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ABSTRACT

This paper proves the existence of equilibria in economies with £Z7m commodity
spaces when consumption sets may not include the origin. The results apply to
deterministic economies with ‘a finite numbr of infinitely-lived agents and to
models of commodity differentiation. An example is also given of an
intertemporal economy with uncertainty in which no equilibrium exists.



l. 1Introduction

This paper is concerned with the existence of equilibria in the model of
an economy with infinitely many commodities formulated by Bewley [2]. The
main result in [2] requires the consumption sets to includé the origin, a
significant departure from the usual treatment of an economy with a finite
number of commodities. It will be shown here that this assumption can be
relaxed to some extent; in particular a fairly satisfactory result is obtained
for the deterministic economy with a finite number of infinitely-lived
agents. Existence is also proven under an assumption which seems reasonable
for modeis of commodity differentiation.

We begin with an example of a dynamic stochastic economy in which there
is no equilibrium. There is no private information in the economy. Existénce
fails simply because there is a continuum of possible states and consumers
require at least a certain level of consumption in each state. The technology
is such that if this level is provided with probability one, then there will
be zero probability of the constraint binding. Thus even if the bare minimum
albne is provided, the essential good may have a low expected marginal value.

If the expected utility hypothesis is taken as applicable to all gambles,
even to those involving a risk of death (as suggested, e.g., by Arrow [l, p.
23]), then there should be no subsistence requirements in stochastic
economies. Hence the example of nonexistence is not troublesome. However we
hope it illustrates the general problem. Several details of the example are
supplied in the appendix.

Let there be one consumer, one firm, two time periods (i = 1,2) and two
goods (E = energy and F = food). The consumer has the von Neumann-Morgenstern

utility function
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over the set of outcomes (EI’FI’EZ’FZ) satisfying the subsistence

requirements: E, > 1; F. 31, E
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food in each period but no energy. The firm chooses a net output plan

> 1, F2 » 1. He is endowed with 4 units of

A

(El ’Fl ’EZ(.)’FZ(.)) subject to

E/ +F <0andE +F + E,(8) + GFZ(G) <0 ¥0
where © is uniformly distributed on [0,1]. The interpretation is that the
firm can store energy costlessly and can also trade food and energy on the
world market within each period, the current food price of energy being 1 and
the future price being 1/9.

Assuming complete markets, the firm maximizes its expected profit:
A - 1 A 1 A
+
piE, + 9 F + [1p,(8)E,(6)d8 + [ q,(8)F,(6)do

The consumer maximizes his expected utility subject to satisfying the

subsistence requirements (a.s.) and the budget constraint:
1 1
piE; *+ q,(F) = 4) + [p,(8)E,(8)d6 + [1q,(8)(F,(0) = 4)d6 < O

There is no price system (pl,ql,pZ(O),qz(')) in this economy at which
markets would clear. It is essential that at least one unit of energy be
stored; yet competitive markets cannot induce the firm to store it. In fact
there is a unique social optimum (which involves storing exactly one unit) and
it cannot be realized as a competitive equilibrium.

The nonexistence can be credited to our requirement that the values of



contracts be expected values. If we allow the energy supply to be valued

as féEz(e)dn, where ® is any finitely additive measure on [0,1], then the :
economy will have an equilibrium; in fact the existence of an equiiibrium of
this general type is shown by Bewley [2, Theorem 1} (which also implies that
there would be an equilibrium if the state space were finite). The use of
such a functional essentially allows us to assign a very high value to
guaranteeing to provide energy during a crisis, i.e., when 6 is small (the
value of a contract would still be independent of the amount supplied when 6 =
0, since that has zero probability of occurrence). If one were truly modeling
a futures market there would be little reason to exclude such functionals;
however the interpretation as a sequence economy with securities is possible
only when they are disallowed.

The nonexistence could also be attributed to the subsistence
requirements. Indeed all of Bewley's assumptions in [2, Theorem 3] (Mackey
continuity of preferences, the Exclusion Assumption,etc.) are satisfied except
that concerning the structure of the-conSumption sets. Thus, were it not for
the subsistenée réquirements, the existence of an equilibrium of the type
described in the preceding paragraph would imply the existence of an
equilibrium of the type desired. Subsistence requirements canvbe problematic
in economies with only finitely many commodities, but here the difficulty is
more fundamental. It is not just Arrow's exceptional case which must be dealt
with; the failure in the example is in the central part of the second welfare
theorem — the optimum cannot be supported as a compensated equilibrium.

