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ABSTRACT

Given a separated dual system {(E,E”), the Fenchel transform determines a
pairing of the convex functions on E with the convex functions on E”. This
operation is shown to have a continuity property. The result implies that the
minimum set of a convex function varies in an upper—-semicontinuous way with
the function's conjugate. Several convergence concepts for convex functions
are discussed. It is shown for each of the two most useful that the Fenchel
transform is not a homeomorphism.
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Let (E,E”) be a separated dual system. Denote by I'(E) the class of
convex, o(E,E”) lower-semicontinuous E-valued functions which do not take both
the values —=, +», These are the functions which are upper envelopes of
collections of affine functions # + <x,x"> - a, where X~ € E* and a € B, The
class T(E”) is defined symmetrically.

The Fenchel transform (conjugate) of f € T'(E) is the function f* € T(E”)
defined by f*(x”) = sup {<x,x"> - f(x)lx € E}. This determines a bijection of
I'(E) onto I'(E”), and, defining the conjugate of f* € TI'(E”) symmetrically, one
has f** = f,

This paper studies the continuity of the Fenchel transform. The interest
is in topologies on TI'(E”) for which the multifunction f* - argmin f* has
upper—semicontinuity properties, the ultimate objective being to provide
conditions on sequences or nets of functions fl € T(E) which, when satisfied,
will ensure the convergence of the minimum sets of their conjugates.

The continuity of the Fenchel transform was first established by Wijsman
[9] in finite dimensional spaces. At the same time Walkup and Wets [7] showed
that in reflexive Banach spaces the polarity operation for closed convex cones
is an isometry, a fact which implies the continuity of the Fenchel transform
in finite dimensional spaces (see Wets [8]). The continuity in reflexive
Banach spaces was established by Mosco [3]. Joly [1] then obtained the same
result and several generalizations by another argument.

Our point of departure is the work of Joly. 1In part 1 we review his
arguments, leading to a continuity theorem in Fréchet spaces.

In part 2 the concept of convergence in I'(E) will be strengthened and a
continuity theorem will be proven without restrictions on the dual system
(E,E”). The result seems suitable for applications, but it is not

symmetric. It will be demonstrated by examples that the convergence concept



for T(E) cannot be weakened nor that for T'(E”) strengthened.
The results of convex analysis which will be used can be found in

Rockafellar [6].

1. Topologies on T'(E) and I'(E").

We briefly review the notation and results of Joly [1]. Let o be the
weak topology o(E,E”), T the Mackey topology T(E,E”), and ¢° = o(E’,E),
1" = 1(E°,E). Joly defines a topology giz on T(E) in which a net (fl)

converges to a point f iff

inf £f(x) > limsup inf fl(x) (1.1)
x€U L xX€U

’,

for each U € 1. A topology ég:, on T(E“) is defined symmetrically.
Grv*
Denote by Y ¢~ the coarsest topology on T'(E) which renders continuous

the Fenchel transform from I'(E) to (I'(E7), é?;,). Convergence of a net (fl)

ik
in éy,r, is characterized by having

inf f£*(x”) > limsup inf fi(x') (1.2)
x” €U’ L x7e€u”

for each U” € 1, Define é;r: on I'(E”) symmetrically, and denote by é;r -

(resp. gI:,T) the least upper bound of the topologies g,: and 9':,

(resp. g;' and g‘:)-

Convergence of a net (fl) in 4951, and convergence of the conjugates
(£%) in ... are both defined by having (1.1) and (1.2) hold
simultaneously. Certainly the Fenchel transform is a homeomorphism
of (T'(E), éZ;,) onto (T'(E"), 3€;T) [1, Corollarie, p. 423].

This establishes the notation. The work to be done is to characterize



the convergence of a net (fl) in é@ZT, in terms of directly verifiable
conditions on the functions f; and to interpret the convergence of the
. . o
*
functions fl in L/T,T.
7% . .
Joly's insight is to introduce a topology ¢ﬁZT, on T'(E) in which a net

(fl) converges to a point f iff

* * :
inf (f + ¢K) (x”) » limsup inf (fx + ¢K) (x7) (1.3)
x“€U” L x“€u”
for each U € 17 and each weakly compact disk K ¢ E (the symbol ¢y denotes the
*
function which takes the value 0 on K and +» elsewhere). A topology bﬁZT on
T(E”) is defined symmetrically.

Condition (1.3) is readily seen to be equivalent to having

f(x) < liminf ) (x,) (1.4)
i i
for each x € E, each subnet (fk-) of the net (fk) and each net (xi) which is
i

weakly convergent to X and contained in a weakly compact disk [1, Remarque, p.

