the problem of choosing the
connection points p;, ¥i € M. W.l.o.g. we assume that we are only interested
in a simple, minimal, and full Steiner tree connecting the networks of the
subset M. If it is not minimal, it is not part of the optimal solution; if it
is not full, another partition will take care of it, through the parts. Our

first case will be a convex one, and we show how it can also serve in a more

general context. To continue, we define some old/new concepts:

Definition 10: Any subset of L (whether L is optimal or not), which is a

Steiner tree in itself, is called a simple generalized Steiner tree, or a

simple GST.

Definition 1ll1: A simple GST connecting m networks with m - 2 Steiner points

is called a generalized full Steiner tree, or GFST (note that a full Steiner

tree must be simple to begin with).

Definition 12: 1If all the sides of conv(Gi) are in A;, then G; is called a

convex network.

When defining a convex network, we are motivated by an implicit
assumption that we connect the networks by links located outside their
respective convex hulls. This assumption can be dropped easily enough, if

necessary. E.g., the example given in section 1 does not have this property.

Definition 13: The locus of the points which may be connected in a stable
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manner to a vertex v € V is called the cone of v, or cone(v). 'cone(v)l

measures this set, generally in degrees.

Note that cone(v) may be empty sometimes (and thus we can save some
effort by avoiding any tentative connection to it). If Gi =V; =v, i.e., a
degenerate network, |cone(v)| = 360°, and we can connect to it from any point
on the plane as long as we do not cross some other network on our way. In
most cases, however, |cone(v)| < 180°, and equality occurs if and only if
rank(v) in G; is one.

Now, let Po be defined as in the extension to Theorem 1, as the convex

hull of {Vj }jEM,j;ti’

then clearly nodes v € V; such that cone(v) does not
intersect with Po are not candidates to be the connection to G;--this may
reduce our task considerably. Furthermore, if this happens for two adjacent
nodes, say v and w which are connected by an arc v,w € Ai’ then two
possibilities exist: (i) if the two cones are to the same side of Po, then no
stable connection is feasible to the arc‘;jﬁ either; or (ii) if Po is
"sandwiched” between cone(v) and cone(w), only connections to v,w need be
contemplated. Incidentally, if it happens for more than one network in M,
that it can only be comnected to the others through inner points of arcs, then
by virtue of Theorem 4, we need not consider any partition with M as part of
it.

GFSTs For Convex Networks

For a set M of m < n convex networks, which w.l.o.g. we index from one to
m, and a given full topology, the following lemma implies that solving for the

Steiner tree associated with the full topology is a convex problem.

Lemma 2: For a set M of convex networks and a full Steiner tree

configuration, then one of the following must happen: (i) a stable GFST
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exists and is optimal relative to M and the given configuration, or (ii) a

GFST for M and the configuration is either unstable or nonexistent.

Proof: Since the configuration is given, what we must do is locate the m
connection points, each on a convex set, and the m - 2 Steiner points—--also a
convex problem. Hence ours is a convex problem, and as such it may have a
stable basic GFST solution. Or, it may turn out that a Steiner point merges
with a connection point resulting in a simple GST, but not a full one. Or,
two Steiner points may merge, thus violating the stability requirement (and

indicating that another full topology is superior (see [9])). 1]

The following lemma is our motivation for discussing the special convex

case in detail.

Lemma 3: For a set M of not necessarily convex networks and a full Steiner
configuration, then if a GFST exists for the convex hulls of the networks
connection problem, its value is a lower bound on the value associated with

the same configuration and the original networks.

Proof: Clearly if the "convex" solution is feasible for the real problem, it
is also optimal locally (i.e., for the given configuration); else, we may have
to connect through "further away” connection points, with a higher total

length. i

Thus armed with a stopping criterion (a stable GFST at hand), we proceed

to identify the stable GFST, if one exists, for the convex case.

(a) Choose (arbitrarily or by an appropriate heuristic) a set of tentative

connection points {pi|pi € Vi}i_1 a
Tlyeey

(b) For {pi} and the full topology construct a representative segment [1,9]
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with p) as an endpoint and, say, x; as the other endpoint (representing
{pi}i=2,...,m)'

(¢) 1In conv(G;) look for any point € V; nearer to x; than p;. If there is
one, it becomes the new tentative connection point to Gy, py-

(d) Repeat steps (b), (c) for py,p3,+es,py, etc., until for a full cycle no
point p; is changed (finite convergence can be proven here, due to the
convexity of the problem and its structure).

(e) 1If all the segments Ezjgz'are connected in a stable manner, go to (f).
Else, shift the (one!) unstable point to an appropriate inner point so
that SETEE.Will be perpendicular to the arc it is now connected to.
Check if the other m — 1 connections remain stable. (If not, a direction
of descent is implied, and since our problem is convex we shall
ultimately converge to a "stable" choice of connecting points. Below we
discuss this case in some further detail.) Go to (f) with the
set {pi}ieM which makes the segment shortest.

