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Central to social choice is the development of techniques to aggregate
individual rankings of N alternatives into a group ranking. Many approaches exist,
but if N>3, none does what we really what it to do. The difficulty is that although
it is common to treat the group’s ranking as if it were transitive, it need not be.
In this paper, I“11 analyze this social choice problem for voting methods to show
what can occur., (This is where, for a given set of weights wi, .., wn, Wy
points are tallied for a voter’s jTH place alternative.) For instance, it is
standard to claim that plurality voting is among the worse methods that can be used.
We support this assertion by characterizing the inconsistencies of its election
results. (In a related paper [10], it is shown that the proposed reform method of
*approval voting" [2]) has features even worse than plurality voting.) Then, 1711
propose a resolution for this social choice problem by determining what is the
*best” voting method,

To see the problem, consider a hypothetical situation where nine people select
a common luncheon beverage. Four of them have the rankKing beer (b) over wine (wi)
over water (wa) (b>wi>wa), three have the rankKing wa>wi>b, and two have the ranking
wi>bd>wa. By use of the plurality voting scheme (only your first place alternative
is tallied), the group’s ranking is bdwadwi. If this ranking were transitive, then,
should beer be unavailable, water would be the group’s second choice. But, 2/3 of
these people prefer wine to water; indeed, a majority of them prefer wine to beer!'
The ranKings of the pairs can be reversed when considered separately; thus the
outcomes of plurality voting need not be consistent.

As it is well Known, Arrow’s theorem [1] asserts for N>3 that this phenomenon
occurs for any non-dictatorial aggregation technique which satisfies certain
standard conditions. It always is possible to find an example of voters’
preferences where the group’s ranking of N>3 alternatives is not consistent with how

the same group, using the same (or any other specified) procedure, ranks some pair



of alternatives. Universal consistency of the outcome is an impossibility.

Yet, decisions must be made, so individual rankings must be aggregated into a
group ranking. Consequently, even though all voting methods are flawed, we need to
determine the “"best" one. To do this, the goal for the selection of an aggregation
technique must be relaxed. Our unrealistic dream was to find a procedure which
always yields a transitive ordering; a more realistic objective is to find those
voting techniques which minimize the damage to consistency. We will show that for

voting methods, the Borda Count is the unique answer. This is where n-j points are

tallied for a voter’s jTH place alternative. (A related issue arises for certain
ranking methods of nonparametric statistics. Again, the resolution is the Borda
Count.)

The Borda Count is optimal for several reasons; the first is with respect to
the ranKings of pairs of alternatives. 1If some alternative is preferred to all
others by majority votes (i,e., it is a Condorcet winner), then it shouldn’t be
ranked last in the ranking of the N alternatives. But, the introductory example
illustrates that a Condorcet winner {(wine) can be ranked last by the plurality vote.

We show that the Borda Count is the unique method which never ranks a Condorcet

winner in last place, nor a Condorcet loser in first,

If a voting method is to be judged superior, it must be decisive; it must admit
fewer ranking inconsistencies than any other method. To investigate this question,
1711 introduce some natural measures of the inconsistencies permitted by a voting
method. Again, it will turn out that the Borda Count is the unique, best solution.

To gain a flavor of the type of measures which will be used, consider the set
of four alternatives {a;,az,a3z,asa}., This set has one subset of four
alternatives, four subsets of three alternatives, and six subsets of two
alternatives. For each subset, specify a voting method; that is, specify the number
of points which are to be tallied for a voter’s jTH ranked alternative where

ranges over the number of alternatives. Let W denote the collection of these eleven
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balloting methods. Then, given W and the voters’ profiles, the group’s ordinal
rankings for each of the eleven subsets is determined. As the voters’ profiles vary
over all possible choices, we obtain the set, Ry, of all possible ordinal rankings
obtained from W. So, an element of Ry is a listing of the eleven ordinal rankings
resulting from some profile of voters. Let W=B when all of the subsets are ranked
by a Borda vector. So, Rg is a listing of all possible Borda rankKings.

Clearly, Ry contains all transitive orderings; such an outcome results when
all of the voters have an identical ranking of the four alternatives. So, if IRyl
is the cardinality of Ru, then IRy!-4' is the number of possible results which
are not transitive. (For N alternatives, IRyi-N'is the number of non-transitive
outcomes.) In this way, IRwl is a measure of the inconsistencies admitted by a

set of voting methods. We show that the unique, minimum value for IRyl occurs

only if the voting methods for all subsets of alternatives are Borda Counts, i.e.,

IRwi2IRg! for all choices of W,

One difficulty with IRyl is that it doesn’t indicate what are the
inconsistent rankings. For instance, it doesn’t eliminate the possibility that
there are Borda rankings which, in some sense, "violate transitivity” more so than

any ranking introduced by some other voting system. This can’t happen because Rge

is contained in Ry for all choices of W. Any pontransitive ranking admitted by a

Borda Count also is admitted by any other set of voting methods.

A consequence of the above is that the Borda Count admits only those
inconsistencies which are unavoidable, Thus, we need to Know what they are; we need
to characterize Rg. It turns out to be inefficient to catalogue this set; so, we
introduce some simple methods which permits one to easily answer questions about
Re. To illustrate the types of results which now are possible, we derive
necessary and sufficient conditions for an alternative to be Borda ranked first,
last, etc. In Keeping with a dominant theme of social choice, these conditions are

based upon how the voters ranked the pairs of alternatives.
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2. Yoting Methods

Let the N23 alternatives be {(ai,az,...,an}. Assume that each voter has
an ordinal, complete (all alternatives are included in the ranking), transitive
ranking of the N alternatives. A listing of the rankings for the voters is called a
*profile”. A balloting or a voting method is where the group ranking is determined
from voters’ profiles in the following way: Given WN=C(w ,wz2,..,Wwn), Wy
points are tallied for a voter’s jTH place alternative, Then, the set of
alternatives are ordered according to the sum of points each alternative receives.
This final ordering can be determined either by asserting that the smaller the
total, the higher the ranking (a reversed method), or the larger the total, the
higher the ranking (a monotone method). 1In the latter case, the weights satisfy the
conditions that wydwy if and only if k<{j, and that w,;>wn. For a reversed
method, these inequalities are reversed. For example, a plurality vote is a
monotone method with WN=(1,0,...,0). For simplicity of exposition, assume that
the wyg’s are all ratiocnal numbers. (This doesn’t impose any practical
limitations. The only theoretical limitation occurs should (w3} be a set of
completely irrational numbers; here, certain statements asserting the possibility of
election results with indifference among alternatives may not hold. See [7,8] for
an explanation of this.)

According to the above, voting methods differ by the choice of the voting
vectors used in the tallying process. However, two methods may be equivalent
because they always yield the same group ranking. For instance, it is clear that
the outcome of an election is the same whether the voters’ rankings are tallied with
WN or with alWN where a is a nonzero constant. (If a is negative, then one

system is a monotone method while the other one is a reversed method.) Likewise,
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the outcome remains invariant should the preferences be tallied by using WN+bEn.

Here b is a nonzerc scalar and the complete indifference vector Ex is

N-i1¢1,..,1). Consequently,

Definition 1. Two voting vectors WN; and WNs7 are said to be equivalent if they
and the vector Ey define a two dimensional linear subspace of RN.

This defines an equivalence relation and the equivalence classes of voting
vectors and methods. In what follows, we exploit this equivalence by normalizing
the voting vectors. As a first normalization, we consider only monotone voting

methods. The following characterizes an important equivalence class.

Definition 2., A Borda Count over N)3 alternatives is where the vote tally vector,
WN, has the property that wx—wxs+i is the same nonzero constant for

k=1,2,..,N-1. Denote both a Borda vector and the equivalence class of Borda vectors
by BN.

Vector V4=(1,2,..,N) is a reversed Borda vector, while
Vg=(2N-2,2N-4,...,2,0) is a monotone Borda vector. They both belong to the same
equivalence class because 2(N2En-V;)=V2.

The N>3 alternatives define a family of 2N-(N+1) subsets, each of which has
at least two alternatives. For each subset, select a voting vector. (For the
subsets of two alternatives, we can assume that the voting methods are the same.)
Let W denote these 2N-(N+1) voting vectors. Should these vectors all be Borda,
denote the combined vector by B.

A given W and a choice of voters’ profiles uniquely determines the ordinal
rankings for the 2N-(Nt1) subsets. Let Ry be the set obtained by varying the
voters’ profiles over all possible choices. One of the main result of this paper,
which establishes the superiority of the Borda Count, is given in the following

theorem. <(In this and several other cstatements, we assert that certain conclusions

hold for “most” voting systems. "Most” means "almost all" in a measure theoretic



Page &

sense, or "open-dense" in a topological sense. More precisely, it will mean all

vectors W except those where the vector components satisfy a specified, strict,
algebraic relationship among each other - see Section 5. It is of importance to

note that if W consists solely of plurality voting methods, then it is in this

general class.)

Theorem 1. Let N>3. Consider the family of all 2N-(N+1) different subsets of at
least two alternatives, and let W represent the collection of voting vectors adopted
to rank the different subsets, Then
2-1 RU D RB-
If W# B, then the first set strictly contains the second. Moreover, for most
choices of W, Rw contains all possible rankings.

This means that any voting method other than the Borda Count admits more
nontransitive rankings than those obtained by the Borda Count. Furthermore, it
follows from the strict containment that the Borda Count is the unique balloting

resolution for this social choice problem, The following statement extends this

conclusion to subfamilies of subsets of alternatives.

Corollary 1.1. Out of the 2N-(N+1) subsets of at least two alternatives, select
a family of K of them, Let W be the collection of the voting vectors used to rank
this family of subsets, and let R’y be all possible election outcomes from this

family. Then R’y contains R’g.

We do not assert that the first set strictly contains the second one because
there are families of subsets where R’y=R‘g independent of the choice of W.
Often this is characterized by R’g containing all possible rankings of the subsets
of alternatives.

A second important feature of Theorem 1 is that, for most choices of W, Ru
contains everything! Since any type of inconsistency can occur, these are the worse
systems which can be used. As asserted, plurality voting is in this general class,

The following corollary follows immediately.
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Corollary 1.2. For each of the 2N-(N+1) subsets, select, in an arbitrary
fashion, some ranking of the alternatives. Then, there exist profiles of voters so
that their ranking of each subset is the specified ranking.

Example: There exist profiles of voters so that their plurz’ '". r:-¥ings
change with the number of alternatives; e.g., the group’s plurality rankings are
aidazdaazdas, but azdaz>ai, aaraz>a,, as’asz>a, and

asdazlaz, but as>ax iff j<K.

