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LEVY SYSTEMS OF MARKOV ADDITIVE PROCESSES*

by

ERHAN CINLAR

1. INTRODUCTION
Let E be a locally compact space with a countable base, and let E

be the o-algebra of its Borel subsets. Suppose X = (Q,g,gt,x Gt,Px) is

t’
a Hunt process with state space (E, E) (augmented by a point A). S. WATANABE
[6] showed that, then, there exists a transition kernel K from (ZE,Z@) into

itself and an (increasing) continuous additive functional H of X such that,

for any non-negative Borel measurable function f on IE XE,

E_l ) FX X 0Ty Ly 5]
sS— S
(1.1)

t
X
= E [g dH_ ]é K(X_,dx) £ (X_,x)]

for all x ¢ E and t > 0 (WATANABE had shown this under the assumption that
X has a reference measure; however, BENVENISTE [1] has recently shown that
the same holds without that assumption). Then K is called a Lévy kernel
and the pair (H,K) is said to be a Lévy system for X. Intuitively, when
time is reckoned with according to the random clock H so that the clock
reads Ht when the time is t, K(x,A) gives the "expected number per unit
time of the jumps X makes from x into AC IE." If X is a process with sta-
tionary independent increments taking values in, say, ﬁm?, then the con-
tinuous additive functional H can be taken to be Ht = t identically, and
the Lévy kernel K then becomes K(x,dy) = v(dy - x) where v is the jump
measure of the process (incidentally, it is this example which motivates

the terminology Lévy kernel, Lévy system).

*Research supported by the National Science Foundation grant no. GK-36432.



A Markov additive process is a two dimensional process (X,Y) =

(@,M,M X ,Y ,et,Px) where X = (2,M,4 ,X

X, .
ey ,St,P ) is a Markov process and

t

Y= (YY)

>0 is a process with "conditionally independent increments given

the paths of X"; (we will make this precise very shortly). As such, Lévy
systems play a fundamental role in studying the jump structure of Markov
additive processes. They are intimately related to the infinitesimal
generators of such processes, and, through the latter, a certain transform
NA of theirs appears in a remarkable resolvent equation

(1.2) Rront - iR = R - R

first noted by NEVEU [5] in the special case of a Markov additive process
(X,Y) where X has a finite state space IE (in the very special case where
Yt = t identically, one has NA = I and (1.2) becomes the ordinary resolvent
equation).

In the remainder of this section we will introduce the notations to
be used and give a brief summary of the relevant definitions from GCINLAR
[3]. The next section is devoted to the existence of Lévy systems for
Markov additive processes and to the relationships between the Lévy systems,
hitting measures, and the conditional structure of the second component
given the paths of the first. Finally, in Section 3, the special case where
X is a regular Markov process will be examined, and the relationships be-

tween Lévy systems, infinitesimal generators, and resolvents will be made

precise.
X h &

Our notations and terminology will, in general, follow those of
BLUMENTHAL and GETOOR [2]. 1In particular, if (F,F) and (G,g) are measurable
spaces, then we write f € F/G to mean that f is a mapping from F into G

which is measurable with respect to F and G. By a transition kernel N from



(F,F) into (G,g) is meant a mapping N: FxG -~ [0,=] = Zﬁ} such that the
mapping A > N(x,A) is a ¢g-finite measure on G for each fixed x ¢ F and

that x - N(x,A) is in E/ §+ for each fixed A € G. If N is a transition
kernel from (F,F) into (G,G) and if f € g/]§+, then we write N(x,f) =

Nf(x) = [N(x,dy)f(y). Finally, if Q is a set and H is a history (c~algebra)
on it, and if (Et) is an increasing family of sub-histories of H, then we
write T € st(Et) to mean that T:Q - [0,*] is a stopping time with respect

to (H) that is, the event {T < t} € H for every t > 0.

t> 0’