Finally, the nonexistence could be credited to the nature of the
information constraints on the agents' decisions —— specifically to the fact
that the storage decision must be made in the first period whereas demands are

not determined until the second. Similar disparities in agents' information



occur in team theory, and indeed examples resembling ours have already been
given in that context; cfs Welch [l1, Example 4.1]. Note that the existence
problem, while inherent in team fheory, does not arise in dynamic stochastic
economies unless subsistence requirements are present (see Bewley [3, Section

8] for an analysis of the dynamic stochastic economy).

2. Results
We refer to Bewley [2] for a full statement of the model. The commodity
space is Qw (M,e/l{,p,) and the economy is a list

&- (F4,%; 2 50005001 = Lees, 1,3 = 1ue, ).
i

Bewley gives conditions [2, Theorem 1] under which the economy will have
an equilibrium (x,y,n) with ©= € ba and n > 0. The consumption sets are
assumed to be convex, Mackey closed, contained in 52’: and to satisfy a
monotonicity assumption. As an intermediate step in the existence proof,
Bewley demostrates [2, p. 523] that no consumer is at a minimum wealth point
at (x,y,n), i.e., that Tex, > inf{mex|x € Xi}, ¥i.

The absence of subsistence requirements is important only for deducing
the existence of an equilibrium (x,y,p) with p € <9?1, from the existence of
the equilibrium (x,i;n). Accordingly we will simply assume:

(i) (ghas an equilibrium (x,y,n) with m € ba, © > O,
and mex; > inf{nex|x € X}, ¥i. |
We also adopt the following as general assumptions:
(ii) ¥i, Xi is convex and contained in g:.
(iii) ¥i, and ¥x € X {z € Xi]z > x} is relatively Mackey open in X;.

(iv) ¥i, and ¥x € X,, x € w-*cl{z € Xi]z>ix}.



(v) ¥i, w; € Q:.
The lower—-semicontinuity assumption (iii) is discussed by Bewley [2] (see also
Brown and Lewis [4]). The local nonsatiation assumption (iv) is very weak; in
particular it is implied by Bewley's monotonicity condition.

These assumptions are satisfied by the example in the introduction. To
ensure the existence of an equilibrium with a price system in éZ’l, we will
impose additional conditions on the structure of the consumption and

‘production sets. The conditions on these two types of sets will be
symmetric. Imposing these has the effect of ruling out the simultaneous
occurrence of subsistence requirements and an accumulation of information
during the making of production decisions. In nonstochastic models, however,
these allow for fairly general subsistence requirements, as we discuss below.

Let Z be a given subset of §Z7m. We consider respectively a relaxed
version of Bewley's Exclusion Assumption [2] and a similar version of

Majumdar's mixture property {8].

PROPERTY E. For each m € ba and z € Z there exist sequences
Lo

F_ € U4Zénd z € & such that lim n (F ) = 0, = (M\F_ ) = 0, ¥n, lim =% oz = 0,
n n nec o n P n np n

.llmnzn =0 in 1(‘g?m"9?1)’ and ZXM\Fn+ z €2Z, ¥n.

THEOREM l. Suppose each X; and each Yj has property E. Then é? has an

equilibrium (X,y,p) with p € éZ’l.

In a model of differentiated commodities, condition E requires that, if
one were to consider a sufficiently small subset F, of the commodity list,
consumers could survive using only small amounts zn(m) of those goods by

substituting small amounts Zn(m) of goods of other types. The interpretation



for producers is similar.

PROPERTY M. For each m € ba and z,z” € Z, there exist sequences F, € U4Z
oo

and z € % such that lim x (F ) =0, s (M\F ) = 0, ¥n, lim &t ¢z = 0,
n nec n P n np n

=0 i +2z°y. +z € .
lim z = 0 in t( 5?;,<9?1), and ZXM\Fn z th z €1Z, ¥n

THEOREM 2. Suppose each X; and each Yj has property M. Assume further

that 0 € Yy, ¥j, and that ({w;} + ACJY,)) 0 X; # 0, ¥i. Then & has an
h|

equilibrium (x,y,p) with p € 5? 1°

In the last part of the hypothesis of Theorem 2, the symbol A(ZYj)

]
denotes the largest convex cone at O contained in XY,. The assumption is a

weak form of the Adequacy Assumption used by Bewley to obtain the equilibrium
(x,y,%) [2, Theorem 1].