4307.

t

3 x * * *
Moreover Joly observes that C/JT, c eéj'T’ and QMT c gt f1, Proposition

7]. From the latter relation and the analogue of (l.4) we see that the set
* * '
{(f ,x’)lx’ € argmin f } n [T(E7) x K]

is é?;,r x g“-closed for each weakly compact disk K c E°. This upper-
semicontinuity result seems suitable for applications since in practice one is

likely to use the Banach-Alaoglu Theorem to verify the existence of a weak

* . PN
limit point of minimizing arguments for the functions f . Certainly it is



satisfactory if (E”,1t”) is complete.
R . : o
It remains to characterize the convergence of the fy 1In Ly S
specifically to state conditionms on the fl which imply (1.2).
Denote by c}ﬁ;r, (resp. LﬁZT,T) the least upper bound of the
* *
topologies 9: and Udr’ (resp. 9;, and g,d,t).
* *
Joly observes that the relative bﬁZT, and é;rt, topologies coincide on
. . - *
subsets of T(E) for which (the constant function) +» is not an bﬁZT,—adherent
. ‘s : af cp s s e
point [1, Proposition 8]. Thus a net converges in g/TT, if it satisfies

(1.1) and (1.4) and if its cﬁZi,—adherence does not include +». In certain

of” *
cases one may deduce from convergence in e/%, i.e. (1.1), that the cﬂZTi
. . vd* . R . .
adherence does not include +» (the convergence in - has no implications in

*
this regard since each bﬂ{r’ open set includes +=),

PROPOSITION. [1]. Suppose E is a Fr;chet space with dual E°, Then a
sequence (fn) from I'(E) converges to £ # +» in :}ﬁ;t, if and only if the
sequence (fz) converges to f* in é?;,T.
PROOF. The claim is that convergence to f # +» in g}ﬁ;T, implies convergence
in é7':,. It suffices to show that convergence in éy; implies that the
constant function +» is not in the cﬁZ:,—adherence of the sequence (fn).
Choosing x such that f(x) < =, condition (1.1) implies the existence of a
sequence (x ) which is t-convergent to x and satisfies limsup fn(xn) =,

n

Since E is complete, the weakly closed disked hull of the sequence is weakly

compact, and the result follows. [j

In other cases a different method will be necessary.



EXAMPLE 1. Denote by E the space of sequences x = (ii) with at most a finite

be the sequence

number of nonzero terms, with the norm Ixl = 2|§if. Let x
1

with all terms zero except the nth, which is n. Let fn= ¢{x } and f = ¢{O}'
The sequence (fn) converges to f in é?; and LQZ:,; in fact (l.4) holds
without the restriction that the net be contained in a weakly compact disk.
Yet the constant function += is in the LﬁZ:,—adherence of the sequence (fn)'
This follows from the fact that each weakly compact disk in E is finite
dimensional (Kelley—Namioka [2, Problem 5.17.1]) so for such a disk K we

+ E +m.
eventually have fn ¢K

2. A Continuity Theorem and Examples

We will say that a net (fl) is Md—convergent to £ in T(E) if (1.4) holds
for each x € E, each subnet (fli) of the net (fk) and each net (Xi) which is
weakly convergent to x. This, and the concept of cﬁZ:, convergence as well,
are versions of a condition stated by Mosco [3] (for sequences and
subsequences in a reflexive Banach space).

The net will be said to be MTG—convergent if it is Md—convergent and also
convergent in the topology é?:. It should be noted that this does not agfee
with the definition of Joly [l].

Example 1 shows that a sequence may be M_,-convergent but yet include +=
in its LﬁZ:;-adherence. We show by a direct argument that MTG—convergent nets

are convergent in the topology éy;r"

THEOREM. Suppose a net (fy,% € L) is M_, -convergent in T'(E) to £ # +=, Then

*
the net (fk,l € L) converges to £% in the topology é?;’r'

%
PROOF. We must show that (1.2) is satisfied.s If £f = — then f = += and



(1.2) holds trivially. If £ #Z — then the M -convergence implies that
eventually the f/Q are different from the constant function —», Furthermore,
since £ # +», the convergence in the topology éﬁ; impiies that eventually
fk # +°. Hence we can and will assume that none of the fg mnor f is one of the
constant functions ~~, +x. This Implies that the same is true of the f; and
f*, so we are dealing exclusively with what is termed in [6] "proper” convex
functions.

Fix U” € t°. There is no loss in assuming the existence
of Xa in U” satisfying f*(xa) (=, Let K Be a weakly compact disk in E whose
polar K° = {x” € E’|¢;(x’) < 1} satisfies {xa} - k% c .