Suppose for a voting vector WN there is only one choice of j so that
wy-wy4+1#0. Such a voting system can distinguish between only two sets of
alternatives; e.qg., Jj=1 characterizes the plurality voting vector which
distinguishes only between the top ranked alternative and all others. A commonly
used method for committee selection is to indicate your "top kK rankKed alternatives"”,
Again, this system distinguishes between only two subsets. It turns out that if all
the voting components of W distinquish only between two subsets of alternatives,
then W is in the general class where any outcome can occur. Thus, the above
corollary holds for all of these systems.

Theorem 1 asserts that for most systems there need not be any relationship
whatsoever between how the voters rank the various subsets of alternatives. But,
for other systems, what type of relationships can be extracted? UWe start our answer
of this question by examining the possible rankings of pairs of alternatives, The
motivation is that if the group’s outcome were transitive, then the ranking of N
alternatives would uniquely establish the group’s rankings of the pairs of
alternatives, For instance, if the group’s ranking is aj>az?...>an, then, to
preserve transitivity, a majority of the voters would prefer ax to a; if and
only if k{j.

It has been recognized for a long time that transitivity among the rankings of

pairs need not exist; cycles can occur. One of the oldest examples, Known as the
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Condorcet triplet, is where the profiles of three voters are ajlaz’as,

az>agar, and asz>a;>az. A simple computation shows that, by votes of 2

to 1, a;v>az, az>a3z, but asz>a;. The insidéous effects of such cycles

have been illustrated by the practical considerations of agenda manipulation, the
effects of “"seeding" on the conclusions of tournaments, etc. (While there is a very
large literature on this subject, I suggest the references [4,5,91.) The following
theorem asserts that there need not be any relationship whatsoever among the
rankings of pairs of alternatives; any outcome is possible. (This result is a

slight generalization of that given in (9].)

Theorem 2. Consider the (N;2)=N(N-1)>/2 pairs of alternatives {ax,as}. For

each pair of alternatives, there are three different rankings:ax)ay, ax{ay,

or ax=ajy ("ax is indifferent to a;*). This defines a set of 3tN; )

sequences; each of the (N;2) entries of a sequence designates the ranking for a
specific pair of alterpatives. Any such sequence can realized; there exist voters’
profiles such that for each pair of alternatives the designated choice results by a
majority vote for strict preference and a tie vote for indifference. That is, R’y
can be equated with the set of all possible sequences of rankings of pairs of
alternatives.

For N=3, the Condorcet cycle is an example of this theorem. For N=4, this
theorem means, for instance, that ajYaz, az>a3z, asz>ar, asta,
az>as, all are realized by majority votes from the same set of voters profiles
and these same voters are evenly split between a3z and as. In general, all
possible cycles, subcycles, or anything else can be constructed by means of majority
vote.

This result imposes lower bounds on the consistency of voting independent of

the choice of the voting method used to rank N alternatives. This can be seen with

a profile of voters for the above example. Independent of how these voters rank the
set of four alternatives, the outcome must be inconsistent with how the same voters

rank at least two pairs of alternatives. (This is because the pairwise rankings of

the two subsets {a),az,as) and {ar,az,as4) form cycles.) This
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illustrates Arrow’s theorem for voting methods, and it imposes a lower bound on the

degree of consistency which can be achieved through voting.

Because there need not be any relationship among the rankings of the pairs of
alternatives, it might be argued that the search for consistency should be
restricted to those profiles where there is order among the rankings of the pairs.
The goal, then, would be to determine whether this relationship is reflected in the
ranking of the N alternatives. For instance, cycles need not always occur; there are
situations where, by majority votes, certain alternatives emerge as clear favorites,
or as clear losers. Such alternatives, which were identified by Condorcet, often

are used as the standard for comparison for the consistency of a voting method.

Definition 3. Alternative ax is called a Condorcet winner if in all possible
pairwise comparisons with the other alternatives, ax always wins by a majority
vote., Alternative ax is called a Condorcet loser if in all possible pairwise
comparisons with the other alternatives, ax always loses by a majority vote.

For consistency, a voting method should rank a Condorcet winner in first place
and a Condorcet loser in last place. But, this need not be the case; the
introductory example demonstrates, and it follows in general from Corollary 1.2,
that plurality voting can rank the Condorcet winner in last place and the Condorcet
loser in first place. The next theorem asserts that, with the exception of the Borda

Count, this and much worse phenomena can occur for any voting method. Only the

Borda Count always reflects the rankings of the pairs of alternatives.

Theorem 3. Let N)>3 alternatives be given, and let WN be a voting method to rank
the N alternatives. Consider the relationship between the rankings of the N
alternatives and the (N;2) pairs of alternatives., I1f WN#BN, then R’y

contains all possible combinations of the rankings of pairs of alternatives and the
rankings of the N alternatives. The Borda vector, BN, never ranks a Condorcet
winner in last place, nor a Condorcet loser in first place. There is no voting
system which always ranks the Condorcet winner in first place and the Condorcet
loser in last place.

Thus, with the exception of the Borda Count, there need not be any relationship
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whatsoever between the rankings of pairs of alternatives and the rankings of the N
afternatives. In other words, even when we restrict attention to those profiles
where there is order in the rankings of pairs, we don’t find added consistency with
the ranking of the N alternatives. Indeed, the following statement displays an
extreme situation where the pairs do possess order, but it is at odds with the

ranking of the N alternatives,

Corollary 3.1. Suppose that N)3 and that the adopted voting vector, WH, is not a
Borda vector. Then there exist profiles of voters so that, by majority votes, the
pairs of alternatives are ranked ajdax if and only if j<k. Yet, their WN

ranking of the N alternatives is the reversal: anlan-1)...2ai.

3. A Vector Space Approach

Al though the above statements demonstrate the superiority of the Borda Count

over other voting methods, they do not adequately describe Rg nor Ry. To remedy

this, we need a more complete description of voting systems. We start by relating
cardinal rankings with ordinal rankings.

In the N dimensional space RN, identify the kTH component xx with the
kKTH alternative ak. A vector x=(x;,..,xn) can be interpreted as a cardinal
ranking of the N alternatives where larger values of xx denote "stronger”
preference for agx. The hyperplane xx=xy divides RN into three regions; the
two open regions denote strict ordinal preference (e.g., xk»x3 corresponds to

where ax is preferred to aj), and the hyperplane corresponds to indifference

between the two alternatives. By allowing K and j to vary over all possible
(N;2)=N(N-1)/2 pairs of indices, the (N;2) hyperplanes divide RN into regions
representing all possible ordinal rankings of the N alternatives. A.connected open
set is a "ranking regions” with strict preferences among alternatives; those regions

contained in the hyperplanes are ranking regions with indifference among or between
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some of the alternatives. The line passing through 0 and Enx corresponds to

complete indifference among the alternatives; this line is the intersection of the
(N;2) “indifference” hyperplanes.

Let A denote the ranking a;>az2>..>an. If WN is a voting method, then,
because it is a monotone method, it is in the closure of the ranking region of A.
(1f any two of the components of WN are the same, this vector is on the boundary;
otherwise, it is in the interior.) Vector WN represents the tally for a voter
with preference given by A. Denote this dependency by WNs. Any other ranking of
the N alternatives is a permutation of A, P(A)., The tally for the ranking of such a
voter is a permutation of WNa; denote it by WNp(ay. (WNp(ay is in the closure
of the ranking region defined by P(A).) 1If there are n'pca) voters with the
ranking P(A), then the final tally is
3.1 S n’pca)WNe(a)
where the summation index, P(A), ranges over N! permutations of A. The group
ranking is determined by the ranking region which contains this sum.

The ranking is invariant should the sum be divided by n, the total number of

voters., If npcar=n’‘ecar/n is the fraction of the voters with ranking P(A), then
the sum becomes
3.2 antmﬂ”?m)-

Because the variables {Np(a)2 are non-negative and sum to unity, Eq. 3.2 can
be interpreted as representing a convex combination of the vectors (WNp(arl. This
set is in the affine plane containing these vectors. Our analysis is simplified

when this plane is a linear subspace of RN, This motivates the following.

Vector Normalization Assumption: The sum of the components of a voting vector
equals zero.

Examples: a) The standard vector for plurality voting over N alternatives is

(1,0,..,0). A normalized vector is (N-1,-1,-1,..,-1),



Page 12

b> For N=2, we always use (1,-1),

This assumption forces the voting vectors and the sum in Eq. 3.2 to be in the
linear subspace of RN which is orthogonal to En. Denote this N-1 dimensional
subspace by EN, For N=3, the ranKing regions of E3 are given in Figure 1,

For k=2,...,N-1, consider a subset of k alternatives, and let WX be the
voting method adopted to rank this subset of alternatives., For any voter‘s ranking
of this subset, the tally of the ballot is given by the appropriate permutation of
the components of WX. However, this permutation of W¥ also can be indexed by
how this voter ranks all N alternatives, not just this relevant subset. So, for any
permutation of A, let WKp(a) be the unique permutation of WK which corresponds

to how the specified K alternatives are ranked in P(A), For instance, suppose N=4,

k=3, and the specified ranking is aj>az>az. There are four choices of P(A)
which preserve this ranking —- they are the four ways in which a4 can be
positioned within this ranking of three alternatives. Thus, for exactly four
different choices of the subscript P(A), the vectors W3p(s) agree and represent
the vote tally for the same ranking of the three alternatives.

Let (N;K) represent the usual combinatoric symbol (?). Each ranking of K
alternatives is preserved in precisely (N;N-k)=(N;k) different permutations of P(A),
so the vector WKp(a) is given by (Njk) different subscripts P(A). The group’s
ranking of these alternatives is given by the ranking region of EX which contains
the vector sum
3.3 ¥ necarkpcay,

To model how the same voters would rank the N alternatives with the method WX
and a subset of K alternatives with the method WK, we use the space ENxEK,

The ranking regions in this product space are given by the product of ranking
regions in the component spaces. The outcome is the ranking region which contains

the vector sum
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3.4 S necarWNpcay,WKpcay) .

1§ W=(WN,WK), thic can be represented by the sum

3.5 S nrcardecan

This equation has an interpretation similar to that of Eq. 3.2, and the sum is in
the convex hull of the vectors {Wepca)d. To understand what nontransitive outcomes
can result, we need to Know which ranking regions meet this convex set.

A unique linear subspace is spanned by the convex set defined in Eq 3.5. What
simplifies our analysis is that both the linear subspace and the convex hull meet
the same rankKing regions of ENxEXK. (This will be shown in Section 5.)

Therefore, the task of determining the elements of R’y is equivalent to
determining which ranking regions of ENXEK meet the linear subspace spanned by
the vectors {(Wp(a1d = ((WNp(a),WKp(ard3. Denote this subspace by Vy.

