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1. Introduction

In "The Economic Implications of learning by Doing,” Professor Arrow em—
phasizes that inefficiencies arise if "doing"” generates external effects on
the "learning” of others. That such externalities are pervasive seems obvi-
ous. Communication between individuals takes place through the usual chan-
nels, while communication between firms occurs when individuals move from one
firm to another, or when "learning” by one firm i1s transferred to the supplier
of a capital good, and then embodied in the equipment purchased by another.

In the presence of externalities in learning, inefficilencies arise
because for each firm the private benefits of experience are less than the
social benfits, leading to underproduction even with perfectly competitive
markets. This is why subsidies to "infant” industries may be called for. In
fact, the free rider problem is more severe the greater the number of firms,
so there is no presumption that entry is socially beneficial--even with
constant returns to scale in production and no cost of entry. Thus, second-
best policies may include those—-like patents—-—that restrict entry.

The analysis of any such policies requires an understanding of how firms
compete in industries where learning occurs. A model of such competition,
based on the framework of differential games, 1s studied below.

The dynamics of a single industry are examined under the assumption that
spillovers in learning are complete, i.e., that learning is industry-wide.
Specifically, it will be assumed that unit cost for any firm in the industry
depends only upon cumulative industry production to date.1 This assumption,
while extreme, captures an important aspect of many infant industries.
Indeed, many of the arguments in favor of public policies to promote new

industries rest exactly on this externality.

In section 2, the model is described, and in section 3, the efficient



(surplus—maximizing) and monopoly (profit-maximizing) solutions are
characterized. 1In section 4, industry behavior under oligopoly is analyzed.
The firms in the industry are viewed as players in a (noncooperative)
infinite-horizon differential game. Theorems 1 and 2 establish the existence
and uniqueness of a symmetric Nash equilibrium in decision rules, and Theorems
3 and 4 provide a qualitative characterization of the equilibrium output
path. 1In section 5, computational results are presented for a series of
examples. These illustrate how industry structure interacts with other
features of the model. 1In the presence of externalities in learning,
increasing the number of firms in an industry has two opposing effects:
aggregate output tends to increase for the same reason it does in a static
model, but tends to decrease because the free rider problem becomes more
severe. In the examples in section 5, the first effect dominates when demand
is inelastic and the interet rate high, and the second dominates when demand
is elastic and the interest rate low. Conclusions are drawn in section 6.

Proofs of the more difficult results are gathered in the Appendix.

2. The Enviromment

The model is formulated in continuous time with an infinite horizon,
t € [O,o). At date t = O, n > 1 identical firms enter the industry. At each
date, all firms operate with the same constant returns to scale technology.
That is, unit cost of production is constant for each firm at each date, and
is identical across firms at each date. The industry-wide learning curve is
captured in the fact that unit cost declines as cumulative industry-wide
production, call it x, increases. Let c(x) denote unit cost when cumulative

production is x.

Assumption 1: c: Ry » Ry is once continuously differentiable. For some




X1 > 0, it is strictly decreasing and strictly convex on [O, Xl), and constant

on [Xy, =@).

Thus, unit cost decreases smoothly as experience increases from O to X;, and
is constant thereafter.

Demand is described by a stationary inverse demand curve.

Assumption 2: (i) p: R, > R, is twice continuously differentiable on R, ;

(i1) p (y) < O, with equality only if p(y) = 0;
1
(1i1) 2p (y) + yp (y) < 0, with equality only if p(y) = 0;

(iv)  1lim [p(y) + yp (¥)] > c(0);

y>0

(v) for some Y > 0, p(Y) = c(Xq).

Assumption 2 says that the demand and marginal revenue curves are both
downward-sloping; that it is possible for profits to be positive at every
date (although in equilibrium they may or may not be); and that demand is
bounded when price is equal to the minimum attained by unit cost.

Under Assumption 2, for any number of firms n > 1 and constant unit cost
c € [c(Xl), c(0)], there exists a unique Cournot-Nash equilibrium in the
static quantity game, and this equilibrium is symmetric. Define qn(c) to be
the Nash equilibrium quantity produced by each firm when there are n firms and

unit cost is c.

(1) p(nq,(c)) + g (e)p (g (e)) = ¢ = 0, ¢ € [e(X]), c(0)].

It is straightforward to show that q,(c) is decreasing in n and c, and that

nq,(c) is increasing in n and decreasing in c.