”

2
* % .
¢K(x6 - xi) < 1 and fx(xi) { =, Denote by D (resp. Dl) the weak closure of

Step l. We will show that there is eventually x7 € E° satisfying
- * - -~ ”~ *
the (convex) set {x” € E’If (x7) < =} (resp. {x* € E Ifl(x’) < =}).

First we claim that

* %
inf [¢ (x) + ¢,(x) - <x,x’>] = sup [-¢ (x7) - ¢, (x2 - x7)|. (2.1)
<€E D/Q K 0 <" €E” DX K*0 ]

To see this define ¢: E > R by

¢(u) = inf[¢;

(x) + ¢, (x = u) - <&x - u, x’>].
X€E 1 K . 0

The function ¢ is convex, lower—semicontinuous and never takes the value —=.

%
Thus ¢ = ¢ *. The left hand side of (2.1) is ¢(0). Also for any x” € E” we

have



. .
sup[(u,x’) - ¢(u)] sup[(u,x’) - ¢D (x) - ¢K(x—u) + <x - u,x6>]
u€E u€E b

x€E

= sup[(x,x’) - ¢; (x) + sup{<x—u,x6 - x> - ¢K(x—u)}]
x€E 2 u€k

[<x,x™> = 4 () + dn(xt = x)]
sup| <x,x"> - X XL - X
x€E Dl K0

%
= ¢D (x) + ¢K(XO - x7).
L
%%
The right hand side of (2.1) is therefore ¢ (0), so the equality holds.
Both sides of (2.1) are finite since the left hand side is larger than —»

and the right hand side is nonpositive. Hence it may be rewritten as

* *
inf [¢D (x) - <x,x6>] + inf [¢K(x6 - x)] = o.
x€K L x’eDl

Choose for each % an X, €K and an xi € D/Q satisfying

¢Dl(xl) - <X2’XO> + ¢K(x0 Xl) < 5.

*
Denote by M the set of £ € L such that by (Xl) - <Xl’X6> < —-% It

suffices to show that M is not cofinal in L. Suppose for the sake of the
argument that it is.
Since the net (x,,% € M) is contained in K, there is a subnet (Xl-’i € I)
i

*
weakly convergent to an x € E. We will show that <x,x6> < liminfi¢D (x

L

/Q. )’
. i
1

contradicting the definition of M.

*
Notice first that <x,x6> < ¢D(x), since xa € D. Also, according to

Rockafellar [5, Corollary 3c], ¢;(x) = sup{f(x + y) - £(y)|f(y) < =}.

Choose an arbitrary y € E satisfying f(y) < «.



Denote by OZ!the family of t-open sets containing y, and direct it by

inclusion. Let A denote the set of (U,r,i) € CZ{X (0,2) x I such that

inf f/Q (z) < f(y) + r_l.

z€U i

By virtue of the convergence in éy; this inequality holds eventually in i for
each (U,r). Thus A is directed by the product order, and the projection of A
is cofinal in L.

Xl.’ fa = fl.’ Da = Dl. and choose
i i i

v, € U in the following way: if inf'{fa(z)|z € U} = -, let fa(ya) < -r;

otherwise let fa(ya) < inf {fa(z)lz € U} + L. By this construction we have

For each a = (U,r,i) € A set X =

1

limsup fa(ya) < inf max{-r,f(y) + r—_} < f(y). (2.2)

a a
The net (Xa’ a € A) is weakly convergent to x, and the net (ya, a € A) is
weakly convergent to y. We therefore obtain from the Md—convergence and (2.2)

that

£(x + y) - £(y) < liminf [£ (x_ +y) - £,(y,)]
a

By virtue of (2.2) we eventually have fa(ya) { =, Thus again applying [5,

Corollary 3c] we obtain

f(x + y) - £f(y) < liminf ¢; (Xa) = liminf ¢; (x/Q ),

a a i L. i
i

and since y was chosen arbitrarily, this completes the argument.



Step 2. The function X* =+ ¢ 0(X6 - x°) is 1”-continuous
K
*
on {X’I¢K(x6 - x”) < 1} so it follows from the preceding step and a version of

Fenchel's Duality Theorem (see Rockafellar [4]) that eventually

* *
inf [f,(x") +¢ (x7 - x7)] = max [<x,x2> - ¢ (%) - £,(x)]
xers g0 x€E 0 K° 8

For each such 2 choose Xy € E satisfying

* *
inf ] fl(x ) = <xl,x0> - ¢K°(Xl) - fl(xl)'
x’G{xa} - K

Given an arbitrary € > 0, denote by M the set of such & satisfying

* *
f(xo) + £ ¢ <X1’X0> - ¢ o(x

) - £,(x,) (2.3)
% 272

L
*
Since the right-hand side of (2.3) majorizes inf {fl(x’)]x’ € U”}, the proof
will be complete if we show that M is not cofinal in L. Suppose for the sake
of the argument that it is.
We will deduce that the net (Xl’ L € M) has a subnet (32_) which is
i

weakly convergent to an x € E, By virtue of the Mc convergence we must have

(x’Q )]

<x,x0> - f(x) > llmsupi[<x£i,x0> - fli .