Moreover, the dimension of the convex set and Vy are the same, so this common
dimension serves as another measure of the number of nontransitive group rankings
which can occur,

To illustrate this, Theorem 2 will be expressed in terms of the vector space
Vv. For this, and future statements, we impose the following ordering on the
listing of the (N;2) pairs of alternatives: A given pair (ay,ax) is listed with
index j<k. The pairs are listed in the order k=j+1,..,N,j=1,..,N-1; i.e.,

(aj az2), ... , (aj,aN); C(az,a3), ..., Can-1,anN). Each pair of
alternatives (aj,ax), i<k, is represented by a space EZ where, because of the

ordering, the vector (1,-1) indicates that a; is preferred to ax. Thus, the
space of all pairs is represented by (EZ)N,2), and the above imposes an

ordering on this space,

Theorem 4., Consider all (N;2) pairs of alternatives, and let P be the vector of
voting methods. Then Vp is the total space (E2)(N;2) and it has dimension
(N;2).
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Since Up agrees with the space (EZ)(Nf2), it meets each of the ranking
regions. Thus, Theorem 2 follows. The importance of the dimension of Up is that

it imposes a lower bound on the dimension of Uu when results are compared over all

2N-(N+1) subsets of alternatives. This is because when Vy is computed, it must
reflect this freedom from consistency among the rankings of pairs. Thus, a lower

bound on the dimension of Uy for the general problem is (N;2).

When different sets of alternatives are ranked, the subspace Vy can vary
depending on the scalar normalizations adopted for the voting components of W. For
instance, the space spanned by the permutations of the voting vectors
(3,1,-1,-3;1,0,-1> and (3,1,-1,-3;5,0,-5) differ even though in both cases the set
of 4 and the set of 3 alternatives are ranked by Borda Counts. (As we have shown,
the ranking regions which meet these two subspaces are the same.) So, to compare
vector spaces, we need to impose a scalar normalization. Because other voting
vectors will be compared with the Borda Count, the only standards we impose are for
N=2 and for the Borda Count; the normalization for the other vectors will be

determined as needed.

Scalar Normalization Assumption: For N)3 alternatives, the normalized Borda vector
is (N-1,..,N+1-2i,.,,1-N). The voting vector used for N=2 is (1,-1).

Example: For N=4, the Borda vector is (3,1,-1,-3),

By taking a vector approach and by standarizing the Borda Count, sharper
conclusions are possible. To illustrate this, an improvement of Theorem 3 follows.
Here we are comparing the ranking of the N alternatives with the rankings of the
pairé of alternatives, so the space is ENx(E2)(N§2), The first voting
component of W=(WN,P) ranks the N alternatives. The remaining voting components
rank the pairs of alternatives where P is the vector in Theorem 4.

Define the vectors {Ink}, k=1,..,n, in ENx(EZ){N}2) jn the following
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way. The EN component of Znx has the value -(N-1)/N in the KTH component, and
1/N in all others, The EZ component of Znk is zero if this component space EZ
does not represent a pair which includes ax. If EZ represents (ag,as), the
component is (1,-1) if K{j, otherwise it is (-1,1), This choice reflects that ag
is the preferred alternative.

These vectors can be interpreted in the following manner. The components in
(E2)(N32) designate that ax is a Condorcet winner. The EN component
designates that ax is ranked in last place while all other alternatives are tied
for first. For N=3, these vectors are Z3)=(-2/3,1/3,1/3;1,-1;1,-1;0,0),

237=¢1/3,-2/3,1/3;-1,1;0,0;1,-1), and Z33=(1/3,1/3,-2/3;-1,1;0,0;-1,1).

Theorem 3. Assume the hypothesis of Theorem 2, If WN#BN, then Uy is the
total space ENx(EZ)(N;2), The space Vg is a (N;2) dimensional space
characterized by the normal vectors {Znx2..

It is remarkable that the dimension of Ug equals the theorectic lower bound
of (N;2>! It is impossible to do better without eliminating the rankings of pairs,
so this is another argument supporting the superiority of the Borda Count.

Because we can’t do better than the Borda Count, we need to know these rankings
which cannot be avoided. Any such ranking defines a set of vectors from a ranking
region. This ranking is Borda admissible if and only if at least one vector from
this set is orthogonal to all of the Znx vectors. The proof of the following
statement illustrates this. The first assertion improves upon Theorem 3 because it
relaxes the condition that an alternative must be a Condorcet winner to avoid being
Borda ranked last. The second statement illustrates how Theorem 5 can be used to
find sufficient conditions for an alternative to be Borda ranked first. Related

results are easily derived.
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Corollary 3.1. a) Let f(k,j) be the difference between the fractions of the
voters preferring ax to a; and those preferring as; to ax. 1If
FN(k)=2.fCk,j) is positive, agx will not be Borda ranked in last place, nor tied
for 1adt place. If FN(K) is negative, ax will not be Borda ranked in first
place, nor tied for first place.

b 14 FNCI)>N-2, then a; is Borda ranked in first place. 1f FN(i){(2-N,
then a, is Borda ranked in last place.

1f ax is a Condorcet winner, then f(k,j)>0 for all choices of j. Trivially,
FN(k) >0, so ax cannot be Borda ranked last, However, it is easy to construct
examples where an alternative ax has F(k)>D even though it isn’t a Condorcet
winner., Thus, this result significantly improves upon Theorem 3. These inequalities
are reversed if ag is a Condorcet loser.

What we really want are necessary and sufficient conditions for an alternative
to be Borda ranked in KTH place, k=1,..,N, based upon how the voters rank the
pairs of alternatives. This can’t be done based solely upon the ordinal rankings of
the pairs, but it can with the added information of how decisively each alternative

won or lost in the pairwise comparisions. The following statement describes the

close 1ink between the Borda Count and the rankings of the pairs.

Corollary 5.2. Given a profile of voters, compute FN(k), k=1,..,N. The Borda
tally is (FN(1),FN(2),..,FN(N)). Thus, the algebraic ranking of {FN(K))
determines the Borda ranking of {axl.

The Borda ranking reflects how decisively an alternative fares in the pairwise

comparisons with the other alternatives. From this, a case can be made that the

Borda winner is preferable to a Condorcet winner. One supporting argument is that a

Borda outcome is robust while a Condorcet winner need not be. For instance, it is

easy to construct examples where a; is the Condorcet winner by virtue of barely
winning majority votes over az and az, yet az wins decisively over as.

Here, az emerges as the Borda winner. Now, a slight change in the voters’
rankings of a, and az would change the Condorcet winner to az, but it wouldn’t

affect the Borda ranking. The reason, of course, is that a Condorcet winner is
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determined by ordinal rankings while a Borda outcome reflects the strength of a

pairwise victory. A similar type of robustness argument characterizes the

cituations when a Condorcet winner isn’t Borda ranked first.

Proof of the Corollaries. Proof of Corollary 5.2, For a given profile of
voters, the outcome over the set of N alternatives and the (N;2) pairs of
alternatives is given by the ranking region which contains the sum
3.6 S.necarBrian
where B=(BN,P) is the normalized Borda vector in ENx(E2)(N§Z), [Let the EN
component of this vector (the Borda outcome) be given by (xj,..,xN). Because
Eq. 3.6 is an admissible outcome, this vector sum is orthogonal to Znk, k=1,..,N.
TaKe this scalar product. The value of that part of the scalar product resulting
from the EN components is (-xx(N-l)/N)+2§¥x;/N). But, because of the vector
normalization, i:x5=0, soJE%::/N=-xx/N. Thus, the contribution to the scalar
product from the EN components is -xx.

Because of the form of Znk, the part of the scalar product corresponding to
the space (EZ)!N5j2) jg FN(K). Thus, the orthogonality condition leads to the

desired conclusion

3.7 xxk = FN(K),
or
3.8 (X1yeeeyxn) = (FNCIY  ouu JFNCNDD,

This completes the proof of the Corollary 5.2.

Proof of Corollary 5.1. Part a. Because f¢(j,K)=-f(K,J), T FNCK)I=0, So,
either all of the FN(k)’s are zero (the group’s fanking is compliete indifference),
or there are some which are positive and some which are negative. 1In the latter
case, if FN(k)2>D, then it follows from Corollary 5.2 that ax can’t be Borda

ranked last, nor tied for last. Similarly, if FN(kK)0, akx can’t be Borda ranked

17
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first, nor tied for first,

Part b. This proof involves nothing more than showing that FNCI)ON-2 implies
that FN(I))XFN(k). To do this, we need to determing the maximum values for the
xxk’s. To illustrate the ideas, we restrict attention to N=3; the proof for N23 is
similar.

Assume that F3(1)>1. The vector outcome in Eq. 3.8 must be in the convex
hull of the & permutations of the Borda vector (2,0,-2). Trivially, the maximum
values for the xx’s occur on the boundary of this set. Because F3(1)>0, a
must be ranKed either first or second, and either az or az occupies the other
top two positions. Assume without loss of generality that a, and az are the top
two rated alternatives. This assumption determines an edge of the convex hull:
1¢(2,0,-2)+¢1-43(0,2,-2) = (2t,2~2t,-2), where 0t 1. The assumption F3(1)>!
forces t>1/2, which in turn forces the ranking to have a; in first pltace. This
completes the proof. For N>3, other results follow by using the surfaces of the

convex hull rather than just the edges.

We end this section with our main result.

Theorem é. Let NX>3 alternatives be given, Consider the family of all 2ZN-(N+1)

subsets of at least two alternatives. Let T be the space
ENx..x(EK) (N3 K)x, x(E2)(N;2), For each subset of alternatives, select a

voting method, and let W in T be the vector consisting of all of the voting methods.
a) Any W has a normalization so that Vg is a linear subspace of Vy. If
W”B, then Vg is a proper subspace.
b) Ve is a (N;2) dimensional linear subspace of T. The normal vectors for
Ug are found in the following manner. For each subset of k alternatives, the
vectors (2xs} are defined. These vectors can be extended to T by allowing the new
vector components to be the zero vectors. The set of all such vectors span the
linear space which is normal to Vg.
c) For most choices of W, Vu=T.

Theorem 1 and Corollary 1.1 are special cases of Statement a. Theorems 4 and 5
have imposed a lower bound on the dimension of Ugj the remarkable fact is that

even though we are considering all possible subsets of alternatives, the dimension



Page 19

of Us has not changed; it still equals (N;j2)., This again demonstrates the

efficiency of the Borda vectors, Because the normal vectors to Ve, are specified,
the elements in Rg can be computed in manner similar to that given above. This,
then, constitutes a simple tool to determine possible Borda rankings.

14 for some subset of K alternatives the appropriate component of B is replaced
with another voting vector, then the dimension of the new vector space increases by
(k-1), Essentially, the new vector space is Vg augmented by EX in the
appropriate space. This is one way in which the Vy spaces come about. @A second
way, which will be discussed in the section on proofs, is where there is a a linear
combination between the voting methods at different levels which are of a very
specific type.

In Section 2, we stated that plurality voting scheme is in this general class

of "most” voting systems. Thus

Corollary 6.1. Assume the hypothesis of Theorem 4. If all of the voting components
of W correspond to the plurality voting scheme, then Vy = T.