Theorem'Z applies to an economy with a finite number of infinitely-lived
agents and a deterministic environment. The commodity space would be

identifiable with 15, the bounded sequences in Rk, and a production set Yj

would have the form

) EP ¥t}

o

k
Yj = {b - ala,b € 2 ]

sb. = O’(at’bt"' jt’
. 2k -

for given sets Pjt c R. Let w € ba (Wx{1l,...,k}) and y,y" € Yj. Set

F ={n,n+ 1,ees} x {l,eee,k}s We have lim % (F_ ) = 0 and = _(M\F ) = O, ¥n.

n nec n ) n

Definey € LS asy =0, ¥t #n,andy =b - b . Thent .y =0,
yn @ nt nn n pn

n
¥n, and yxM\Fn+ y an + Y, € Yj, ¥n. Finally 1imnyn =0 in.1(<g?m,<g?l)
since this topology coincides with the product topology on norm bounded

subsets of 15 (Kelley-Namioka [7, p. 173], Dunford-Schwartz [6, p. 294]).



This use of the mixture property is similar to that of Radner [10, Theorem
4.,1}. A similar , but simpler, argument shows that consumption sets would
also have property M in this model, regardless of subsistence requirements.

Théorem 2 would also apply to a model in which there were markets for
contingent claims, with no real activity occuring before the resolution Qf
uncertainty. If producers had to choose inputs befdre the uncertainty was
resolved, as in the example in the introduction, then the production sets
would not have property M. The production sets would satisfy property E in
either case, but property E would not hold for the consumption sets unless
there were no subsistence requirements. If there are no subsistence
requirements, then Bewley's result applies with the same generality as Theorem
1 above.

In both proofs we first show that (x,y,nc) is a compensated equilibrium,-
(x,y,n) being the equilibrium assumed to exist and T being the countably
additive measure in the Yosida—-Hewitt decomposition of n.' For Theorem 1, this
argument is essentially the same as that of Prescott-Lucas [9, Theorem 1].

The argument for Theorem 2 follows Majumdar [8, Theorem 4].

PROOF OF THEOREM l. Choose, for any i, any bundle x such that x >; Xje

Set x’n = + X where Fn and X, are as given by property E. Since

AM\F
n
X in r(gw, gl) -- see Bewley [2, p. 534] -~ it must be that

lim x~
n
rd

L, for n sufficiently large. Thus me*x 1 > n-xi. But

”,

TeX n = ‘IIC’X'X_M\FH

nonsatiation assumption, implies in fact that

+ n-xn+ nc-x. Hence nc'x > n-xi, which in view of the local

inf{n ex|x > x.} > mex, (1)
c ~i i i



Summing over i and noting that = » T, we may write

nc°Z(xi— wi) > ginf{nc-x|x :ixi} - nc°§wi > ﬁOE(xi- wi) 2

Using property E for the sets Yj in the same way, we deduce that

nc°zyj < Zsup{ncoy|y € Yj} < ﬂ.Zyj (3)

Furthermore the right—hand sides of (2) and (3) must be equal and the left-
hand sides as well, since (X,y) is an attainable allocation. Thus each Y; is
profit maximizing and each X is expenditure minimizing on the consumer's
upper—-contour set.

Equality in (2) and the relations LIRS P T, (from (1)) and
LT < LACH (from L < m) imply that T X, = MeX, > inf{mex|x € Xi}, ¥i.
Since Xi S 52’: and ® > 0 it follows that the X; are not minimum wealth points
at the price system 7, Since we have lower-semicontinuous preferences on
convex consumption sets, we can deduce in the usual way (Debreu [5, p; 591])
that the x; are utility maximizing on the sets {x € Xi|nc-x < ncoxi}. It is
now straightforward to derive the relations LIRS T nc°(wi + Zeijyj), ¥i, from

the various equalities already established, and this completes the argument.

PROOF OF THEOREM 2. Choose, fbr any i, any x € Xi satisfying x >i X, .
Set x’n = XXM\F + xian+ xn, where Fn and x are as given by property M. Fo?
sufficiently large n we must have k’n > X,, since 1imﬂX’n = X in
7( Qw,gl). Hence 1t°x’rl > mex. . But
n-x’n= nco(xxM\Fn+ xian) + np-xi+ TeX 5 SO limnn-x’n= T X + np-xi.

