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An Improved Algorithm for Steiner Trees

Abstract

We show two simple results for the Euclidean Steiner minimal tree
problem: (i) all admissible partitions of the set of nodes (which the tree
should span) correspond to degenerate full Steiner configurations, and can be
systematically derived from these if degeneracy occurs; (ii) for any given
full Steiner tree configuration there exists a lower bound on the value of the
corresponding Steiner tree (this bound holds as an equality if the tree is
full). Taken together these two results suggest a relatively efficient
(though still exponential) branch and bound algorithm for the Steiner minimal
tree construction. The algorithm uses the lower bound to discard some
configurations after a brief check, and does away with the need to check all

the possible partitions of the nodes set.



1. Introduction

The (Euclidean) Steiner tree problem [9,7] is to find the minimal
spanning tree for a set of nodes N = {l,2,...n}, while using additional points
(called Steiner points) if and where their inclusion would make the tree
shorter.

A Steiner tree is a local minimal solution to the above problem. Steiner
trees have up to n — 2 Steiner points, each of rank three; all angles between
adjacent arcs are 120° at least; the arcs are straight and may not intersect
each other. However, for n > 3 there may be (exponentially) many different
Steiner trees, and it is difficult to find the Steiner minimal tree (SMT) for
large sets unless the nodes are arranged very conveniently.

A Steiner tree with n — 2 Steiner points exactly is called full. In a
full Steiner tree, all the nodes of N are leaves (i.e., of rank one). In a
Steiner tree which is not full, some nodes of N are of rank two or (very
rarely) three. A Steiner tree which is not full can always be partitioned to
full subtrees (where a direct arc is considered a full Steiner tree for
n = 2)., In this text we shall refer to Steiner trees which are not full as
degenerate. Also, we shall refer to any tree with n - 2 additional points of
rank three, and where no arcs intersect as having a full Steiner configuration
(note that we do not require the angles to be 120° at least). It turns out
that some full Steiner configurations can be actually realized as full Steiner
trees, while others would degenerate, i.e., some "would-be" Steiner points
merge with nodes of N, or with each other. (If two Steiner points merge with
each other, we obtain an additional point of rank four, which calls for the
insertion of two Steiner points in its stead, but in such a manner that the
configuration is changed. Therefore, in such cases the resulting Steiner tree

can be associated with another full configuration.)



Cockayne [3] has introduced the "Steiner polygon” which is guéranteed to
contain the SMT. If the Steiner polygon intersects itself, the problem can be
partitioned to smaller independent subproblems (very advantageously). In this
text we will assume that the Steiner polygon is not self-intersecting. This
assumption is, obviously, not restrictive at all. To continue, if all the
nodes of N are on the Steiner polygon, Cockayne showed that there are
2 - 2)1/((n - 2)!(n - 1)!) candidate full configurations (see also
{10]). It should be noted, however, that some of these configurations ma& not
be realized as full Steiner trees due to degeneracy. The case is more
complicated if some nodes of N are internal to the Steiner polygon. Those
nodes of N on the polygon have a natural cyclic order, but internal points may
be inserted between them in numerous ways. Cockayne concluded that there
would be (2(n - 1))!/((n = 2)t(n = i = 1)!) full configurations if i points
are within the Steiner polygon.

An algorithm capable of solving the minimal Steiner tree problem was
proposed by Cockayne and Schiller [4], and later streamlined by Boyce and
Seery [1]. The basic idea is to cﬁeck all the pdssible partitions of N which
conform to a long list of requirements (designed to discard some partitions

faster), and for each part of these partitions to solve for the minimal full

Steiner tree, finally settling on the partition for which the sum of the full
partial trees is minimal. It is easy to show that such a scheme must converge
to the optimum. Much time is expended in generating and checking all the
partitions and solving for the parts. (On the other hand, only full trees or
subtrees need be constructed in a direct manner, which saves some time in that
part.)

In this paper we propose an algorithm which does away with the need to

generate partitions of N, by identifying degenerate Steiner trees associated



with full configurations which cannot be realized as full Steiner trees. - This
should be an improvement by itself, but in addition we propose a lower bound
on the length of any Steiner tree (full or degenerate) associated with a given
full configuration, and this makes it possible to discard some full
configurations after a brief check, without having to check whether they may
be realized as full Steiner trees or not.