Let E be a locally compact space with a countable base, and let E

be the o-algebra of its Borel subsets. Let

(1.3) (X,Y) = (2,M,M ,X .Y 6 ,P%)

be a process with X = (X )

es 0 having the state space (E, IE) augmented by

a point A and with Y = (Yt) having the state space (ﬁﬁ,i@p) for some

£> 0

fixed integer n. Then, (X,Y) is said to be a standard Markov additive

process (cf. CINLAR [3, Definition (1.2)]) provided that the following hold:

X, . .
& ,P7) is a standard Markov process with state

(1.4) a) X = (WM X .0

space ( E, E) in the sense of BLUMENTHAL and GETOOR [2];
b) almost surely, the mapping t - Yt is right continuous, has left-

hand limits, satisfies Y, = 0 and Y =Y, _ for t > ¢ = influ: X = A}y

0 .-

c) for each t > 0, Yt € Et/zgp;
d) for each t and s > 0, Y =Y + Y o8 almost surely;
— t+s t S t
e) for each t >0, ACE, B Gﬁ@i, the mapping x -~ Px{Xt € A, Y, € B}
of E into [0,1] is in E/B :

f) for each t,s >0, x G]EA, A GII=EA, B G]l;l s
PX(X o0 €A, Y o6 €BM}=px ca, v e}
S t S t =t S S

We let K denote the canonical history (0-algebra) generated by the



process X = (Xt) and completed with respect to the family of measures

t>0

H,

P={P": u is a finite measure on I@A}; and let 5t denote the sub-history

generated by (XS) and completed in K with respect to P. We define

O<s<t

=

and gt similarly but with respect to the process (Xt,Yt) Then,

t>0°

W=

c }
. gtc_ Et for every t, and both (gt) and (gt), as well as (gt), are

right continuous and increasing.

It was shown in [3] that there is a regular version of the conditional

probability P*{- K} on L which is further independent of x; let that version
be denoted by Pw{'} when evaluated at w € . For fixed w € §, considered

as a process over the probability space (Q,E,Pw), Y is a process with inde-

pendent increments (see Theorem (2.22) in [3]). 1t follows that, analogous

to Lévy's decomposition of such processes, we may decompose Y as

d

(1.5) y=Aa+v +v +y

E; t >0), O(YS; t > 0) are conditionally independent

where O(Yi; t >0), oY
given K with respect to P* for each x, and where the components satisfy the
following (see Theorem (2.23) in [3]):
(1.6) a) A is an additive functional of X;

b) Yf is a purely discontinuous process whose jump times are fixed

by X; (X,Yf) is a Markov additive process; there is a sequence (Tn)CIst(gt)

f
which exhausts the jumps of Y ; if for some T € st(gt) the value Z =

Y; - Y;_ is in K/ E., then Z = 0 almost surely;

c) YC is continuous, (X,YC) is a Markov additive process;

d) Yd is conditionally stochastically continuous given 5 (that is,
for any T € g/ﬁ§+, Yi = Yi_ almost surely); (X,Yd) is a Markov additive

process.



2. LEVY SYSTEMS
Let (X,Y) = (Q,g,yt,xt,Yt,et,Px) be a Markov additive process with X
having the state space (IE, E) and Y having the state space (1@?, ép).
Let H be a continuous (increasing) additive functional of X and let L be
a transition kernel from (IE, E) into ('E><ﬁp,iEXJ§n). Then, (H,L) is
said to be a Lévy system for (X,Y) provided that, for any non-negative

feEXER/R,

X
@.1) B[] F&X XY T x4 x July 4 YS}]

s<t
xt
= E [g di_ [ L(X_,dx,dy)f(X_,x,y)]
E xIR

for all x € E and t > 0. (Since H is continuous, on the right, Xs can be
replaced by Xs— thus obtaining a somewhat more intuitive statement.) The
following is the main result.