3. Industry Behavior under Monopoly and Surplus Maximization




A baseline for efficiency comparisons 1s the output path that maximilzes
the present discounted value of total surplus, where surplus at each date 1s
measured by the area under the demand curve minus current costs of
production. Since learning effects are industry-wide and the technology
displays constant returns to scale at each date, costs of production depend
only on the path for aggregate production, and not on how it is disaggregated
among producers. Thus, the efficient path for aggregate production is simply

the solution to the variational problem

= e X (B
Max f e [f p(u)du ~ x"(t)e(x(t))]dt, s.t. x(0) = 0.
[x(t)] O 0

The Euler equation for this problem, in integral form, 1s
() p(x"(£)) = c(x(t)) + | e_r(s_t)x'(s)c'(x(s))ds.
t

Price equals marginal cost along the efficlent path, where the latter is
defined to include the indirect effect of current production on future
costs. Integrating the right side of (2) by parts, one finds that the Euler
equation can also be written as

(21 p(x' (1)) = ¢ [ & TTD)

e c(x(s))ds.

t-— 8

Characterizing the efficient path is straightforward. Consider the
sltuation while learning is still going on (before cumulative experience
reaches Xl)‘ Since ¢ is decreasing in x, the right side of (2') is decreasing
over time. Thus price is falling over time and the rate of production

rising. Upper and lower bounds on the price path can also be derived. Since



c(x) > c(Xl), (2') implies that price exceeds minimum unit cost, and since
c'(x(t)) <0, (2) implies that price is less than current unit cost. Thus
price lies in the interval (c(Xy), c(x)), and profits are negative. After
experience reaches X, and learning stops, price is constant at unit cost
c(Xl), and profits are zero.

The production path for a profit—-maximizing moriopolist2 can be found as
the solution to a similar variational problem, with revenue replacing the area
under the demand curve in the objective function. Thus, the production path

for a monopolist solves

Max | e"rtx'(t)[p(x'(t)) - c(x(t))]dt, s.t. x(0) = 0.
[x(t)] O

The Euler equation for this problem is

(3) p(x (£)) + x (B)p (x (©)) = c(x(t)) + [ & T8 () (x(s))ds
t
3" =r f e_r(s_t)c(x(s))ds.
t

Equation (3) says that at each date the monopolist produces where marginal
revenue equals marginal cost, where the latter is defined as before.

Consider the case while learning is still going on. Equation (3')
implies that unit cost, and hence marginal revenue, are decreasing over time,
and the rate of production thus increasing. Bounds on the monopolist's
strategy can also be derived from (3) and (3'). From (3') it follows that
marginal revenue exceeds minimum unit cost, and from (3) that it is less than
current unit cost. Thus, marginal revenue lies in the interval (c(Xl), c(x)),

and profits may be either positive or negative. After experience reaches Xy,



unit cost is constant at c(Xl), and production is constant at ql(c(Xl))'
Comparing (2) and (3), one finds the usual inefficiency from monopoly:

for any given marginal cost, the monopolist underproduces since he sets
marginal revenue rather than price equal to marginal cost. However, the
situation is even worse than that. Because the monopolist produces less at
each date, his costs fall more slowly. Thus, at any date t when learning 1is
still going on, the integral in (2') exceeds the one in (3'). Hence, at any
date when learning is still going on, the relevant marginal cost for the

monopolist exceeds marginal cost for the efficient producer.

4. Industry Behavior under Oligopoly

In this section, equilibrium will be studied for oligopolistic market
structures. Thus, at date t = 0, n » 2 firms enter the industry. Each firm
seeks to maximize the present discounted value of its profit stream over the
horizon [0, »), and each discounts future profits at the constant rate of
interest r > 0.

The firms will be viewed as players in a noncooperative dynamic game in
which the state variable is cumulative industry production, the strategies are
decision rules describing production decisions, and the payoffs are discounted
profits. The equilibrium concept employed will be subgame perfect Nash
equilibrium. Thus, a strategy for any player i = 1,...,n, is a piecewise
continuous function g;: R, + R, where gi(x) is firm i's production rate when
cumulative industry production to date is x. History-dependent strategies are

ruled out. The payoff to any player i if the vector of strategies (gl,...,gn)

is adopted and the initial state 1is x, is

Ry (Byaees8 00 = fo € T g (R(E) (2,8 (x(1))) = e(x(£))]de



where x'(t) = ngj(X(t)),

~

x(0) = x.