In the next section we discuss the Steiner construction and its extension
to a contribution made by F. Heinen in 1834, which will be very useful for us
below. After that we will proceed to establish the lower bound, show a
procedure designed to identify degenerate Steiner trees associated with given
full configurations (if they cannot be realized as full Steiner trees), and

finally present the resulting algorithm.

The Generalized Heinen Dual Steiner Problem

Take the simplest case first, namely, N = {1,2,3} (i.e., a triangle
Al,2,3), and the Steiner construction is executed as follows: (i) Choose a
pair of nodes in cyclic order, such as 1 and 2 (or 2 and 3, or 3 and 1) and
represent them by point (1,2) which is located at the apex of the equilateral
triangle Al1l,2,(1,2) constructed outside of Al,2,3 (see Figure 1). (ii)
Connect point (1,2) with node 3 (or (2,3) with 1, or (3,1) with 2).

(A segment such as (1,2),3 is called a Simpson line [8].) Circumscribe
A1,2,(1,2) by a circle, and denote the point where it intersects the

segment (1,2),3 as point 4. Now, if point 4 lies within Al,2,3 (or even
coincides with one of the nodes), the Steiner tree is obtained by connecting
each node of N with (the Steiner) point 4. On the other hand, if 4 is
strictly out of Al,2,3, the Steiner tree is degenerate and consists of the
sides of the obtuse angle of the triangle Al,2,3. (Note that this angle is

greater than 120°.)



(1,2)

Figure 1

According to Kuhn [8], the first person to solve the orignal Fermat
problem (of minimizing the total distance to the three vertices of a triangle)
completely was F. Heinen. (The Fermat problem is, obviously, "Steiner's”
problem for n = 3.) Heinen's contribution was the solution of the degenerate
case, which was neglected by earlier contributors (such as Torricelli [before
16401, Cavalieri [1647]1, and Simpson [1750]). 1In connection with the
degenerate case, Heinen showed that if the triangle has an angle greater than
120° the Steiner construction would yield a point out of the triangle which
(locally) minimizes the sum of its distances to the two acute angled vertices
minus the distance to the third (obtuse) vertex. Figure 2 illustrates this

point, where we minimize d(4,1) + d(4,2) - d(4,3). The figure has two parts



reflecting the two possible ways in which a degeneracy may manifest itself, as
a result of our choice of which two vertices to represent. The respective

minimal Steiner trees are shown in broken lines in the figure.

(3,1)

(1,2)

a b

Figure 2

A more careful analysis, however, shows that the minimum obtained for the
difference above is not the global minimum. To obtain the global minimum one
should proceed with the Steiner construction in the "wrong" way, i.e.,
construct the equilateral triangle on the same hemisphere as the original
triangle Al,2,3. For our purpose we do not want this real minimum, but rather
the local one. However, we shall have to devise a check to make sure that we

have a "legitimate” version of the problem. This can be done by checking if



the Heinen point and point 3 are or are not on the same side of the line
connecting 1 and 2. For our purpose they should indeed be on the same side
(i.e., yield two weak linear inequalities of the same sign). This can be
checked for very easily. The example at the end of the paper illustrates this
point, and shows why the inequalities should be weak.

It turns out that it is very easy to generalize Heinen's Dual Steiner
Problem for any given full Steiner topology which proves to be degenerate.
One simply carries out the Steiner construction in the usual manner, but
without stopping upon degeneracy. Then, if any angles of 60° are found at
some Steiner points, this indicates that the solution minimizes the sum of all
the edges which form at most one angle of 60° minus thosé edges which form two
angles of 60° (at the Steiner points). The generalized Heinen problem is to
locate the Steiner points (whether they are “proper” or not) according to the
given configuration. It is possible to ascertain that for a full Steiner
configuration which proves degenerate, any of the legitimate Steiner
constructions would yield the same "Heinen tree.”

We now show that the Heinen objective function is a lower bound on the

value of the Steiner tree with the same "parent"” full topology.

A Lower Bound for Steiner Trees Associated with a Given Full Topology

It is well documented [7], that if the Steiner construction does not
degenerate, the "length"” of the Steiner tree is equivalent to that of the
Simpson line, e.g., the segment (1,2),3 (which we may denote as d((1,2),3) or,
even more explicitly for the nondegenerate N = {1,2,3} case:

[Mst| = a((1,2),3). Due to symmetry, it follows that d((1,2),3) = d(1,(2,3))
= d((3,1),2). Lemma 1 below states a similar result for the degenerate case
as well., Also, the reader can easily verify that in the degenerate case this

value is equal to the "length"” of the Heinen tree.