(2.2) THEOREM. Let X be a Hunt process possessing a reference measure,
and suppose Y takes values in R+ = [0,») and is quasi-left-continuous.
Then, the Markov additive process (¥,Y) has a Lévy system (H,L) which

further satisfies the following: for any x € IE,

(2.3) L(x,{(x,0)}) =0,
(2.4) [ L(x,{x} xdy)(y A 1) < =;
R,
and if
(2.5) lqu)=L&JA\HDXRQ, x € E, A €E,

then (H,K) is a Lévy system for the Hunt process X; (that is, (1.1) is

satisfied for any f € ExXE/ ]1={+).

(2.6) REMARK. As mentioned in the introduction, the existence of a reference
measure for X is not needed for the existence of a Lévy system for X. As the

proof below will show, our need for that hypothesis arises because of our



need to use '"the Radon-Nikodym theorem for additive functionals."

(2.7) REMARK. Suppose (X,Y) is a Markov additive process with Y taking
values in R'. Since our interest in Lévy systems arises from a desire to
study the jumps of Y, we may drop the component Y¢ in the decomposition
(1.5). The discontinuities of the remaining terms exhibit the same struc-
ture as that of a process which takes values in 1R+ (and, therefore, is
increasing). Our assumption concerning the state space of Y is in fact a
simplification which reduces the complexity without detracting anything
essential. In the more general case a similar theorem holds with R re-
placing R, and in (2.4) y A 1 being replaced by |y|2/(l + Iylz).

(2.8) REMARK. Assumption that Y is quasi-left-continuous is an essential
one. In the decomposition (1.5), this affects the two terms A and Yf. In
general, A and Yf can be decomposed further (when they are both increasing)
as

(2.9) A=a% + AP + a9, yf o yPf yaf

where AS is continuous, AP and Ypf are predictable (that is, their jump

times are predictable stopping times of X), and AY and qu are quasi-left-

continuous (cf. [3], Theorem (4.5)). In fact, we have
qf _ f_ o f
(2.10) Yo = L0 =Y Ty Ly
s<t s~ s

and similarly for A, The hypothesis of quasi-left-continuity for Y
amounts to assuming that AP = Ypf = 0. This is always satisfied in at
least two important cases: when X is a Brownian motion, trivially, because
then AP = A9 = Ypf = qu = 0 (by the fact that then any additive functional
with a finite potential is continuous); and when X is a regular Markov
process because, then, no additive functional can jump at a time of con-

tinuity for X. However, if AP or Ypf # 0, then Y=Y~ AP - Ypf is quasi-



left-continuous and (X,?) is a Markov additive process; therefore, the
theorem above holds for (X,?) and, with (H,L) as defined there, (2.1) holds
when Y is replaced by Y.
(2.11) REMARK. Under the hypotheses of the theorem (X,Y) is a Hunt process
(except for the way the shift operators work; but that is immaterial), and
the existence of a Lévy system for (X,Y) is guaranteed by the earlier
results. However, then, the fundamental additive functional is an additive
functional of (X,Y) rather than of X alone. We have not been able to find
a simple way of showing that the fundamental additive functional of (X,Y)
can be taken to be so that it is of X alone. Moreover, while proving the
theorem, we will be obtaining valuable relationships between the Lévy system
and the conditional structure of Y given X. O
The remainder of this section is devoted to the proof of Theorem (2.2).
It will be broken into a number of lemmas, some of which are of independent
interest.
(2.12) LEMMA. Let X be a Hunt process. Then, there is a Lévy system (HO,KO)
for X and a probability transition kernel FO from (EXE, Exig) into