* *
But f (xa) > <x,x6> - f(x) by definition, and ¢ o > 0, so this will contradict

K
the definition of M and complete the proof.
It is convenient to rewrite (2.3)_as
* < <xyaxt> - £ (x,) + (2.4)
¢ o(xl) < <xp L 2 $xg s .

K
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*
where s = —-f (x6) - £ # +=(s is less than 4= since f # +=). Choose an r > 0
and let J_ = {12 € MI(XR’X0> - fl(xl) > r}. 1f J. is not cofinal in M then, by
virtue of (2.4) the net (xl,l € M) is eventually within a weakly compact set,
and we are done. Suppose conversely that J. is cofinal in M.
. . éy’
Fix y € E such that f(y) < =, As in Step 1 use the ¢ convergence to
construct a directed set A, an isotone map v: A?Jr, and a net (ya,a € A) which

is t-convergent to y and satisfies limsup, fa(ya) < f(y), where we set

£a = fU(a)'
. = = . » - _1 =
Define X X (a)’ Ka r [(xa,xo> fa(xa)] and z_ = A X +
1 - ka)ya. By the convexity of the f, we have
<z x> - £.(z) > r + (1 - ka)[<ya,x0> - fa(ya)].
Hence
liminf [(za,x6> - fa(za)] > r + min{0, <y,x6> - f(y)}. (2.5)

a

* *
= <r+ i
Observe now that ¢Ko(KaXa) Ka¢KO(Xa) r KaS by virtue of (2.4). Hence
the net (kaxa,a € A) is weakly precompact. There is therefore a subnet of the

net (za,a € A) which is weakly convergent to some z € E.

From the M, convergence and (2.5) we obtain
<z,x6> - f(z) » r + min{0, <y,x6> - f(y)}.
* 4 4
But f (xo) = sup {<z,x0> - f(z)|z € E} < @ by assumption and the choice of y

did not depend on r, so there must exist an r such that Jr is not cofinal

in M, [3
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It would be useful if M, convergence of functions in I'(E) implied Mﬁ’c’

convergence of the conjugates in T'(E”), or if the Fenchel transform were a

homeomorphism of (T'(E), gﬂﬁ;T,) onto (T(E”), QJQ;,T). Unfortunately neither

of these is true in general.

EXAMPLE 1. Define E, f and the sequence (f,,n € N) as in Example 1. We will
L , * .

show that the sequence (fn,n N) is not Mcf—convergent to £ . Denote by 62{

the family of disked ¢ neighborhoods of the origin in E”, and direct it by

inclusion. Denote by A the set of (U”,n) € CZ!' x N for which there exists

”»

x” € U’ satisfying <x_,x”> < -l. For each U” we know that there is eventually

n)
such an x”, since the polar of U’ is finite dimensional. Hence A is directed
by the product order. Select for each a = (U”,n) € A some x; € U” with the

' % % % '
above property, and set fa = f The net (fa,a € A) is a subnet of the

n.
sequence (f;,n € N), the net (x;, a € A) is weakly convergent to 0, yet

* *
liminf £ (x7) < -1 < 0= £ .
a’aa

EXAMPLE 2. Let E be the dual of the space of sequences defined before, with a
topology compatible with the pairing, so that E” is now the space of
sequences. Define a sequence (x,) in E by setting <x,,x"> = ng  for each

x7 = (El,iz,...) € E°. Set f = ¢{O} and define fn(xn) = -2n, £ (x) = += for

x # X The Mackey and weak topologies on E coincide since the weakly compact
disks in E® are norm bounded finite dimensional sets (see Kelley-Namioka [2,
Problem 5.18.F]). Hence the sequence (Xn) is T-convergent to 0, and the

. , *
sequence (f_ ) is therefore égy—convergent to £f. It is also cﬁZT’—convergent

T

since the sequence (x,) eventually leaves the polar K of any norm neighborhood

of the origin in E”, implying that fn + ¢K = +», However the sequence (f;)



12

does not converge to f in the topology é;:,: if U is the unit ball in E°

then

*
inf fn(x’) = inf [<x_,x"> + 2n] =nv 0= f .
x“ €U’ x“€y” n



2.
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