Before we proceed, however, let us state briefly that for IN' > 3 the
Steiner construction of any given full configuration is carried out by
iterative representation of consecutive nodes or representative points,
similar to the representation described above, until a Simpson line is
obtained, and then "folding backwards” to obtain the tree. The various full
configurations correspond to the various possible pairings of the nodes. It
is customary to keep node n as an end point of the final Simpson line (e.g.,

(1,2),3; but other representations and pairs exist for the same topologies,

such as (2,3),1 or (3,1),2 ). We also refer to segments such
as (1,2),3—where a pair of parenthesis signifies that the two points within
it are represented by the apex of an equilateral triangle constructed in the

manner discussed above—-—as Cockayne notations. Another example of a Cockayne
y

notation might be (1,((2,3),(4,5))),6, where N = {1,2,3,4,5,6} (see Figure 3);
here nodes 2 and 3 ére represented by (2,3), nodes 4 and 5 and represented by
(4,5), (2,3) and (4,5) are represented by ((2,3), (4,5)) and, finally, 1 and
((2,3), (4,5)) are represented by (1,((2,3), (4,5))) to obtain the indicated
segment. When performing the construction for this notation, we draw the
segment from 6 to the point intersecting the circle circumscribing the
equilateral triangle Al,‘((2,3),(4,5)), (1,((2,3),(4,5))) associated with the

last representation, where a Steiner point, say point 9, is located; we now

have two segments, 1,9 and ((2,3),(4,5)),9 which we treat in a similar manner,
and so one.

We are now ready to state and prove some results.

Lemma 1. All possible representations of the same full Steiner tree
configuration yield Simpsons lines of equal length-—whether the construction

degenerates or not.



Note. The lemma is well-known for the nondegenerate case., The proof for our

more general case is essentially the same, and we present it for completeness.

(4,5)

((2,3),(4,5)) (1, ((2,3), (4,5)))

Figure 3

Proof. We first prove for |N| = 3, and proceed by induction. For N = {1,2.3}



we have to show that d((1,2),3) = d(1,(2,3)) = d((3,1),2). By construction we

have (see Figure 2-b):

d((1,2),1) = d(2,1),
d(1,3) = d(1,(3,1)),
€(1,2),1,3 = 42,1,(3,1) = «3,1,2 + 60°.

=> A(1,2),1,3 = A2,1,(3,1);

=> d((1,2),3) d((3,1),2).
And, similarly, d((1,2),3) = d(1,(2,3)).

Now assume the lemma holds for INI =k -1; k = 4,5,..., and we have to
prove for 'N‘ = k, for a given full Steiner configuration. But, for any such
configuration there is at least one pair of consecutive ﬁodes, say u,v € N,
which are connected by direct links to a common Steiner point (see Lemma in
[10]). Take this pair, and represent it by point (u,v). Clearly we now have
k = 1 points, and for all the alternative full configurations defined in this
reduced set, the assumption implies that the resulting segments are equal.
Now take one of these alternatives where point (u,v) is an end point, and
another point, say x, represents the other k - 2 nodes of N; there is exactly
one such segment fﬁj;ijl We now have a triangle Au,v,x and two more

alternative segments, which are the only ones we did not consider before,

namely, u,(v,x) and (x,u),v but this is the case of three points so these two
must be of the same length as (u,v),x, and all the other representations which

include (u,v) as a pair. {

Note. The proof implies that there are 2n - 3 possible Simpson lines or
respresentations for each full configuration. This is true since there are n

nodes, n — 2 Steiner points, and hence 2n — 3 edges in a full Steiner tree.
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For each such edge, a unique representation exists.

Lemma 2. For N = {1,2,3}, lMSTl > d((1,2),3); or, in words: the length of
the minimal Steiner tree for three nodes is not less than the Simpson line

obtained by the Steiner construction.

Proof. Without degeneracy |MST| = d((1,2),3), so it suffices to prove the
degenerate case. By Lemma 1, d((1,2),3) = d(1,(2,3)) = d((3,1),2), so without
loss of generality we may assume that the degeneracy is as depicted in Figure

2-a, In that case:
|usT| = d(1,3) + d(2,3).
Also, by construction

d((le)’B) = d(lsB)

=> |usT| = 4((3,1),3) + d4(1,2).