From this corollary, it follows that there exist voters’ profiles leading to,
say, the plurality rankings aj>az>az’as, as>azraz, ajraz’as,
az>az=as4, a4’a;’aa, while the pairs of alternatives are ranked as given
in the example following Theorem 2, O0f course, this same conclusion holds for any W
where the component voting vectors distinguish only between two subsets of
alternatives,

If N=3, all of the Borda rankings can be obtained by use of Theorem 5. If N=4,
then the normal space to Vg is nine dimensional, This increased dimension means
that there are a large number of inconsistent rankings which are not Borda admitted.
Indeed, the numbers are so large, that a simple listing would not be reasonable.
But, qualitative results of the nature given in Corollaries 5.1 and 5.2 are possible

by using the same type of methods,
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Corollary 6.2. For a given profile of voters, the Borda rankings of a subset of K
alternatives C is given by the algebraic rankings of FK¢(j)=Ef(j,i) where the
summation is over i#j, i,Jj€C.

Example. To illustrate this, we first show how a Condorcet winner over a
specific subset of alternatives fares over other subsets. Suppose that N=4 and that
airay for j=2,3 by majority votes, By the above results, a; can’t be Borda
ranked last in subset {a;,az,ag}. But, just from the knowledge that
aidas, it follows that independent of how the group ranks a; and as, a
can’t be Borda ranked in first place in {aj,az,as) while Borda ranked last in
the total set. This is because the first condition implies that
F3¢1)=+4(1,2>+f(1,4>>0, while the second condition implies that
FA4C1)=F23(1)+§(1,3)<0. Because f¢1,3)>0, this is a contradiction.

We conclude this section with a comment concerning the probability that an
inconsistent ranking occurs. The profile of voters are represented by the sets
{npcar}. Thus, because they sum to unity, they can be identified with the
rational points in the positive orthant of a N'-1 dimensional space. Assume that
the profiles of voters are distributed in such a manner that the rational points in
any open set in this space has positive probability of occurring. Then, it turns

out that for any choice of W, any admissible group rankings with strict preference

between the alternatives has a positive probability of occurring.

This can be proved by a simple vector analysis argument similar to that given
above but with W instead of B, An alternative, geometric approach is to note that
the outcomes are given by convex combinations of the vectors {We(a)) where the
(rational) coefficients indicate the number of voters with each ranking of the
alternatives. As we will see, if this convex hull on Vy meets a ranking region
with strict preferences, then this intersection forms an open subset of Vy. From

this it follows immediately that 1) there are an infinite number of examples,
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indeed, the examples correspond to the rational points in an open set of N!'-1 space,
2) the examples need only satisfy inequality constraints, and 3) as the number of
voters, n, approaches infinity, then the probability that such a ranking occurs

approachs a positive limit (which is determined by this open set in N!-1 space).

4. Some Extensions

The purpose of this section is to extend the above results in two different
directions. The first is to admit additional voting methods over a fixed set of
alternatives to determine how adverse of an effect this has on consistency. The
second is to determine whether there are families of subsets which admit more
consistency among the rankings than suggested above.

In Section 2, a standard equivalence relation for voting methods was given.
The basic idea was that two methods are equivalent should they yield the same group
ranking for any choice of voters’ profiles. But, is this the best one can do; does
this definition capture all of the relationships which preserve this invariance of
group outcome? We show that if two voting methods are not equivalent according to
this definition, then there exist profiles of voters where the outcomes differ.
Indeed, much more can occur; should there be several voting methods which cannot be
cannot be expressed in terms of each other, then the same profile of voters can lead

to totally unrelated group rankings.

Definition 4 [8). Let {WN;}, j=1,..,k, be a set of K voting vectors used to rank
N alternatives. They are said to be "completely different® if they and the vector
En are linearly independent.

If the voting vectors are vector normalized, then we don‘t need to use En.

When k=2, the assertion that two voting methods are completely different means that
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they are not equivalent in the sense of Definition 1. The next theorem asserts that
if there are K completely different voting vectors, there need not be any
relationship 2mcug the same group’s rankings of the same alternatives. Our
assertion that Definition 1 captures all of the relationships leading to invariance

of outcomes follows for k=2.

Theorem 7 [8). Let {WN,;3, j=1,2,..,K{N be a set of K completely different voting
methods to rank a set of N)3 alternatives. Let T/ be the space (EN)K and let W
have WN; as its jT¥ vector component, j=1,..,K. Then Vuy=T’. That is, select

any K ordinal rankings of the N alternatives. Then there exist profiles of voters
s0 that when the same voters rank the N alternatives by using the jTH® voting
method, the outcome is the jT¥ selected ranking, Jj=1,..,kK.

Even the Borda vector doesn’t provide any & - This is becs - the
Borda vector derives its power from its sensitivity to interaction effects over
subsets of alternatives; here we are considering only one subset of alternatives.
As an example, there exist profiles of voters so that their Borda ranking is
ajrazraszraa, their plurality ranking is as42asz>az2>a;, and their
ranking by designating the top two alternatives (weight vector ¢1,1,0,0) with a
normalization of (1,1,-1,-1)) is azdasdajlaz.

In the previous section, the value (N;2) arose both as the dimension of the
subspace of pairs of alternatives and as the dimension of Vg. From this and
Theorem 5, it may appear that the social choice problems are caused by the
inconsistencies in the rankings of pairs of alternatives., Should this be so, then
it would be natural to ignore the binaries; namely, in the interest of finding added
consistency, perhaps the usual binary relevancy condition should be replaced with a
k-fold relevancy condition. However, it turns out that there is no advantage in
doing this. For instance, if attention is restricted only to the subsets of K
alternatives, the minimal dimension value of (N;2) still is obtained by a Borda

Count, and it is larger for any other voting method. However, there are .families

where the dimension of Vg is smaller than (N3;2). They are characterized at the
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end of this section.

Theorem 8. Let N>3 alternatives be given, and let K be such that 2<{k{N. Consider
the (N;K) subsets of k alternatives, and let W¥; be the voting method used to rank
the jT¥ set, j=1,..,(N;k). Let W, a vector in T’/=C(EK)(N;K)  have WK; as its

JTH vector component. Then,

a) Vg is a (N;2) dimensional subspace of T”.

b) If WrB, then Vg is a proper subset of Vy.

By use of the methods developed in Section 5, it isn’t difficult to show, for
instance, that if k=3 and if at most one of the components of W is a Borda vector,
then Vy=T‘. A similar type of result extends for other choices of k. This means
that if the descriptions of "agendas" or "tournaments® are extended from being based
upon binary comparisons to being based upon k-fold comparisons, then the new setting
inherits all of the well known "seeding®” problems of agenda manipulation, etc.
Moreover, if the k-fold rankings aren’t done by the Borda Count, the damage to
consistency is much worse than if the comparisons were made with the binaries., (The
dimension of Uy is larger than (N;2).)

Theorems 7 and 8 can be combined to show that the k alternatives in each of the
(N;K> subsets can be ranked in any number of ways. However because we are

considering different subsets of alternatives, a hidden effect of the Borda Count

manifests itself.

Definition 5. A set of voting vectors (WN;) are "Borda independent® if the
subspace spanned by them and Ew doesn’t include any Borda vectors.

Again, if voting vectors are vector normalized, we can exclude En from this
definition. It follows immediately that for N alternatives, one can define a set of

N-2 completely different, Borda independent voting methods.
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Corollary 8.1. Let k be as defined in Theorem 8. For each subset of kK
alternatives, choose k-2 completely different, Borda independent voting methods.
Then, for most choices of the voting methods, Vy is the total space
{CEX)K-13(NiK), That is, for each subset of alternatives, select k-2 rankings
of the alternatives. Then there exist profiles of voters so that when the same
voters rank the iT® subset of alternatives with the jT¥ voting method, the
outcome is the jTH¥ celected ranking of the alternatives, i=1,..,(N;k),
J=1’- . ,K-z.

For example, if N=5, k=4, then there exist profiles of voters so that their
plurality rankings (W=¢1,0,0,0)) are ajlaz>az>as, as>ag’a ;laz, and
asdaz>as>a;. However, when these same voters use the slightly perturbed
voting system (1,1/100,0,0), the ranking for each subset is reversed.

This concept of Borda independent voting methods plays a role in the ranking of

all possible subsets of the N alternatives.

Corollary B.2. Consider the family of all 2N-(N+1) subsets of N alternatives.
For each subset of kK alternatives, select k-2 completely different, Borda
independent voting methods, and let W be the combined voting vector. Then, in

general, Vy is the total space
(E2)(Nj2)x, , . x((EKDK-1) (NjK)x , x(EN)N-1I,

We might expect an equivalent result to hold if for each subset of K
alternatives, we select K-1 completely different vectors, none of which is a Borda
vector., But a hidden effect of the Borda vector appears; this set of vectors can be
re-expressed as K-2 Borda independent vectors and the Borda vector. As we now Know,
the Borda vector leads to a dimensional saving, and so the dimension of Vg is
reduced accordingly. The same type of argument as given above explains why "Borda

independent” is part of the hypothesis for the above Corollary.

Next, we present a situation where the Borda vector does not offer any savings

even though we are considering several subsets of alternatives,
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Theorem 9 [8). Let N)3, and let F be a family of N-1 nested subsets, S;,
J=2,..,N, where [S;l=j and S; is a proper subset of Sy+;. For each subset,
select a voting method, and let W be the collection of voting vectors. Then, for
any choice of W, Vy has dimension (N;2) and equals the total space ENx...xEZ.
That is, for any choice of rankings from each of the sets, there exist choices of
voters” profiles so that by using the adopted voting method to rank S;, the
outcome is the chosen ranking, j=2,..,n.

The Borda vector provides no advantage here; it admits all of the
inconsistencies admitted by any other voting method. As such, Theorem 7 can be used

to extend the result without worry whether the vectors are "Borda independent".

Corollary ?.1. For each of the subsets S; in Theorem 8, select j-1 completely
different voting methods. For each subset, select j-1 ranking of the alternatives.,
There exist profiles of voters so that when the same voters rank Sy with the KTH
voting method, the outcome is the kTH selected ranking of the alternatives,
K=1,..,0-1, j=2,..,n.

Example. Let Sy={a;,..,as}, j=2,..,N. Then, there exist profiles of
voters so that the Borda ranking of S; is aj»az>...>ay if J is even, but the
reverse of this if j is odd. Moreover, for j2>3, the plurality ranking of S; is
the same as the Borda ranking if j is a multiple of 3, it is the reverse of Borda
ranking if j+1 is a multiple of 3, and it is aj>asdazday-(>.. if j42 is a
multiple of 3.