A subgame perfect Nash equilibrium is a vector of strategies (gl,...,gn) such

that

' ~ ' ~

ﬂi(gl’”"gn’x) 2 ﬂi(glr”’)gi_l)gi)gi+1)"‘)gn)x)) all gi) i) Xe

The approach here will be to construct a symmetric equilibrium. By
standard arguments (see, for example, Starr and Ho [1969]), such an
equilibrium is completely characterized by a value function v: R, > R, and a

strategy g: R, » R} satisfying

) rv(x) = g(x)[p(ng(x)) - c(x)] + ng(x)v (x)

(5)

Max y[p(y + (n-1)g(x)) - c(x)] + [y + (n-l)g(X)]V'(X),

y

for all x. The interpretation is that for each firm v(x) is the present
discounted value of future profits and g(x) the rate of production, when the
current state is x.

The existence and uniqueness of a symmetric Nash equilibrium will be
established by using (4) and (5) to develop a single functional equation in
the unknown function g. Briefly, the first order condition arising from (5)
gives an equation for v'(x) in terms of g(x), and modifying (4) slightly and
integrating gives an equation for v(x). Using these to eliminate v and v‘

from (4) then gives the functional equation in g. First, though, we must



consider v and g at the boundary point x = X,.
If x > Xy then no further learning occurs, and from that point on the
firms behave like ordinary Cournot competitors. Thus, any equilibrium

strategy must satisfy

(6) g(x) = qu(c(X)), x> Xq,

where q, is defined in (1). It then follows from (4) that the value function

satisfies

v(x) qn(C(Xl))[p(nqn(c(Xl))) - C(Xl)]/r

(7)

1]

- g2 ()p (ng(0)/r, x> X

where the second line uses (1) and (6).
Next, note that under Assumption 2, the right side of (5) is strictly
concave in y, so that the first-order condition describes an interior

maximum. Therefore, at a symmetric equilbrium with positive production, (v,g)

must satisfy
(8) p(ng(x)) + g(x)p (ng(x)) - c(x) + v (x) = O.

Using (8) to eliminate (p — ¢) from (4), and multiplying by n/(n - 1), we find

that

ng(x)v (x) - pv(x) = (n/(n - 1))g?(®)p (ng(x)),



where p = rn/(n - 1). Then integrating and using the boundary condition (7),

we find that for all 0 < t < T,

(9 P u(x()) = 20 [T e (x(s))p  (mglx(s)))ds + e PTvex)),
where x(0) = 0, x(T) = Xl’
X'(S) = ng(x(s)), 0< s < T.

\i
Finally, substituting from (8) and (9) into (4) to eliminate v and v, we find

that for all X4y e [0, X;], g must satisfy

o 5 e (x(s))p (ng(x()))ds + e PTrv(x,)

(10a)
= - [(n - DgX)[p(ng(Xy)) - c(Xy)] + ng® X)p (ng(XoN]1,
where
X(O) = Xo, X(T) = Xl,
(10b)
x'(s) = ng(x(s)), 0< s < T.

The following theorem will be used to establish the existence and

uniqueness of a function g satisfying (6) and (10).

Theorem 1: Consider the following functional equation in the unknown

function g:
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(11) oy e P (Bx(HMds + e PV = 0(a(ty), X)),

where x(s) is given by (10b), and where p > 0, n > 1, Xl > 0, and V > 0, are
known, as are y: R, > Rand ¢: R x [0,X;] » R. Suppose there exists a
continuous increasing function a(x) on [O,Xl], and A » a(Xl), such that:

(a) y is continuous and strictly increasing on [a(0),A].

(b) There exists w > 0 such that

(12) ly(s) = v | < wly -y |, v,y € [a(0),A].

(¢) ¢(y,x) is continous, strictly increasing in y, and strictly
decreasing in x on S = {(y,x)l y € [a(x),A], x € [O,Xl]}-

(d) For some kq > 0 and ky 2 0,
(13) kly -y | < Joroo - oy o], (y,%), (v ,%) € 5,
[o¢y,3) = o(y,x )| < 1, ]x - x [, (y,%), (7, ) € 5.

(e) For each Xy € [0,X;], the range of ¢( ,Xp) on [a(Xpy),A] contains
[y(a(Xo)),v(A)].
(£) Ve [yaX)),y(A)].
Then there exists a function g satisfying (11) for all Xy € [0,X;], and the
solution is unique in the space of continuous functions f on [0,X;] satisfying

the bounds

(14) a(x) < f(x) < A, x € [O’Xl]'
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If ¢ is once continuously differentiable, then so is g.

The proof is in the Appendix

To apply this theorem to the problem at hand, define

(15a) y(y) = - yzp'(ny),
(15b) 0(v, x) = = (2 - Dylp(ay) - ()] - ny’p (ay),
(15¢) v = rv(Xl)-

Then (10a) has the form of (11), and it only remains to show that the

hypotheses of Theorem 1 are satisfied.