But, points (3,1), 2 and 3 form a triangle, and by the triangle inequality we

obtain:

d((3,1),2) < 4((3,1),3) + d(2,3) = |mMsT

. 0

Using the two lemmas, we can now state and prove our lower bound theorem:

Theorem l. Let ST be any Steiner tree with a given full configuration or a
degeneragte version thereof, and let d denote the length of each of the

Simpson lines associated with it, then |ST| > d.
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Proof. 1If there is no degeneracy, the theorem holds as an equality, so we may

assume degeneracy, and proceed by induction. By Lemma 2 the theorem holds for

n 3. Assume it holds for n =k - 1; k = 4,5..., and it remains to prove for
n = k. Since there is degeneracy, there exists a node v € N such that rank
(v) » 2. 1If rank (v) = 2 then ‘ST' is the sum of two partial Steiner trees——
each of which may be full or degenerate in itself, and for each of which the
theorem holds by assumption (since none of them has more than k - 1 nodes of
N), and it is easy to see that our required result follows for the sum, too.
Now, suppose that the only vertex v € N of rank more than one is of rank three
(the only case not yet proved), then angles of 120° exactly must be formed
there, and three full Steiner subtrees are connected to it. Represent each of
these by a segment including v as an endpoint, and denote the other endpoints
as Xy, X9 and x3. Clearly, v is (also) a Steiner point for Ax;,x),Xj3 (see
Figure 4) and our situation is exactly the same as it would be if X1s X9, X3,
and v were nodes of N (i.e., N = {xl,xz,X3,v}, which we did not stipulate.

Due to symmetry, we may assume without loss of generality that the

configuration is indicated by the segment ((xl,xz),x3),v. But v is a Steiner
point of Axj,Xj,X3, hence the length of our Steiner tree is d((xl,xz),X3), or
any other side of the equilateral triangle A(xl,xz), X3, ((XI’XZ)’XB)’ On the
other hand, d((xl,xz),X3), v) is the distance between an apex of this triangle

to its opposite side, and our result follows immediately. 1}

Having established a lower bound on the value of Steiner trees associated
with given full configurations, we proceed to investigate the admissible
partitions of the set N, and their relationship to degenerate trees associated

with full configurations.
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X3 ((XI,XZ),XB)

Figure 4

Full Configurations and Admissible Partitions

Obviously, when a full configuration degenerates, a partition (or
division) of N is implied. However, it is important to show that any
partition which might be implied by the SMT, is associated with a full
configuration which degenerates to it, or at least one such full
configuration. (If the SMT contains a node v € N s.t. rank (Q) = 3, then
there would be more than one full configuration which degenerates to it.
Otherwise there is just one.) This result will enable us to consider only

such partitions which are.implied by degeneracy of full configurations, and
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achieve considerable savings in computational time.

define admissible partitions as follows:

Definition., A partition of N is called admissible,
for its parts we obtain a Steiner tree for N (i.e.,
least, and no arcs intersect), and each such SMT is

subset of N).

To that end we first

if upon constructing SMTs
all angles are 120° at

full (relative to its

As an example, take a rectangle of 1 x 5 (i.e., N = {1,2,3,4}, as in

Figure 5-a.

jo
o

Figure 5

e
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For this case there is no admissible partitioﬁ, except N itself. However,
Cockayne and Schiller's algorithm might generate 24 more partitions for it,
such as {1,2}, {2,3,4}; {1,4}, {2,3,4} (and six similar partitions to a
triangle and a segment); or {1,2}, {2,3}, {3,4} (and 15 similar partitions to
three segments).

We proceed to show that every admissible partition implieé at least one
degenerate full configuration, and every degenerate full configuration either
implies an admissible partition or is not optimal (i.e., the SMT can be found
even if we ignore it).

Take any admissible partition, and construct the SMTs for its parts. By
the definition of an admissible partition we obtain a Steiner tree. For a
while assume that all the nodes of N are of rank one or two (we will discuss
the rank three case later). For each v € N s.t. rank (v) = 2, iteratively,
draw the bisector of its angle, and mark a point s on it at a distance of ¢
(e > 0, but small enough); now connect s by two new links to the two points
adjacent to v in ST aﬁd erase the two old edges which were incident to v
/(before we drew the bisector). Now s (and all similar points thus obtained)
is, topologically speaking, a Steiner point and we have obtained a full
Steiner configuration tree. Furthermore, since for any given topology (and
hence for any given configuration) the problem of locating the Steiner points
so as to minimize the total length of the tree is strictly convex, it has a
unique solution; and it follows that if we start with the full configuration
obtained by our procedure, and look for a Steiner tree (full or not) to
conform with it, we will obtain our original Steiner tree. (The uniqueness of
the Steiner tree for a given configuration has an important role in the

algorithm.)