Theorem 9 asserts that if specified subsets of alternatives are selected, then
no method allows for consistency among the various rankings. (Thus, any such
rankings are admitted in Rg.) This may suggest that methods based upon dropping
alternatives, such as the Hare method, can lead to serious difficulties. This is
true; now it is easy to show that inconsistencies result from such hierarchical
methods. But, the relevant theorem to use is Theorem 4, not Theorem 9. The reason
is that {amilf of subsets defined in Theorem 9 specifies in advance which
alternatives are to be dropped. Theorem & specifies what can occur over all
possible subsets. (On the other hand, Theorem ¢ can be used to show that the nested

property and strict formulas which characterize such methods, such as always
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dropping the last place alternative, can lead to unexpected surprises.)

As ctated above, the conclusion of Theorem ¥ holds whether or not Borda methods
are used. But note, the dimension of this space is (N;2), and the dimension of Vg
in this space also is (Nj2). Restricting attention to certain subsets of
alternatives is equivalent to projecting Vg into the appropriate coordinate
subspaces of T. Theorems 8 and ¢ demonstrate that over these important, natural
subspaces, this projection retains its dimension, so no savings in added consistency
of rankKings is achieved.

The basic question remains; is there some way we can reduce the types of
inconsistencies which can occur by a clever choice of a collection of the subsets of
the N alternatives? The mathematical idea for this is the following: The vector
space Vp is a (N;2) dimensional subspace of T. Restricting attention a family of
subsets, F, is equivalent to projecting Vg onto the subspace of T, Tf, which
models this family., Now, if this family is selected properly, perhaps the projected
dimension of Vg will be reduced, which in turn means that a lower number of
inconsistencies occur. For example, consider the plane x=y in R3; its projection
onto the x-z plane or the y-z plane is two dimensional, but its projection onto the
x-y plane is one dimensional,

Mathematically, this ranKing problem is to determine whether there exist
families of subsets, F, so that the projection of Vg into Tr has a lower
dimension. The somewhat surprising result is that this can occur! Such families
are characterized by the following statement which follows immediately from linear

algebra.

Proposition. Let N)>3 alternatives be given. Choose a family of K(2(N)2)-(N+1)
subsets of alternatives, and let Tf be the subspace of T representing this family.
1f there are sets of L (but not L+1) linearly independent vectors in Vg (in T)

which are normal to Tr, then the dimension of the projection of Vg into Tf is
(N;2)-L.
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The problem is to determine when a family of subsets satisfies the condition of
the Proposition. The governing factor is a subtle symmetry group property which
turns out to be related to the cycles and the Condorcet triplet described in Section
2. 1f the indices of the subsets in the family admits this symmetry property, then

the projection of Vg is of lower dimension.

Definition 6. Let F be a family of subsets and let D be the set {djx}, 1£Jj<kgN,
of scalar constants which are not all zero. Family F is said to satisfy the cycle
symmetry property with set D if for each subset B in F

4,1 L dixtes-ex) =0,

where the summation is over the indices of all pairs of alternatives in B.

Let D be the (N;2) dimensional vector defined by set D.

Theorem 10. Consider a family, F, of subsets of the N alternatives, and let T¢
be the subspace of T corresponding to this family. A necessary and sufficient
condition that the projection of Vg into Tr has dimension (N;2) is that F does
not admit a cycle symmetry property.

Consider all possible sets D which define a cycle symmetry for F. 1§ the
corresponding set of vectors defines an L dimensional space, then the projection of
Ve into Tf has dimension (N;2)-L.

This theorem highlights a major, mathematical cause of the difficulties in
social choice and in voting methods. Each subset of alternatives defines certain
algebraic symmetry groups - these are the different ways in which the alternatives
can be permuted. But, in an attempt to make voting "fair" and “consistent", we add
extra mathematical requirements. These extra conditions impose the constraint that
the results must be considered (and hopefully, consistent) over several different
subsets of alternatives. The paradoxes, impossibility theorems, and inconsistencies
which are common to this area, then, are manifestations of the fact that the
different symmetry groups associated with these subsets of alternatives aren’t
compatible with each other. Occasionally, there are family of subsets where the

symmetry groups associated with the subsets do admit some compatible subgroups; in

these situations additional consistency results. This cycle symmetry condition is a
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way to determine whether a particular family of subsets admits this symmetrical

permutation condition, and to extract the symmetry subsets.

Examples: 1. It follows from this theorem that the families defined in Theorem ¢
do not satisfy the cycle symmetry property. For example, let the family be
Sy={ai,..a3}, j=3,..,N, and let S2 be a binary contained in S3, then the
projection of Vg is a (N;2) dimensional subspace. Now, define a new and larger
family F’ by replacing Sz with all binaries except (aj,az), (aj,a3), and
(ag,a3z). Let set D be defined by d,2=1, di3=-1, dza=1, and all other
dsx‘’s equal zero. Then, F’ satisfies the cycle symmetry property with D. Thus,
the dimension of the projection of Vg into this larger dimensional subspace of T
is smaller. This example illustrates the importance of the condition in Theorem 9
that the sets S; are nested.

Notice that this choice of D defines a cycle a;>az>az>a; similar to
that defined by the Condorcet triplet. A related explanation holds for all cycle
symmetry sets D,

2. The nested condition in Theorem ? can be relaxed. For example, for N=6,
the family <{¢a;,az), (aj,az,asz), (az,as,as,as),
(aj,az,a83,as5,a5),56) does not satisfy the nested set property, nor does

it admit a cycle symmetry property. Therefore, the projection of Vg into Tf

equals Tf. A complete generalization of Theorem 9 is given by Theorem 10.
3. Let F be the family of all subsets which do not include the pair
{ai,a2)}. Then F satisfies the cycle symmetry property with di2=1, dsx=0 for

all other pairs. This illustrates that not only cycles are involved in the choice

of D sets.
4. Let N=6, and let the family be {(asz,as), (as,as,as),
S4=(aj,az,a3,a4), (a;,32,33,34,36), Ss}. From Se, five D

sets can be defined which correspond to the five cycles a;>az>azrar,
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aj>azdasda), ajdazdasday, azdasdasdaz and
ajdazdazlaadar. It is elementary to show that the five vectors
corresponding to these D sets are linearly dependent, but they have a basis of
dimension 4. Thus, L>4., That L=4 is a simple computation. This example
illustrates that cycles greater than those of a three tuple are involved; the basis
could be defined by the leaving out the cycle symmetry corresponding to the third
cycle. It also illustrates what can occur if some member of a family, as Ss
above, is strategically chosen so that each of the other members of the family
either contains this set, or does not contain a pair from this set. Then, all the
symmetries of this set define cycle symmetries for F. Notice that one D cyclic
symmetry class for F is where d|2=-di3=1, dza=dz4=-da+=1/3. This
demonstrates that there 2re¢ symmetry sets where not all of the magnitudes of the
dyk’s are either the same constant or zero.

5. Let N=4, and let F be [S4, {ar,az}]. Two D sets with independent D
vectors are given by the cycles az)asdas’az and a;>azdasda;. 5o,
the projection of Ug has dimension (4;2)-2=4, which is the dimension of T¢.
Thus, all possible rankings are possible with any voting vector.

Of course, the obvious extensions of Theorem 108 by using systems of either
completely different, Borda independent voting vectors (the dimension of the
projection of Vg is less than that of T¢), or completely different voting

vectors also hold.

S. Proofs of the theorems

A1l of the questions considered in this paper concern a vector sum of the form
5.1 & nrcartdrcan.
Assume that the vector components of W are in vector normalized form. Then,

{Wp(ar} is in T’ where T’ is the cartesian products of spaces EX which
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represents this family of subsets.
As it has been noted earlier, npca) is non-negative for all P(A) and
5.2 i: nepcay = 1.
This means that these coefficients define a simplex in the positive orthant of a N!
Euclidean space. Consequently, if
SiCk) = { xeRKl.x330, & x; = 13,
then Eq. 5.1 can be interpreted as being a restriction of the mapping
5.3. F:Si(N!) -----—- > 1.
More precisely, define F as the mapping in Eq. 5.1 where the coefficients {np(asl
are elements in Si(N!). For this mapping to correspond to a vote tally, the
components of {np¢a))} must be rational numbers. (A common denominator is the
number of voters while the numerator of each component represents the number of
voters with a particular ranking of the alternatives.) Thus, in order to interpret
the image of F as a vote tally, the domain point must be a rational point in Si(N!').
Let Vy be the vector space in T’ spanned by the vectors {Wp¢a)}. It follows
that
5.4. F:Si(N!) -———--- > W T,
What we show next is that if Uy meets a ranking region of T/, then this is the
group ranking for some set of voters’ profiles. As the first step, note that by
interpreting Eq. 5.1 as a convex combination of the vectors, it follows that the
image set of F is the convex hull of the vectors {Wp¢a)} in Vu.
The "indifference” point Enx in Si(N!) corresponds to where the preferences
of voters are equally split among the N! permutations of the alternatives. From

this it follows immediately that

5.3 F(Eng) = 0.

Namely, with this even division among the voters, the group ranking of any subset of
alternatives is complete indifference. For the normalized vectors, this is 0.

Next, assume that the Jacobian of F has rank equal to the dimension of the
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linear subspace Vy. (This will be verified later.) A consequence of this

assumption is that F maps an open neighborhood, U, of Enx in Si(N') to an open
neighborhood of 0 in Vu. But 0 is a boundary point of all of the ranking regions
of T“. Therefore, F(U) and Yy meet the same ranking regions of T“. It remains to
show that for each such ranking region, there is a rational point in U which is
mapped to this region,

Consider the ranking regions where all rankings have strict preference between
alternatives. These ranking regions are open sets in T‘. Consequently, they are
open sets in Uy. But, because F is linear and has maximal rank, it is an open
mapping. Thus, the intersection of F(U) and such a rankKing region is an open set in
Vu. The continuity of F ensures that the inverse image of this new open set is an
open set, U, in Si(N!>. The rational points are dense in Si(N!), so there exist
rational points which are mapped by F to the appropriate ranking region.

Consider those ranking regions which admit indifference among or between some
alternatives in some subset of alternatives. Then, in some component(s) of T/, the
ranking region is a part of a hyperplane; the boundaries are defined by other
hyperplanes passing through 0. (These are the hyperplanes corresponding to those
other alternatives which are ranked with strict preference.) The intersection of
this ranking region with Yy is a part of a linear subspace of VUu. Because this
set has 0 as a boundary point, the intersection of F(U) with this space is nonempty,
so the inverse image is a portion of a hyperplane in Si(N!). This hyperplane in
Si{N!) is characterized by the voting vectors which involve rational components.
Thus, this hyperplane contains rational points,

We have established that if the assumption on the Jacobian of F is true, then
the set of rankings resulting from a set of voting methods, W, corresponds to the
set of ranking regions which meet Vy. Most of the remainder of this section is

devoted to verifying the assumption.
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Proof of Theorem 7. The basic ideas are illustrated with the proof of Theorem 7.
That is, for N alternatives and N-1 completely different voting methods W =
WNy oo WNN-1), we will show
1) that the Jacobian of F has the rank equal to the dimension of Vu, and
2) that Uy equals T/=(ENIN-I,

Let Myx(x), 1{j<k{n, be the permutation mapping from EN back to itself
which interchanges the jTH and the KTH components of x. If X=(Xi1,..09XN-1)
is in (EN)N-I1, then let
5.6)  Mxy(X) = (Mga(xpd, ... ,Mcslxn-1).