(]R+, ]1=1+) such that, for any f € ]=3X]__EX]1__}+/ R,

x
@.13) B[] £& XY -Y I Ly ]
s <t s— s
x5 :
= E[f ng [ KO(x_,dx) [ FO(X_,x,dy)£(X_,x,y)]
0 E s R s s
+
for all x € E and t > O.
PROOF. The only jumps of Y which coincide with those of X belong to
the components A% of A and qu of Yf. It is known that (see WATANABE [6]

or MEYER [4]) any increasing quasi-left-continuous purely discontinuous

additive functional of X is of form

9 .
(2.14) Al = ] g(X__, X))
s<t



for some g > 0 in E XE/I§+ with g(x,x) = 0 for all x € IE. Moreover, it
follows from Theorem (4.8) of [3] that, at a specified jump time T of X,
qu jumps by an amount whose conditional distribution given K is of the

form F(XT_, XT,-) where F is a transition probability kernel from

(ExE, ExE) into (]R_*_,I;R_*_) with F(x,x,*) = g4 for all x € IE. Hence,

(2.15)  ET[ ] £ XY -Y )L 4y 11K
Sit S~ S

= 0
= T PO X ey e X G]Ty Ly
s<t ]R+ s— s

where F0(a,b,-) is the convolution of F(a,b,+) with the Dirac measure
Eg(a,b) putting its unit mass at g(a,b).

Since X is a Hunt process it has a Lévy system (H?,K?) and the expec-
tation of the right side of (2.15) is, using (1.1), the same as the right
side of (2.13). O

Next consider the component Yd in (1.5). By specializing the results

d . . . . .
of [3] to the present case where Y is purely discontinuous increasing, we

have

(2.16) Ex[exp{—AYg}lg] exp{- [ ( - e—Ay)Dt(dy)}

R

for any » > O where, for w € & fixed, the measure

(2.17) B, (w,A) [y A 1)D, (w,dy), AER

A
is finite, Bt(m,{O}) = 0; and where, if

(2.18) B (w) = B (w, R)),

then B = (B )y ,g 1s an increasing continuous additive functional of X.
Suppose X is Hunt with a reference measure, let 1Y be as in the pre-

ceding lemma, and define

(2.19) H= 1+ B.

Then, by the "Radon-Nikodym" theorem for additive functionals (see [2],



p. 210), there is hY € E/ §+, j_ho < 1 so that

0
0 7 0
(2.20) HY = é O (X )dH_, t >0,

and, for any A ¢ R,, there is b(*,A) in 'E/i§+ so that for the continuous

additive functional defined by (2.17) we have
t
(2.21) B (4) = é b(X_,A)dH_, t > 0.

Moreover, it can be shown that b is in fact a transition kernel. Defining
d 0 if y =0,

(2.22) L™ (x,dy) = -
(y A1) blx,dy) ify >0,

in view of (2.17) and (2.16) we have

Ot

ai [ i Lay) - e}
SR S
+

(2.23) Ex[exp{—kYi}IE] = exp{—
Given K, the pairs (t,y) where t is a time jump of Yd and y is the

corresponding amount, form a Poisson random measure on :mi whose intensity

is, in view of (2.23), dHtLd(Xs,dy) at (t,y). We have thus proved, in par-

ticular, the following

(2.24) LEMMA. Let X be a Hunt process with a reference measure. Then,

there is a continuous additive functional H of X and a transition kernel Ld

from ( E, E) into ( R+,I§+) satisfying Ld(x,{O}) = 0 and J'Ld(x,dy)(y/\.l)<<=°

so that, for any f ¢ ExExR /R,

(2.25) E°[ (X LR Y - Y )Tpd Yd}|g]
s <t S— S

d
dH_ /L (X, dy) £(X_, X ,¥).