Theorem 2: ILet c and p satisfy Assumptions 1 and 2, and fix n > 1. Then
there exists a function g satisfying (6) and (10). This solution is once
differentiable, and is unique in the space of continuous functions on [0, X;]

satisfying

(16) ql(c(x))/n < f(x) € Y/n, 0< x< Xy

Proof: It is sufficient to show that Theorem 1 applies, where y, ¢ and V are

given by (15), p is as above, and

(173a) a(x) = qi(c(x))/n, 0< x< Xy,

(17b) A =7Y/n.
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It follows immediately from part (1) of Assumption 2 that y is continuous
and differentiable, and that y' is bounded on [q(c(0))/n, ¥/n]. It follows
from part (iii) that y' > 0, with equality only if y = Y/n. Hence y satisfies
(a) and (b).

It follows immediately from Assumptions 1 and 2 that ¢ is once

continuously differentiable, with

91(y, %) = = (n - D)[p(ny) + nyp (ny) - c(x)] + ny ().

The term in square brackets is negative on the relevant range, appoaching zero
only as y » qi(c(x))/n, and y' is positive, approaching zero only as y ~»

Y/n. Hence ¢ is strictly increasing in y on [qy(c(x))/n, Y/n], and for some

0 < k;, the first bound in (d) holds. Next, note that oo(y, x) =

(n - l)yc'(x). By Assumption 1, ¢ is strictly decreasing and strictly convex
on [0, X;]. Hence ¢(y, x) is strictly decreasing in x on the relevant range,
and the second bound in (d) holds for kz = (n -~ 1)(Y/n)|c'(0)|. Hence ¢
satisfies (c¢) and (d).

To show that (e) holds, note that for each x € [0, X;],

d)(a(x), X) = d)(ql(c(x))/n, X)

4, (e(x))

= - (n - 1) ———p(q (c(x))) = c(x)] + ny(qy(c(x))/n)
qi(C(X)) '

= (0 - 1) ———— p (q;(c(0))) + ny(q, (c(x))/n)

(a(1 - n) + n)y(q, (c(x))/n)
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< 0 < y(qyCe(x))/n) = y(a(x))-

where the third line uses (1) and the last uses the fact that y > 0 and

n > 2. Also,

oA, x) = ¢(¥/n, %)

)

- (o - DE /D) [p) - e(x)] + ny(¥/n)

(n = 1)(/n)[e(x) = c(X)] + ay(¥/n)

A\

y(¥/n) = y(A),

where the third line uses the definition of Y, and the last uses the fact that
n > 2 and c(x) > c(X;). This establishes that (e) holds.

Finally, note that from (6) - (7),

Vo= rv(¥Xp) = y(g(X1)) = y(qa(cX1I))-

Since q,(c(X;)) € [ql(c(Xl))/n, ¥/n] = [a(Xy), A], and y is monotone, it

follows that (£f) holds. 0

Theorem 2 establishes that there is a unique symmetric Nash equilibrium
in the space of production strategies for which aggregate industry production
nf(x) is at least as great as the quantity qq(c(x)) that a monopolist in a
static enviromment with unit cost c(x) would produce, but no more than the
quantity Y at which price equals minimum unit cost c(Xl).

The equilibrium point g of Theorem 2 can be characterized more sharply by
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showing that Theorem 1 still holds when the bounds in (16) are narrowed, and

by applying the following result.

Theorem 3: If the hypotheses of Theorem 1 hold and if in addition V = y(A),

then the solution g is strictly increasing.

The proof 1s in the Appendix.

Theorem 4: The unique function g of Theorem 2 is strictly increasing and

satisfiles

(18) dp(e(x)) < g(x) < gp(e(Xq)).

Proof: It is sufficilent to show that Theorems 1 and 3 apply when we choose

a(x) = q (c(x)),

A= qple(¥)).

Conditions (a) - (d) are as before, and V = y(A), so (f) holds. To see

that (e) holds, fix x € [0, Xy]. From (15b) and (1), 1f follows that

¢(a(x), x) = ¢(qu(c(x)), x)

~(n=1)q,(e(x)) [p(na (c(x))) - e(x)] - ng>(e(x))p (nq (c(x)))

- q2(e(x))p (nqy(e(x)))

= y(qp(e(x))) = y(a(xn).
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Also, since ¢ is decreasing in x,

0(A, x) = ¢(qa(c(X1)), x) > o¢(qu(e(X)), X))

y(qp(e(X1))) = y(4a).