It remains to discuss the case of rank three nodes. Such nodes represent
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the rare occurrence where two Steiner points are merged into the same node of
N. It follows that in order to obtain a full Steiner tree, we have to insert
a pair of interconnected Steiner points for each node of rank three; the four
"free"” links associated with the pair would be connected to the rank three
node itself and to the three points adjacent to it. This can be done in more
than one way. (Towards the end of the paper we give an example of how our
algorithm would identify an SMT with such a rank three node——depicted in
Figure 9.)

We have shown that any Steiner tree, and particularly the SMT, can be
obtained from one of the full configurations defined for N. This is enough in
order to proceed and describe a suggested technique of doing it, and present
our algorithm. However, we should note that not every full configuration
implies a Steiner tree. We illustrate this point by the example (mentioned

above) where N = {1,2,3,4} is the set of vertices of a rectangle, depicted in

Figure 4., Take the full configuration implied by (1,2), (3,4) (we could use

the notation ((1,2),3), 4 instead), as Figure 4-b shows, this full
configuration gives rise to a Heinen tree with the negative link connecting
the two Steiner points. Now, if we look for the solution of the convex
problem implied, namely, to locate points 5 and 6 so that the sum d(1,5) +
d(2,5) + d(3,6) + d(4,6) + d(5,6) will be minimized, we obtain the tree shown
in part c of the figure, where points 5 and 6 merge with each other. This is
not a Steiner tree, since the additional point is of rank four. Indeed, if we
insert two Steiner points instead (as depicted by dotted lines in Figure 5-c¢),

we obtain the SMT (for this case). However, the SMT is associated with

another full configuration, namely (4,1), (2,3) (or (1,(2,3)), 4 ).
We now describe a procedure designed to find Steiner trees associated

with degenerate full Steiner configurations, if they exist. Our procedure
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will not find a Steiner tree for cases where the solution of the convex

problem is not a Steiner tree, such as the case illustrated above and the

"wrong” direction case, however it will identify these cases, and we can

simply dismiss them then and there. The procedure is as follows:

Obtaining Steiner Trees from Full Configurations

(a)

(b)

()

(d)

(e)

(£)

For a given full configuration (defined on N or any subset of N),
execute the Steiner construction to obtain a Steiner tree or a
Heinen tree.

Look for degeneracies. (These can be identified by angle tests,
since "negative” links form angles of 60° on both sides.) If none
exist, go to (f); else, go to (¢).

For a given Heinen tree, look for the longest "negative” link
connecting a Heinen point to a node of N. If no such link exists
(i.e., the "negative" links connect only Heinen points), stop (the
full topology does not yield a Steiner tree). Else, go to (d).
The partition implied by the longest "negative” link, is that a
Steiner point merges with the node of N incident to it. Obtain the
notations of these two parts of the tree, and then go to (e).
Check if the longest negative link is associated with a legitimate
Steiner construction (i.e., if the Heinen point and the node it is
connected with form weak linear inequalities of the same sign with
the line connecting the two other points as obtained in (d)). If
the construction is legitimate, return to (a) with each of the two
parts separately; else,_gggg'(the full topology does not yield a
Steiner tree).

Check all angles at the degenerate points. If all are 120° at

least, stop (sucess). If any of them is less than 120°, pick the
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most acute one, identify the full subtree associated with inserting
a Steiner point for it (as in the greedy hueristic of [2]), and
perform steps (a) to (e) on the subtree. (This will imply a later
return to (f), but the procedure is finite.)

Before proceeding any further, it may be instrumental to show, by
counterexamples, that the simple procedure of just eliminating all the
"negative” links in one stroke, may fail. Our first counterexample, depicted
in Figure 6, shows that one of the "negative"” links, namely Ejg-may "turn

positive” when a longer "negative” link, namely 3,6 is eliminated.

Figure 6

The second counterexample, depicted in Figure 7, shows that a new “"negative”
link, namely 1,5, may appear after another, again longer, "negative™ link is

eliminated.
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Figure 7

Furthermore, Figure 8 illustrates a case where the first degeneracy
indicated (to point 3) later proves to be nondegenerate in the final solution,
thus necessitating the reinsertion of Steiner points at step (f).