(f) 1If the segment implies a GFST, stop; else by Lemma 2 the M/configuration

pair can be discarded without loss of optimality.

(The reader is referred to [9] for a more elaborate discussion of the
relationship between segments such as 5;?;; and the resulting Steiner tree.
Note that some such segments do not yield Steiner trees.)

This completes our discussion of the convex case. As for the nonconvex
case, we have Lemma 3, but we may still want the optimal solution if it does
not coincide with the one for {conv(Gi)}ieM, i.e., some of the {conv(G;)}
connection points do not belong to {Gi}. (This can only happen at inner
connections.) In this case we have to check for all the candidate connection
points implied for each "unconnected” network. Note, however, that we still

require at most one connection to an inner point, so we will not have a



problem with more than one network, say G;, in each iteration.

Since the case of an inner connection may arise for both the convex and
nonconvex cases, it merits some more elaboration. By the nature of the
instability we may know to which arc we wish to connect perpendicularly (for
instance, in the convex case we always know that). But, the angle of the
perpendicular to this arc, together with the full topology dictates the angles
of all the other m — 1 connections! Hence we can easily identify all the
candidate connection points (which are also unique in the convex case). 1If
this is impossible, and it is also impossible not to connect to an inner point
of that specific arc, the pair M/configuration is not viable, and may be
summarily discarded.

To return to the nonconvex case, locating the conenction points thusly
may not result in unique points, which calls for a slightly more extensive
search. However, if only one network is nonconvex, and if we find a stable
connection to it through a connection point P3 such that for the point x;

J

associated with it pj is the nearest connection in the nonconvex network Gj,
we are home free!

Incidentally, if an inner point's connection is indicated, we do not
strictly require the Steiner construction to construct the GFST, by may resort
to a solution by a set of linear equations with slopes as per the required
angles. This may be a little easier to do; however, the Steiner construction

can also be performed by solving linear equations recursively, so the

difference here is quantitative, and not qualitative.

4. Examples and Discussion

Our first example is a three networks case depicted in Figure 6. By
observing the respective cones of the vertices we see that vertices 2, 3, 5,

9, 10 are not candidates to be connection points. Likewise, the
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arcs 2,3, 4,5, 5,6, 8,9 and 9,10 can be excluded.
We first try to comnect by a GFST. Although it is obvious that 7, 4 and
1 should be the connection points in this case, we choose 6, 8 and 1.

Obviously, this cannot lead to stability and indeed 7 is nearer to (1,6), and

Figure 6

adopting it we then find that 4 is nearer to (1,7), leading to a stable
representation associated (in this case) with a GFST, as depicted in Figure 7.
However, if we connect 8 to 1,3 and 6 to 1,2, as implied by the partition
{I,II}, {I,III}, we get a slightly better result (see‘dashed lines in the
figure) which is the optimal solution in this case. (Note that the
connections of 4 and 7 to 1,2 and 1,3, respectively are (a) not stable, and
(b) worse than the GFST. This means that a greedy improvement scheme would
fail here, as the problem implied by it is not convex. This is the
counterexample to the extension of [9]'s greedy partitioning algorithm even to

our "convex" case.)
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Figure 7

Our second example illustrates the use of Theorems 1 and 2, depicted in

Figure 8, where we have, again, three networks.

Figure 8
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The Steiner polygon for V is given in a dashed line, and we see that
network II cuts it to two parts, so by Theorem 2 we may solve separately for
the connection of I and I1 and of II and III. <Clearly the optimal conﬁection
of conv(I) and II is the perpendicular shown by a thick dashed line and it is
feasible——so we adopt it. A similar observation holds for the other
connection.

Finally, Figure 9 depicts a case where the stable segment implies a

degenerate GST, and hence a further partition.

Figure 9

Conclusion

We have demonstrated a finite procedure to solve the Euclidean network
connecting problem, by extending to it known techniques used in the Steiner
tree problem, including the Steiner construction which can be executed by a
ruler and compass. The problem may be extended to connecting networks with
rectilinear distances, or networks embedded within graphs——cases for which
versions of the Steiner tree problem exists. All these problems may be

generalized by assigning costs to the edges according to their flows (see
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Gilbert [3], or Trietsch and Handler [7]). In a subsequent paper we intend to
show to what extent our results can be generalized for this case and to
discuss some heuristics associated with it. Note that we do not "need”
Steiner points to achieve NP~completeness if we assign flow dependent costs to
the arcs (see a virtually equivalent result in [3] where a budget is used
instead of the variable costs). 1In this case, even if we do not allow Steiner
points, and thus revert to a regular network design problem, it is not just
NP-complete but one of the toughest problems in that equivalence set (even
though they are all "equal”). This calls for the development of heuristics
and shortcuts.

Finally note that the Gilbert and Pollak conjecture [4], if true,
certainly holds for the Euclidean network connection case; similarly its

generalized version [10] would hold for the flow dependent costs case.
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