Let G be the group of permutations generated by the (N;2) mappings {Myx}, and
define
9.7) L(G) = VIV is a linear subspace of T which is invariant under G},
That is, if M is a permutation from G, then M maps V back into itself. Because such
a mapping M just permutes the components of the vectors, it follows that M maps Uy
back into itself. Consequently, Uy is in L(G). To complete the theorem, we
characterize the subspaces in L(G)., From this it will follow that VUy=T",

To characterize L(G), we determine the eigenvalues and eigenvectors of M;x.
A simple computation yields that the eigenvalues are -1 with multiplicity N-1 and +1
with multiplicity (N-2)(N-1). A set of (N-1) eigenvectors corresponding to the
eigenvalue -1 are (ey-ex,0,..,0), ..,¢(0,...,e9-ex) where es, s=1,..,N, is
the unit vector in RN with unity in the sTH component and zero in all others.

Call the subspace spanned by these N-1 vectors, the -1 eigenspace for (j,K). Notice

that the -1 and the +1 eigenspaces for (j,K) are orthogonal to each other.

Claim 1t fet V be in L(G). The projection of V into the -1 eigenspace for

(j,K> is a linear subspace of V.

Proof of the claim. Clearly, the projection is a linear subspace of the -1

eigenspace for (j,k). We must show that this linear subspace also is a subspace of
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To prove this, it suffices to show that if v, is the projecton of v in V,
then vy is in V., By using the orthogonality of the two eigenspaces, it follows
that v has a unique representation v +vz where vz is in the +1 eigenspace for
(j,K). By the invariance assumption, the vector Myx(v) = Myx(u tvz) =
-yi+v2 is in Yy. Therefore
5.8 v = Mix(y) = 2y,
is in Vy. This completes the proof.

A consequence of this theorem is that V can be expressed as the direct sum of ¢
vector space from the -1 eigenspace and the +1 eigenspace for (j,k). The next
statement shows that as the j and kK vary, the subspaces obtained by the projection
of V are related. We do this by showing how they are all related to some one space.

Claim 2: For V in L(G) let VIK be the subspace obtained by projecting V into
the -1 eigenspace of (j,k)>. Then Mz2;(M;x(VIK))=U12, Both subspaces have
the same dimension.

Proof of the claim. Notice that
5.9) Msx(ey-ex) = ej-es,
and that this is a -1 eigenvector for Mys. From this it follows that Msg(VIK)
is a linear subspace of the -1 eigenspace for (s,j) which has the same dimension as
UIK, Because V is in L(G), Msxk(VIK) is a linear subspace of V; hence it is in
Uis,

A similar argument shows that Msg(VIS) is a subset of VIK, (Msk is an
involution.) Because Msg preserves dimension, it follows that Mgg(VIs) =
UsK and that the dimensions of both linear subsets agree. This completes the

proo¥.

The above two claims will be used to characterize any V in L(G).

Claim 3: Let V¥V in L(B) be such that V12 js j dimensional. Then V is spanned
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by the sets VIK, k=2,..,N, and the dimension of V is (N-1)j,

Proof of the claim: A basis for EN is {e;-ex} where K ranges from 2 to
N. Therefore, a basis for T'=(EN)N-1 jg the standard one of extending the basis
for each component space to the product space.

Assume that V!2 js j dimensional. According to Claim 2, VIK, k=2,,.,N is a
J dimensional subspace of V., Thus V contains the span of these vector spaces.
Moreover, it follows from our choice of a basis for V that the basis for the
subspaces form a linearly independent set of vectors. Thus, the dimension of V is
bounded below by (N-1)j.

1f the dimension of V is greater than (N-1)j, then there is a vector v in V
which cannot be expressed as the linear combination of vectors from the spaces
vik, k=2,..,N. But, by our choice of a basis, this means that for some choice of
k, the projection of x into the -1 eigenspace of (1,k) is not in VIK, This

contradicts the definition of VIK,

Completion of the proof of Theorem 7. Because Uy is in L(G), its dimension
is (N-1)j where j is the dimension of VI2Zy, the projection of Yy into the -1
eigenspace of (1,2). We show that if the voting vectors are completely different,
then j=N-1,.

Assume that V!2y is j dimensional. This means that a basis for V!Zy is
given by {cs?, s=1,..,j. Here, each c¢s is a linear combination of the N-1
vectors (e;-e2,0,..,00, ..., ¢0,..,0,e1-€2). By a standard row reduction
argument (and perhaps by a reassignment of the order of the voting vectors in W) we
can assume that the basis {cs) is replaced with an equivalent basis {ds) where
5.10) di2g = (as Ce|-ez);asS2(e1-e2)}...5a5nle1-€2),

where a$g 1 for s=k, s=1,..,J;

0 for k&j, ki#s;

It follows from Eq. 5.9 and Claim 2 that a basis for Mzx(V12y) = ViKy jg
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{d!¥s) where dlK¥s is Ca$ (ei-ex,..,a°n€ei1-ex)). Thus, a basis for
Uy is given by
3.1 {d'Kg}, kK=2,..,Nj s=1,..,J.

The vector W=(WN;,.. ,WNy4 ) is in the space Vy, so it can be expressed as
a linear combination of the vectors from Eq. 5.11. Each voting component WNs is
in a space EN which is spanned by the vectors {e;-ex}. Therefore, it has a
unique linear representation in terms of this basis. But because of the row reducec
form of the vectors in Eq. 5.11, this means that the components WNx, k{j, uniquely
determine the representation of W in terms of the basis 5.11, 1In particular, the
linear combination used to determine WNy in EN uniquely determines the linear
combination of the d!Xs vectors required to represent the kKTH component of W,
k=2,..,N.

Assume that j<N-1, and let s be such that j{s{N-1. Because of the row reduced
form of the basis vectors, it follows that the linear combination required to
represent the K7K vector component of W yields aKsWNX in the sTH component,
s= j+1,..,N-1, k=1,..,j. For this to hold, the voting vector WNs must be a linear
combination of the vectors {(WNx}, k=1,..,Jj. This contradiction to the assumption

that the voting vectors are completely different force j=N-1 and completes the

proof.

The Key idea in the above proof is to use the mappings Mgy to determine a
basis for Vy. Once this is done, then the rest of the proof is simple vector
analysis. This basic theme persists in what follows, but there are some significant
differences. The most serious one is that the permutation map, Mjyx, doesn’t admit

an extension of the type given in Eq 5.7 when more than one subset of alternatives
are considered. To see this, let N=3 and consider M|z on the space
T’=E3x(E2)3., The vector ¢2,0,-2;1,-1;1,-1;1,-1) is the Borda vector Ba

where A is the ranking aj>az>asz. Now, if Mj2(Ba) were defined as in Eq.
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5.7, then the outcome would be ¢(0,2,-2;-1,1;-1,1;-1,1). But this corresponds to the
inconcsistent ranking az>a;>az; az2>a;, asz>a,, and azlaz.

It is clear what properties we want the extension of a mapping, such as Mz,
to have. We wish 1) to interchange the a, and the az alternatives in the
ranking, and 2) to map elements from {(We(a3) back into this set. It can be seen
from the above and other examples that to preserve consistency, the permutation
mapping on subsets of alternatives is determined both by the choice of permutation
mapping on the total set of alternatives and by the choice of the ranking of the

alternatives. This leads to the following definition.

Definition 7. Let € be a ranKing of the N alternatives, and let WC in T be the
voting vector corresponding to C. Define Mxy(lc) = Wecc) where P(C) is the
ranking obtained from C by interchanging the positions of ax and aj. Let

5.13 Mxs(Edcdod=dcMrsUe),

where the summation index, C, is over all rankings of the N alternatives and where
de is a scalar.

Example: Let N=3. When the mapping M)2 is defined over the space T and when
the ranking it is operating on is A, then M;2=(M;2,M2,E,E) where E is the
identity mapping. On the other hand, if the ranking is ai>as>az, then
My2=(M;z,M12,M12,M12). UWhen there is only one set of alternatives, as in
Theorem 7, this definition reduces to Eq. 5.7.

This type of structure, where a collection of mappings is defined over a
product space and each component mapping depends upon what was the mapping and the

base point in some previous component space, is called a wreath product. (See, for

example, [3,41.) Thus, the permutation mappings over the space of rankings of
subsets of alternatives defines a wreath product of permutation mappings.
(Incidently, as it will be shown elsewhere, many of the chronicalled difficulties of
social choice can be explained and extended by use of this wreath product.)

(As a brief aside, I would 1ike to point out that this wreath product captures

the symmetry properties of the simplex. This can be seen by using a normalization
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where the components, wy, in the voting vectors are all non-negative and sum to
unity. This changes the underlying space from EN to the simplex Si(N) where
subsets of alternatives correspond to faces and edges of this simplex. Then it is
easy to see that the above wreath product coordinates symmetry actions on the faces
and edges of the simplex with symmetry action inside the simplex.)

By use of Eq. 5.13, it is easy to establish that Vy is in L(BG)={VIV is a
linear subspace which is invariant with respect to 6, the group generated by the
permutation mappings Mi1;3. On the other hand, the extension of Mg; in
Definition 7 does not define a linear mapping. (There are choices of vectors y and
w so that
9.14 MygCu-w)#Myx(v)-Myglwd,)

Thus, because the proof of Theorem 7 depends upon the linearity of My, it does
not extend directly to the general setting. The purpose of most of what follows is
to overcome the effects of Eq. 5.14.

Let T be as defined earlier; i.e., T=ERx(ER-1)(NjN-1)x, x(E2)(N,2),

Claim 4. Consider the set of vectors {(UC;x} in T which are constructed in the
following way. For each choice of K and j, k>Jj, consider a component subspace, C,
of T which represents a subset of alternatives which includes a; and ag. Then,
the vector component of VUC;x corresponding to the subspace C is {ey-exl}; all
other vector components are 0. The set of these vectors, as (K,j) vary over all
possible choices of indices and as C ranges over all component subspaces of T, span

T.

The validity of this claim is obvious. A counting argument shows that this set
of vectors is not linearly independent.
1§V is in Uy, then so is the vector U-Msjx(V). (This is because Vy is

in L(6).) Vector differences of this type replace the role of the "-1 eigenspace of
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(J,K)" when we determine a basis for VUy. To illustrate the ideas in a simplier
setting, we first prove Theorem 9.