Armed with our lower bound (Theorem 1) and with a procedure for obtaining
degenerate Steiner trees from full configurations (i.e., the corresponding

Heinen trees), we are now ready to state our algorithm.

The Proposed Algorithm

We assume that N cannot be partitioned by the Steiner polygon.
Otherwise, the problem would be decomposed to smaller subproblems, each of
which would conform to our assumption separately.

Theorem 1 gives-us a lower bound on the value of a Steiner tree

associated with a full configuration. We also have a procedure to identify
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Figure 8

the Steiner tree associated with any given full configuration, if one

exists.

It is well within the power of Cockayne and Shiller's algorithm to

scan all the full configurations associated with any set of nodes N, and using

all these, we proceed as follows:

(a) By a fast heuristic (e.g., see [2]) find a satisficing feasible

(b)

initial solution which will supply us with a tentative Steiner tree

and an upper bound; go to (b) with the first full configuration.

Check the lower bound associated with the full configuration. If it

is below the upper bound call the procedure for obtaining Steiner

trees from full configurations. Return from the procedure upon one

of the following:

(1) A Steiner tree is found which is better than the currenf
tentative solution, in which case go to (¢); or

(ii) there is no Steiner tree associated with the full topology.
In which case go to (d); or

(iii) the Steiner tree obtained is worse than the upper bound, in

which case go to (d).
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(¢) Update the tentative solution and the upper bound (since a better
Steiner tree has been found). Continue to (d).

(d) 1If the full configurations are not exhausted, go back to (b) with
the next full configuration. Else, stop. (The current tentative

solution is the global optimum.)

An Example

As an example we show an N = {1,2,3,4,5,6} case depicted in Figure 9.
There are five possible cyclic orders for this instance, since node 6 can be
inserted between any pair-—-the other nodes are on the Steiner polygon--and
this gives rise to 70 full topologies which our algorithm would have to
scan. (For a convex hexagon there are 14 full topologies.) Now, a greedy
heuristic would find the SMT here immediately, but since this SMT is not full,
we will still have to check out some full configurations with promising lower
bounds. Some of these would converge to the SMT, and we show one. Begin with

the cyclic order 1-2-3-4-5-6-1 and the full configuration

(1,((2,3),(4,5))),6. After constructing the Heinen tree, we would observe a

large negative link connected to node 6. This degeneracy yields two segments,

1,6 and ((2,3),(4,5)),6. 1,6 is a full Steirer tree for {1,6}, and the other
segment yields a partial Steiner tree where a Steiner point merges with node 6
(again). Finally, in step (f), we find that we have a legitimate Steiner
tree, which happens to be the SMT for this case. Note that this is a very
special case since node 6 turns out to be of rank three. More regular cases
are simpler in the sense that only one full "parent™ topology exists for an
SMT. In this example, if we carry out the check as required in step (e), in
the degeneracies identification part of the algorithm for obtaining Steiner
trees from full topologies, we find that 6 is on the line, so the inequalities

are of the "same"” sign only if we take them as weak inequalities, which is why
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we only stipulated "weak"” to begin with. Indeed in this case the opposite
representation would be fine as well, and the same final result would be

obtained.

Discussion

The Steiner problem is known to be NP-Hard [5], and indeed our algorithm
requires exponential time, since it has to check an exponential number of full
configurations; note, though, that if we start with a good initial solution,

it is reasonable to expect that most full configurations would be eliminated

((2,3),(4,5))

Figure 9
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in step (b) without calling the tree obtaining procedure at all, by using the
lower bound. Also note that all these full configurations are just a few of
the configurations and partitions generated and checked by the previous
algorithm. It is true that if a full configuration has a promising (low)
lower bound it may require some time to check it out completely; however, the
convexity of the degeneracy identification problem implies that on average
this part of the procedure should be very fast. Indeed, this problem car be
solved by a ropes and weights analog model which suggests that a polynomial
procedure may be found for its solution. (Certainly, it is not NP-complete.)

An important generalization of the Steiner tree problem, first discussed
by Gilbert [6] (or see [l1] for an overview) introduces weights to the arcs.
It might be worthwhile to adapt the algorithm suggested in this paper to this
generalized weighted case, or at least some restricted versions thereof. (In
the general weighted case, additional points may be of rank four or more,
rendering the (generalized) Steirer construction inappropriate.)

The proposed algorithm was not implemented on a computer, so far, and
there is cetainly room for contributions in this endeavor. The important
question of the number of points which can be solved for will have to wait for

such an implementation.
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