Therefore LIRSS > nc°xi- Using the local nonsatiation assumption we obtain



n_ex,= inf{m x|x > x_ }. (4)
c i c ~ i
i
Now choose an arbitrary x € Xi and £ > 0. Let x* € Xi be such that
‘> ex” £ + °X. . s = x° + +
X ixi and T X € T, xi Set x n XM\F xxF xn where F and X, are

n n
as given by property M. Since limnx’n= x” in T(‘Q?w,§Z’l), we have x'n>ix

:

1

for n sufficiently large. Therefore n-x’n> n'xi for such n. But

ox” = o(x” + x + X + T { : ox” °xX,
Tex” =W ( Y\ F Xp ) np mex , which converges to T ox” + np X
Hence it must be that nc'x’ + np'x > MeX, . Since £ and x were chosen

arbitrarily this implies that
inf{n_ex|[x € X} =n_ex_. (5)
p i p i
We also obtain from Property M that

. ey, ¥y € )
LR yj b m_Y, ¥y Yj and (6)

M ey, > T *°y, ¥y € Y, 7)
pyJ py.y 3 (

by passing to the limit in the assumed inequality n'yj> n-y’n, setting
- + + . . .
Y 0= Y yﬁxF y, in the case of (6) and y 0 ijM\F * YaF +y, in the
n n n n
case of (7).

From (4) and (6) we see that (x,y,nc) is a compensated equilibrium.
Furthermore from (i) and (5) we obtain that nc-xi> inf{nc-xlx € Xi}, ¥i. 1In
view of the convexity of the X; and the lower-semicontinuity of preferences,
this implies (Debreu [5]) that the X; are > -maximal in

i
{x € X,|n ex { T *°X_}.
i''e ¢ i

It remains only to show that © *x =7 *(w, + XG..Y.) for each i. Since
c i c i j ij7j
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(x,y) is an attainable allocation this will follow from showing that

ncoxi> ﬂco(wi+ Zeijyj), ¥i, and since budgets are balanced at (x,y,n) this in
turn will folloi upon showing that np*xi< T °(wi+ Zeijyj)’ ¥i. From (7) we
have that ﬁp-y < 0, ¥y € A(EYj). Combined with the adequacy assumption and
(5) this yields np-xi < W, Sincg it also follows from (7) that

ﬁpoyj > 0, ¥j, this completes the proof.
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APPENDIX

We will show that in the example in the introduction there is no
equilibrium with a price system in 5? 1 but there is an equilibrium when we
admit valuation functionals in ba. Taking the commodity space to be
2% x L (10,11 x {1,2}) with dual B® x 5?1([0,1] x {1,2}), the assumptions
of Debreu [5, Theorem 1] are satisfied, so any equilibrium must be Pareto
optimal. We will show that there is a unique Pareto optimum, and that it
cannot be supported by a price systeﬁ in 5?1.

Let S denote the amount of energy stored, (4 - E;~ F;). For feasibility,
we must have 1 € S € 2. Given such an S, it is optimal to choose

_1. _1l., ! 1 o,. .
E = 2(4 s), Fl 3(4 s), E, E(s + 1 + 38) and F. = Ze(s 1 + 56). This

2

gives a total expected utility of 5/3 - $/6 which is maximized, subject to the

feasibility constraint, at S = 1. The optimal consumption levels are

39
therefore E = 3/2, F, = 3/2, E,=1+35 F, = 5/2.

In order for the import-—-export division of the firm to be maximizing
profits we must have p;= q; and pz(e)v= éqz(e) a.s. Take p; = q; =1 and
let %qz(e) = pz(e) = p(6). In order to induce the consumer to purchase the
optimal bundle we must have, since the subsistence requirements would be slack
a.s., p(8) = %e-llza.s. But then fép(e) = 2/3 <1, so the firm would not
store the unit of energy.

According to Yosida-Hewitt [13, Theorem 4.1] there is a (purely) finitely

additive measure np € ba([0,1]) satisfying np([O;l]) = np([O,e]) = 1/3 for

every € > 0. If we assign the value

1 -1/ /2
E)+ F+ 3fE2(9)6 de

2 1 1
) de + fEZ(e)dn + EJFZ(S)G



12

to any contract (E;,F;,E,(+),F5(*)) then markets will clear, the resulting
allocation being the social optimum. To see that the consumer would purchase

that bundle, note that
30 _ 30 _
fa +3 dam = 1/3 + fz—dnp =1/3

which is the minimum cost attainable on the consumption set. The introduction
of Ty therefore could not overturn the supporting property established in the
preceding paragraph. On the production side, notice that the firm could make
no profit through L by trading in the second period, so the decisions of the
import—export division would be unaffected by its introduction. Finally under

the above valuation functional the profit from storing energy would be zero.
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