R,

I
Ot

(2.26) PROOF of Theorem (2.2). Let (HO,KO) be the Lévy system mentioned in

Lemma (2.12) and define H by (2.19), and let Ld as in (2.22), and define

(2.27) K(x,A) = h0x)K%(x,A); LO(x,AxB) = [ K(x,dx")FO(x,x',B);
A

and
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LY (x,AxB) if x ¢ A,
(2.28) L(x,AxB) = { d

LO(x,AxB) + L"(x,B) if x € A.
For the diagonal of L we have L(x,{x}xB) = Ld(x,B) and the properties (2.3)
and (2.4) are immediate. For the off-diagonal L0 of L we have (2.5) satis-
fied; and (2.27) and (2.20) show that (H,K) is a Lévy system for X. That
(H,L) is a Lévy system for (X,Y) follows from Lemma (2.12),(2.20),(2.27)

and Lemma (2.25) upon noting that, when Y is quasi-left-continuous,

I =1 + 1 d d
X _#X JUY__#Y} X _#X3 X, _=xIn{y__+4v}

almost surely (see Remark (2.8) and (1.6d)). O
The following is to show the relation between the Lévy system and the

hitting measure of (X,Y). Within the theorem below L0 and K are related

to L as in the preceding theorem.

(2.29) THEOREM. Let (H,L) be a Lévy system for (X,Y), let D € E be open,

and put T = inf{t: X ¢ D}. Suppose @ > 0; x ¢ D; A €E, ACEND; BCD,

B compact; C G E&ﬁ then,

x. —-aT
(2.30) E'[e HED S € A, XT € B, YT - YT— € C]

T
_ -as 0 .
E g e 1, (X )LO(X ;B xC)dHS].

(2.31) REMARK. The same result holds for arbitrary D € E provided that
ACIE\D, BCD are Borel subsets with d(A,B) > 0 for some metric d on I
which is compatible with the original topology. The proof below will be
general enough to include this.

PROOF. Since D is open, B is a compact subset of D, and since A is
disjoint from D, on the set {XT_ €A, X € B}, X is discontinuous at T and
therefore YT - YT— is equal to the sum of the jumps of the components At

and qu. Thus, it follows from the arguments leading up to (2.15) that the
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left side of (2.30) is equal to

x. -aT

(2.32) E[e FO(XT_,XT;C); X, €A, X ¢ Bl

T_
For AO’ B0 € E with A.0 C A and BOCL B, Theorem (4.2) of [6] applies

to give
T

X, -
(2.33) u(A0 xBO) = E [e 3 XT— ¢ AO’

XT S BO]
x T -as
- E [é e 1A0(XS)K(XS,BO)dHS].
Clearly (2.33) defines a measure p on the rectangle A xB, and by the

monotone class theorem, for any f € E><E/I§+ we have

as

T
(2.34) u(f) = E"[é[e‘ 1, (X)) JKEX_,dy) 1 (y)f (x,y)]dH_].

In particular, for f = F0(°,°;C) we obtain that (2.32) is equal to the
right side of (2.30). This completes the proof. O

Let (H,L) be a Lévy system for a Markov additive process (X,Y) satis-
fying the hypotheses of Theorem (2.2), and let D be the support of H, that
is, D is the set of all x € E for which P"{R = 0} = 1 for R = inf{t:H_>0}.
Then, almost surely, the measure jHS charges only those s for which XS €D
(cf. [2, p. 214]). Therefore, if it is not already so, we may take
L(x,*) = 0 for all x ¢ D without altering (2.1). With this standardization
accomplished, if (H,L) and (H',L') are two Lévy systems for (X,Y) and if
H = H', then L = L' also.

In the special case where X is a continuous Hunt process with a
reference measure (for example, if X is a Brownian motion), the terms N
and qu vanish automatically. Then, if Y is further quasi-left-continuous,
the only component in (1.5) which has any jumps is Yd. It follows from
(2.25) that then (H,Ld) is a Lévy system for (X,Y). In a certain sense,
then, such processes X have little interest from this point of view.