Proof of Theorem 9. Without loss of generality, assume that
Si={ai,..,333, j=2,..,N. Let W=(WN,UN-t ,,,(1,-1)) be the collection of
normalized voting vectors selected to rank the alternatives. Because WN is a
voting vector, there is some adjacent pair of weights which are not equal. Let j be
the first index where wydwssr.

Consider
9.15 Wepear ~ MxntUWpar),
k=1,..,N-1, where Wp(a) is defined in terms of K and j in the following way. For
given value of Kk, P(A) is a ranking of the N alternatives where ax is in jTH
place while ay is the (j+1)TH place. The remainder of the alternatives can be
ranked in any way. Now, because ax and an are adjacent in the ranking and
because an isn’t in any of the sets S; for Jj<N, it follows that if these two
alternatives are transposed, it won’t affect the rankings in any other subset S;,
J{N. Consequently, the vector in 5.15 is the positive scalar multiple (wy-wjy-y)
of
3.16 (ex-en;0,..,0),
k=1,..,N-1. By construction, these vectors are in Uy. Moreover, they form a
basis for the subspace ENx0x..x0. Therefore, this subspace is contained in Vy.

Next, the mappings Mkn-1 are applied in the same way where j is selected to
be the first index where two adjacent components of WN-! are not the same. Then,
Eq 5.15 yields vectors of the form
5.17 <(bjlek-en-1),(wy—wy-1)(ex-en-1),0,..,0).
But, because Eq. 5.16 forms a basis for ENx..x0, for each choice of k, there is a
combination of these vectors which equals ¢(-bj{ex-en-i2,0,..,0).Thus, it

follows that the vectors (0,ex-en-1,0

.,0), k=1,..,N-2, are in Vu. This

forms a basis for OxEN-1x0x..x0.
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Continuing with the obvious induction argument, it follows that Uy contains
ENXEN-Ix,,.xE2, This completes the proof.

The Key point of thics proof is that the symmetry properties of permutations of
Sy differ significantly from those of Sk, j#K. This difference is significant
enough so that an element in L(G) cannot have a nontrivial, proper subspace of
EJxEX, Because this symmetry incompatibility is based on permutations of the
alternatives, it persists when j-1 completely different voting methods are used to
rank EY. Thus, the proofs of Theorem 7 and the above combine to prove this

special case o? Corollary %.1.

Proof of Theorem 4. O0On the space T’=(E2) (K2} consider
5.18 Wpear - Myxk(Upcar)
where j and K range through all possible pairs in the order k=j+1,,.,N, j=1,..,N.
For each pair of indices (j,k), P(A) is a rankKing where ay is the top ranked
alternative and ax is the second ranked alternative., Because these alternatives
are adjacent in P(A), and because this pair doesn’t appear in any other set of
alternatives, their transposition in P(A) doesn’t effect the ranking of any other
pair. Therefore, the vector difference in Eq. 5.18 has (2,-2) in the one component
corresponding to the pair ¢aj,ax), and 0 in all others. These (N;2) vectors
form a (N;2)x(N;2) matrix with two dimensional vectors as the entries. Because of
the ordering of the indices, the entries along the diagonal of this matrix are
(2,-2) and 0 off the main diagonal. That these (N;2) vectors are linearly
independent is immediate. Thus Ve has vector dimension (N;2) and it contains (and

hence equals) T’.

To simplify the notation, if {ajy,ax} is contained in a subset defining a

component space of T, call it "an (j,k) component space".
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Proof of Theorem 4. First we show that Vg has dimension (N;2). To do this, for
each j and Kk, consider Eq. 5.18 where B replaces W and where P(A) ranges through all
rankings where a; is the iTH ranked alternative, ax is the (i+1)TH ranked
alternative, i=1,..,N-1. Now, in a (j,k) component space of T, the vector
difference from Eq. 5.18 is (wi—wi1+1)(es-ex). But, for a Borda Vector,

(Wi-wy+1)=2 for all choices of i. Since the voting vector for N=2 is (i,-1),

this difference is 2¢(1,-1). Therefore, Eq. 5.18 is independent of i, and it defines
a vector 2V;x where Yjk has (ey-ex) in any (j,k) component space, and 0 in

all others.

The set {(Vsx), J<K, has (N;2) vectors which are linearly independent. (The
linear independence follows the proof of Theorem 4; the vectors used in this proof
are the last (N;2) vector components of the vectors V;k.) To prove the theorem,
it suffices to show that any vector Bp(a) can be expressed as a linear combination
of the VUjsx vectors.

First we show that
5.19 Ba = ¥ Vi,
where the summation is over 1{j<{k{(N. Consider a subset, D, of s{N alternatives,.
Let j be such that aj is in D. Then, for exactly s-i choices of k¥#j, Vsx has a
non-zero vector component in the space corresponding to the set D. Each of these
vectors has a non-zero compeonent in the direction corresponding to as; it is +1 if
J<k, it is -1 if k<j. Therefore, in the component corresponding to the subset D,
the sum in Eq. 5.19 is (s-1, s-3,.,,s+1-2i,..,1-8), Thus, the sum is the Borda
vector.

Next, we show that Bpca) can be expressed as a linear combination of the
Usx vectors for any choice of P(A). But, any P(A) can be expressed as the
compositions of transpositions of the ranking A. So, it suffices to show that if
Brta) can be expressed by such a combination, then so can Bc where C is a

ranking obtained by a transposition of some two alternatives which are adjacent in



Page 41

the ranking P(A). According to Eq. 5.18, this is given by Bp(ar+2Vsx for the
choice of j and Kk determined by the trancposition.

The above demonstrates that Vg is spanned by {Vsk}, j<k. That the 2
vectors are orthogonal to the space Vg follows from the simple computation that
each such vector is orthogonal to the basis. That the Z vectors determine a basis
for the normal space of Vg follows from a counting argument. (In this counting
argument, note that the 2’s determined for the subset of alternatives D are linearly
dependent. There are s such vectors, but any s-1 of them are linearly independent,
This is a consequence of our normalization.) This completes the proof of part b.

Proof of part a. Let W be the collection of voting vectors. If each voting
method distinguishes between the top and the second ranked alternative, then let the
normalization of the voting vectors be w,-w2=2. For each choice of j<k, let
P(A) be the rankKing where ajy is the top ranked alternative and ax is the second
ranked alternative. Then, Eq. 5.18 yields 2U;x, j<k. Because these vectors form
a basis for Vg, it follows that Vg is a subspace of V.

Assume that there are some voting methods reflected in W which do not
distinguish between the top two ranked alternatives. Because these components are
voting vectors, they must distinguish between some two rankings. Fix j and k, and
consider all possible rankings of the alternatives where ay is the iTH ranked
alternative while ax is the (i+1)T¥ ranked alternative for each i=1,..,N-1. For
each such ranking, in each (j,k) component space Eq. 5.18 has a non-negative
multiple of (ey-ex). When i=1, this multiple is wi-wz; and it occurs (N-2)!
times. (This is the number of rankings of A satisfying this condition.) When i1,
it is a combinatoric problem to determine the number of different rankings of the N
alternatives where i-(s+1) elements of D and s elements not in D can be ranked ahead
of ay and ak. This will determine how often in Eq. 5.18 the scalar multiple
Wr-s—wr-j-s Will occur. Notice that these numbers are independent of the choice

of j and k; they only depend upon the choice of the voting vector, the number of
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elements in D, and N.

Add all of these vector differences from Eq. 5.18 together. The resulting
vector has a positive scalar multiple (ej-ex) in each component representing a
(j,k) subset of alternatives. This scalar depends only upon the choice of the
voting vector and the number of elements in this subset, not on the choice of j,k,
or i. Normalize the voting vectors so that this vector is a scalar multiple of
Vix. (To avoid renormalizing the voting vector used to rank pairs of
alternatives, the different voting vectors are scaled so that this sum of vectors is
2[IN-2)'IN-2U;y.) Thus, Ysx is in the corresponding Vy. Because the
normalization doesn’t depend upon the choice of j and k, this statement is true for
all choices of j and K. From this it follows that UYg is a subspace of VUy.

Next, we must show that if W is not a Borda vector, then Vg is a proper
subset of Vy. To do this, we examine the last argument more closely. Since the
choice of j and k only influences the choices of subsets of alternatives being
considered, we start by considering the indices 1 and 2, and later we indicate what
changes must be made to obtain the general proof.

Consider the vector differences Wpcar) — Mi2{Wpca)r) where only the choice
of P(R) varies. Furthermore, to simplify the notation, let w¥s denote
ws—ws+t. When A is the standard ranking, this vector difference is
w¥;(e|;-e2) in each 1,2 component space. Next, we consider rankings where a,
is the second ranked alternative and az is the third ranked alternative, The only
alternatives which concern us are those ranked above a; and az. So, consider
the N-2 rankings obtained in the following order: The j-2 ranking has a; as the
top ranked alternative, the ranking of the alternatives in the kTH, k=4,,.,N,
position is determined in some arbitrary fashion, Then, the vector components of
the difference have a scalar multiple w*2 for those (1,2,j) component spaces, and
w¥; for the remaining (1,2) component spaces. {(Notice that this vector is

independent of what is ranked in the kT¥ position, k=4,..,N.)
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For each i=3,..,N-2, continue in the same fashion. Let a; be the iTH

ranked alternative, and let az be the (i+1)TH ranked alternative. Consider the

(N-2;3i-1) rankings obtained by choosing sets of (i-1) alternatives ranked above aj
and az. The ordering of these alternatives isn’t important, just the choice of

the set. For each of these rankings, determine the vector ‘difference. The
resulting scalar multiple, w¥s, in each (1,2) component space depends upon how
many of the selected (i-1) elements are also in this set. Notice that the set of
vectors obtained in this way includes all differences of Eq. 5.18 where (j,k)=(1,2)
and P(A) has a; and az adjacent in the ranking.

Now consider these vectors where in each component space we use the appropriate
w¥s (rather than its numeric value). Given any such vector, we can determine the
value of i and the elements of the selected set of (i-1) elements. Indeed, this
already can be determined by the (1,2) component subspaces of N-1 elements. Namely,
because only one element is left out of each these subsets, the largest subscript s
of w*s from these components is the value of i. To determine the set, we compute
its complement, For each component subspace with multiple w¥;-;, the element
which is in the total set but not in this subset is in the complement. In fact,
this same analysis can be done over all of the (1,2) component subspaces of K
etements where K2>3. A consequence of this is that no two of these vectors are the
same.

These vectors span a subspace. (This subspace plays the same role as the
subspace in the -1 eigenspace for (1,2) in the proof of Theorem 7.) We already know
that a linear combination of these vectors equals Vi2. If any of these vectors
differs from a scalar multiple of Viz, then this subspace is at least of dimension
2. (By comparing the component spaces for the binary pair (a;,az), it follows
that this scalar multiple must be 2.) This would be sufficient to prove that Uy

properly contains Vg independent of what happens for a similar analysis for the

other choices of j and K.
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Now suppose each such vector equals 2V ;2. When the ranking is A, this means
that for all (1,2) component spaces, the voting vector has wi-w2=2. By
comparing the vector from all (j,1,2) component spaces, it follows that wz-wa=2.