In the next section we will consider the opposite case where X is a



12

regular pure jump process. In that case we can take H to be Ht =tAZL
so that many computations are simplified. This however is not something
peculiar to regular processes: For any (X,Y), if (H,L) is a Lévy system
and if H = hH' for some continuous additive functional H' of X, then
putting L'(x,*) = h(x)L(x,*) we obtain a new Lévy system (H',L'); and,
sometimes, we may take HL = t A L. Moreover, as MEYER [4] has shown, by
means of a random time change using H, one obtains a new Markov additive

process (i,?) which admits a Lévy system (ﬁ,ﬂ) where ﬁt = t A . Here is

the precise result; we omit the proof.

(2.35) PROPOSITION. Let (X,Y) be a Markov additive process having a Lévy
system (H,L) with a strictly increasing H. Let c, = inf{s: Hs > t}, X =

Xct, Yt = th, and so on for Mt’ Gt. Then, (X,Y) = (Q,g,Mt,Xt,Yt,et,P )

is a Markov additive process with the Lévy system (ﬁ,L) where
f .
e =t AL

(2.36) REMARK. If H is not strictly increasing it can be replaced by
Hé = Ht + t which is strictly increasing; then the corresponding Lévy

kernel becomes L' (x,*) = h(x)L(x,*) where h is so that H = hH'.

3. LEVY SYSTEMS AND INFINITESIMAL GENERATORS

Let (X,Y) be a Markov additive process with Y taking values in ]R+
and where X is a regular Markov process. In other words, every point x € IE
is a holding point and, if the sequence of jump times of X has an accumula-
tion point, then that point is ¢ = inf{t: Xt = A}. For such a process X
the process Y is automatically quasi-left-continuous and, moreover, any
continuous additive functional B of X has the form B = f; b(Xs)ds for
some b G'E/ §+. It follows that (X,Y) has a Lévy system (H,L) where

(3.1) Ht= tAZ, t >0,
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and, for the continuous component of the additive functional A in the de-

composition (1.5), we have

t
(3.2) AS = [ a(X )ds, t >0,
t 0 S -

for some a € E/ﬁg+.

Let K be as defined by (2.5); then (H,K) is a Lévy system for X, and
it follows from MEYER [4, p. 160] that in this particular case K is related
to the infinitesimal generator A of X by the relation Af(x) = K(x,f) for
any f GIE/ R+ vanishing at x and in the domain of A. Somewhat more pre-

cisely, we have

(3.3) Af(x) = -k(x)f(x) + K(x,f)
where
(3.4) k(x) = K(x, E), x CIE

(k(x) is finite since x is a holding point and, in fact, it is the
parameter of the exponential sojourn time at x).

In this section we are interested in the relationship between the Lévy
kernel L of (X,Y) and the infinitesimal generator of (X,Y). Let Q =

be the semi-Markov transition function of (X,Y); that is, Q 1is a

@) .

t’t >0

transition kernel from ( E,i@) into ( E><R+,]£>C§}) and has the interpretation

(3.5) Q (x,AxB) = Px{Xt €A, Y €B}

for any t > 0, x ¢ E, ACE, and B € 54. Define, for A > O,
A ] 1 ‘AY X _AYt
(3.6) Q. (x,£) = [Q_(x,dx",dy)E(x")e ™ = E'[e £(X)].

We then have the following result.

(3.7) THEOREM. Let f € E/ §+ be continuous and bounded. Then,

lim S[QYF(x) - £x)] = AF(x) - ANE(x).
t+0t t

Here A is the infinitesimal generator of X, and
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N (x,A) = [ e Y N(x,Axdy)

o 8

where

(3.8) N(x,A xB) = c,:s,a(x)l(x,A)ﬂ(L(x,Ax(s,m)) ds.
B
(3.9) REMARK. When X = 0, QA becomes the transition semi-group of X; and

%ig ANA = 0. Hence Q defines both A and NA and through them a, K, L. Con-
¥
versely, given a and L, we have (3.8) and (3.3) to compute NA and A, and
through them we may compute QA since QA is a transition semi-group and is
A

specified by its infinitesimal generator A which the preceding theorem
. . e A A
identifies as A = A - AN .