As j varies, this captures all of the voting vectors for (1,2) component spaces.
Continuing in the same fashion through all choices of i, it follows that all of the
voting vectors for (1,2) component spaces are Borda Vectors. Applying the same
analysis for all choices of j<K proves part a of the Theorem 6.

Proof of part c., For each subset of s alternatives, there are s-1 choices of
the differences w*s in the definition of the voting vector. The scalar
normalization reduces one of these degrees of freedom, so there are s-2 degrees of
freedom in the choice of a voting vector. Let d=%;(N-2;i—2). A simple counting
argument shows that there are d different subsets of alternatives which contain the
pair (aj,az). Therefore, in the choice of the voting vectors to rank these
subsets of alternatives, there are g;(N-Z;i-2)(i-2) degrees of freedom. The above
construction defined d vectors. Now, if these vectors are linearly independent,
then the linear space defined by them is of full dimension d. That is, for each
(1,2) component space, the vector which has (e;-ez2) in this component and 0 in
all others is in Yy. This means that Yy contains this subspace. But, linearly
dependent means the vectors must satisfy an algebraic condition (from a vanishing
determinent)>. On the oiher hand, being independent ic an “open® condition; if there
is at least one vector leading to independence, then this is the standard, generic
condition,

To show that most vectors W lead to independent vectors in this (1,2) space, it
suffices to show that the open set is nonempty. Thus, we only need to show that if
W corresponds to plurality voting, then all of these vectors are linearly
independent., But, for a plurality voting vector, w¥,;>0, w¥s=0 for s)i1. To show
independence, we use the above construction, starting with the last ranking and

working forward.
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1f a; and a2 are the bottom two ranked alternatives (i=N-1), then only in
the subset of two alternatives do they emerge as the top two alternatives. Thuse,
the vector difference has 0 in all components except in the component space for the
pair (a;,az2) where the multiple is 2., Next, consider i=N-Z where aj is the
bottom ranked alternative. In this vector difference, only the components for the
subsets {a;,az,as} and {(a;,az} have positive multiples., But, the first
stage of i=N-1 can be used to obtain (N-3) vectors with zero in all but the (1,2,j)
component space, where the entry is (e;-ez). The same argument is continued
over the various values of i and the different subsets of alternatives. This
completes the proof for (1,2). The same argument holds for all choices of indices
J{k. This completes the proof of Theorem & and it shows that if W consists of the

plurality voting scheme for all subsets, then Vy=T.

Several places in this paper there are informal comments asserting that for
certain types of voting methods, certain conclusions hold. For economy of
exposition, proofs of these statements aren’t supplied, but it is clear from the
above proof that these conditions involve showing that a certain number of the
Wpca) vectors are independent. To assist the reader interested in verifying the
comments made here, we outline a geometric proof which simplifies the analysis.

For N=4, we indicate the algebraic conditions the vector components of W must
satisfy in order that Uy#T. It follows from the proof of Theorem é that we want
to find the dimension of the subspace spanned by Wpca)Mix(Wpcar) for each
pair j<k, and where P(A) varies over all permutations of A such that ajy is the
iTH ranked alternative while ax is the (i+1)TH ranked alternative. So,
consider j=1, k=2. The components for the spaces (a;,az), (a,,az,a3),

(aj,az,as), and S4 in this difference define the vectors



Page 46

(2, w¥ (|, wE;, w¥))
(2, wkz, w¥;, wkjz)
(2, wE|, w¥z, w¥j)

(2, w¥z, W¥z, Wk3z)

where the components w¥; = wy-wj41 for the voting vectors of the respective
subsets, (We suppress the notation which indicates that the choice of the w;’s
can vary with the subsets.) The general situation gives a pattern similar to the
middle 2x2 matrix. Blocks appear which assume the form of a square matrix with a
dominant diagonal term. This is a consequence of the symmetry of the wreath
product.

We want this set to have a minimal number of linearly independent vectors. It
has dimension one if and only if they are all the same, but this corresponds to
where the differences wyj—wjy4; are the same constant for all j. These are the
Borda vectors. This set of vectors can define a two, three, or four dimensional
subset when some of the Borda components are replaced with other voting methods.

Assume now that none of the vectors are Borda, and that for each set, w;2#0.
Because it is the last three components of each vector which determine the
independence, we plot these four vectors in three space. The first vector
determines the distant vertex of a rectangle, while the next two determine points on
two of the three faces of the rectangle containing this vertex., For a minimal
dimension of independence, these three points and the origin of the rectangle must
lie on the same plane. This imposes a strong algebraic condition on the weights.
Moreover, the last point must also lie on this plane.

From this we see why voting systems which distinquish between only two subsets
can‘t satisfy such stringent vector conditions. This is because they can be
normalized so that they define a unit cube in the appropriate dimensional space.
However, because all but one of the components wjx are zero, the vectors end up on
axes or lower dimensional coordinate planes, and the symmetry properties change the

locations., Thus, they cannoct be on planes of the type described above.
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Proof of Theorem 5. For this theorem, the space is T'=(EN)x(EZ)(Nj2Z),

The obvious modification of the above shows that Vg has dimension (N;2). Thus,

all we need to show is that if WN#BN, then VUy=T“. But, WN not being a

Borda Vector means that there are at least two choices of s, say j and k, where
w¥y#w¥xx. Consequentiy, there are choices of P(A) so that the vector difference

in Eq. 5.20 has a w¥s as the multiple of e;-ez in the first component,

2(e1-e2) as the component for the binary, and 0 in all other components, s=j,K.

It is obvious that these two vectors are linearly independent, so they fill the
maximum dimesion for this (1,2) space. This is true for all choices of j<K. Thus,

Uy contains T, This completes the proof.

Proof of Theorem 10. Let Tr be the subspace of T corresponding to the
family F. A normal vector to Te, N, is in Vg if and only if it can be expressed
as a linear combination of the basis vectors. That is, N has the desired properties
if and only if there exist scalars D={dyx} such that
5.20 N= § diVsx.
Those vector components of N which correspond to members of F must be 0; otherwise N
wouldn’t be a normal vector to T¢. Because of the form of the vectors Vs,
this means that for each member B of F, the sum i:d;x(g;-gx)=g where the
summation is over the indices with pairs of alternatives in B.

Suppose that there are several sets D which define a cyclic symmetry property
for F. Each set defines a vector in the (N3;2) space Vg. Now, since all normal
vectors to Tr which are in Vg has such a representation, the dimension L is

given by the dimension of the space spanned by the D vectors. This completes the

proof of Theorem 10.

(Second) Proof of Theorem 9. Assume that F is the family of necsted subsets
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defined in the statement of Theorem 9. As before, assume that
Sy={ai,az,..,a33, J=2,..,N. Moreover, assume that there exists a set
D={dsx? which defines a cyclic symmetry property for F. By induction, we will
show that all of the djx“s must be zero, which is a contradiction to the
definition of D.

Because Sz is a member of this family, dj2(ei-e2)=0, or d,2=0.

Assume that for 523, dyx=0 if j<k{s-1. We now show this is true for j<k{s.
But, because Ss is a member of F, the sum Eq 5.20 must hold for all j<k{s. By the
induction hypothesis, this sum is E:d:sg:-(z:dsg)gs=g. Because the vectors
{ex} are linearly independent, the coefficients for g; must be zero. That is,

the terms dys=0 for j{(s. This completes the proof.

Proof of Theorem 8. Let F be the family of subsets defined in the statement
of the Theorem. First, assume that k=N-1 and that this family has the cyclic
symmetry property with set D. By definition, not all of the terms d;x equal zero,
so assume without loss of generality that d;2®0. We use an induction argument to
show that d,2=d(;y for j=3,..,N. First, this is shown for j=3.

Consider the only member of F which is missing ag. Eq 5.20 must hold for the
associated set of pairs of alternatives. Thus, in order that the e; term
vanishes, it follows that
5.21 diz=- § dis, 3.
Thus, the summation on the right hand side must be nonzero. Now consider the
subset where az is the missing alternative. Again it follows from Eq. 5.20 and
from the vanishing of the e; coefficient that
5,22 dia=- % dis, 33,
so di3=d;z.

Assume that dij=d;z for j<{s. We now show that dys=di2. To do this,

consider the member of F where as is the missing alternative. Then, it follows

48
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from Eq. 5.20 that

5.23 diz = -3 dis where j)2, j¥s.

By using Eq. 5.20 for the subset which is missing as, we have that d;s equals
the summation on the right hand side of Eq. 5.23, Thus, dij2=dis, and the
induction proof i§ completed.

Now, consider any member of F. The e, coefficient from Eq. 5.20 is
(N-1)>d; 2. Because this coefficient must be zero, it follows that dy2=0. This
contradiction completes the proof for k=N-1.

Let K be such that 2<{K<{N-1. Assume that F is cyclic symmetric with set D
where, without loss of generality, di2#0. Consider the the subfamily of F
consisting of the k+1 subsets of k elements which can be constructed from the
elements <{ajy,..,axk+12. Because this subfamily is contained in F, it must be
cyclic symmetric with respect to D. But, the above argument then shows that

dy2=0. This contradiction completes the proof.

Lemma. Consider the two linear subspaces of T, Uy and Vy, where the
second is a proper subspace of the first., Then, there are ranking regions of T
which meet Vy but do not meet Uy.

Proof. Let N be a vector in Vy which is normal to Uy, Because N is in T,
each vector component of N is normalized, and it corresponds to a ranking of this
particular subset of alternatives, It suffices to show that Uy does not meet the
ranking region corresponding to the listing of rankings defined by N. To do this,
it suffices to show that any boundary vector for this ranking region is not
orthogonal to N.

The boundary Qurfaces for this ranKing regions are given by the various
indifference planes in the component spaces of T. That is, if in some component
space, we have njy>ng, then the bounding plane is given by x;j=xx. Choose the

normal vector to this plane which points to the interior of the ranking region,
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i.e., the vector ey-ex. The scalar product with N and such a normal vector to
the boundary of the ranking region has, for each component space, a positive value
(ny-ng>0). Thus, all of the boundaries of the ranking region form an angle of

less than 900 degrees, so this ranking region cannot meet Uy,

Proof of the theorems in Section 2. We have shown that Uy contains Vg.

These theorems follow from the above lemma.

The proofs of the Corollaries 8.1 and 8.2 are obvious combinations of the
proofs of Theorems 7 and 8. If the projection of Vg is the total space, then there
is no interaction effect among the subsets of the alternatives, and so the proof of
Theorem 7 can be used directly. 1f the projection of Vg isn’t equal to the total
space, then there is a modification to take into account the interaction effect

among the subsets of alternatives given by the Borda vectors. This is the source of

the Borda independence condition.
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