PROOF of the theorem. Let T = inf{t: Xt # XO}, fix f as in the hypothesis,

and let x € IE be fixed also. We have

-AY
(3.10) Qi(x,f) =B et ER)I g, ) +Ex[exp(—)\YT)Q2_T(XT,f)I

{(T> {T_<_t}]
by using the strong Markov property for (X,Y) at T (see Proposition (3.13)

of [31).

d

On {T > t}, X, =x for all s <t P*-almost surely, and Y, = AE + Y

so that, using (3.2) and (2.23) together with (3.1), we see that the first
term on the right side of (3.10) is equal to

-tm(x)

(3.11)  E[1 fx)expl-tax)t -LYx,1- v)t}] = £(x)e

{T >t}
where Ld is the diagonal of L which is as in (2,23), and
(3.12) m(x) = k(x) + da(x) + Ld(x,l— ),

(3.13) v(y) = eV,

To compute the second term on the right side of (3.10), first note that

c d f f
= - = + + - . Si i i
YT YT— + (YT YT_) AT YT (YT YT_) Since T is a (Et) stopping
£
time, (2.23) holds with t there replaced by T; and, given K, Yi - YT— is

conditionally independent of the other two terms and has the conditional
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distribution FO(X XT,-) where FU is the kernel figuring in (2.13). On

T_’
the interval [0,T), XS = x P -almost surely; and the joint distribution

kGt K(x,dy)dt. So, using these facts along with (2.23)

of T and XT is e
and (3.1),(3.2), we find that the second term on the right side of (3.10)

is equal to

d A
(3.14) Ex[exp{—ka(x)t -L (X,l_ ‘J))t}FO (X,XT’w)Qt—T(XT,f)I{Tf_ t}]

t
- [as K dyde ™% B0y, 1Q)__ (v, D)
E

t
= [ ™% 100x,Q)__f,u0ds
0

- e—m(x)t } o m(x)s LO(

x,Q £,0)ds
0 S

where L0 is the off-diagonal of L, i.e., LO(x,dx',dy) = K(x,x")FO(x,x",dy).

Adding (3.11) and (3.14) we obtain

t
(3.15) Qif(x) = B £y 4 O [ e m(x)s Lo(x,ng,w)ds
0

where m and ¢ are defined by (3.12) and (3.13). We can then write

-m(x)t

(3.16) %{Qif(x) - @] - £ e - 1]

t
+ e m(x)t %

f e m(x)s LO(x,ng,w)ds.
0

As t + 0, the first term on the right goes to -f(x)m(x). As for the second
term, first note that YO = 0 and Y is right continuous almost surely, and
that X is right continuous almost surely, and f is continuous by hypothesis.
Thus, exp(—XYS)f(Xs) > f(XO) almost surely as s + 0, which implies, since

f is bounded, that Qif(y) + f(y) as s + 0. Then, again by the bounded
convergence theorem, Lo(x,ng,W) + LO%(x,f,¥). Hence, by Lebesgue's theorem,
the second term on the right side of (3.16) goes to LO(x,f,y) as t + 0. We
have thus shown that

(3.17) Lim £[QE () - £G0] = mEIEG) + LOx, £,0).
ty0
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The desired result follows upon replacing m by using (3.12) and rearranging
the terms with the aid of (3.3),(3.8), and (2.28). This completes the
proof.

We finally remark the role of NX in the resolvent equation (1.2). Let

A
RX be the potential of Q , that is, for f € E/ R,,

(3.18) R'f(x) = [ Qif(x)dt, A > 0.
0

It follows from the well known relation between potentials and infinitesimal
generators, noting that the infinitesimal generator corresponding to the

. A, A X
semi~-group Q is A = A - AN , that we have

(3.19) RPN = iNRY = R -t + AMHRY = R - ')

for all A,u > 0.