Hence the range of ¢(+, x) on [a(x), A] includes the interval [y(a(x)), y(A)],

and (e) holds. i

The functions satisfying (18) represent strategies with the following
property: for any level of cumulative production x, each firm's current
production rate f(x) lies between the static Cournot-Nash equilibrium rates
qn(c(x)) and qn(c(Xl)) corresponding to unit costs c(x) and c(Xl)
respectively. In other words, if all firms adopt strategies satisfying (18),
then as under monopoly, when current unit cost is c(x), marginal revenue lies
in the interval [c(Xy), c(x)]-

Theorem 4 shows that for any demand and cost functions, and any number of
firms n > 2, the unique symmetric Nash equilibrium has the qualitative
characteristics one would expect: the rate of production increases
monotonically as learning proceeds and costs fall, and at any date marginal
revenue lies between minimum unit cost and current unit cost.

Next consider the value function v, given by (9), which can be
interpreted as the market value of the firm. Note the following facts: =x(t)
is strictly increasing; g is strictly increasing on [0, X;]; vy(y) 1is
positive and strictly increasing; and v(Xl) = y(g(Xl))/r. Hence it follows
from (9) that v is positive and strictly increasing on [O, Xl]. That is, the

market value of each firm increases as learning occurs.
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Although entry is not incorporated in the analysis above, the model does
suggest a line of attack using backward induction. TLet v, (x) denote the
present discounted value of the profits of each of n firms, at the symmetric
equilibrium beginning at x. Since vn(Xl) is proportional to profits in an
n-firm (static) Cournot equilibrium (with unit cost c(Xl)), it is decreasing
in n. Suppose there is a fixed cost T of entry. Then the number of firms in

the "mature” industry will be given by N satisfying
V(X)) € T < wgyg (Xq)-

The profits of the Nth firm cover its cost of entry, but those of the
(N + l)th firm would not. Moreover, since vy(x) is continuous and strictly

increasing in x, the Nth

firm enters when industry experience is Xy satisfying
VN(XN) =T.

Extending the argument further back i1s difficult, however, since there is
no obvious way to guarantee that the value in the (N-1)-firm game terminating

at XN with terminal value T', is I' in any state. That is, there seems to be no

way to insure that the (N-l)th firm ever has an incentive to enter.

5. The Effect of Industry Structure: Some Examples

Given demand and cost functions, it is straightforward to compute the
equilibrium strategies for different numbers of firms: equation (10) can be
solved stepwise from right to left, starting at X; and working back to the
origin. 1In this section, results are presented for several such examples.3
These are designed to illustrate the possible effects of industry structure on
equilibrium behavior. As might be expected, varying the number of firms has
quite different effects depending upon the price elasticity of demand and the

interest rate. This is because increasing the number of firms has two
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opposing effects: the aggregate rate of production tends to rise for the
reason it does in a static Cournot model, but tends to fall because the free
rider problem associated with learning becomes more severe. For a given cost
function, the first effect predominates when demand is relatively inelastic
and the interest rate is high, and the second when demand is elastic and the
interest rate low.

In the examples below, the inverse demand function is assumed to have the
constant-elasticity form

p(y) = Ay L/B,

so that B > 1 is the price elasticity of demand. The cost function is also of
the constant-elasticity form,

o(x + 1) 0 if cx+ 1) > 1
c(x) =

1 otherwise.

So that D > 0 is the elasticity of cost with respect to cumulative output.
Thus, the industry is assumed to start with one unit of experience, so that
initial unit cost is C, and thereafter doublings of cumulative experience
cause unit cost to fall by a factor of Z_D, until the minimum cost of unity is
reached. In each example, solutions were computed for n = 1,2,3,4, and 8
firms, for a competitive industry, and for an efficient (total surplus
maximizing) producer.

In the first set of examples, the parameter values are A =10, B = 1.5,
€C =10, and D = .32, and the interest rate is r = 0.1. Thus, demand is
moderately elastic, and output doublings cause unit cost to decline by 20%,

starting at a unit cost of 10 and falling to a minimum of 1. Figure 1A shows
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price as a function of cost for several industry structures and Figure 1B
shows price as a function of time. Note that as unit cost reaches its minimum
in Figure 1A, or equivalently, as time passes in Figure 1B, the price level
for any industry structure reaches what it would be in a static model with
constant unit cost = 1. Note, too, that at any cost level or any date, an
efficient producer charges a lower price than is found under any other
industry structure. These two features are, of course, independent of the
specific cost and demand curves chosen.

Next, note that for these parameter values, the price curves are
ordered: at every cost level in Figure 1A and at every date in Figure 1B, the
highest price is found under monopoly, the next highest under duopoly, and so
on. (This also holds for n = 3, 4 and 8, not displayed in the figures.) As
will be seen below, this feature is not general. This ordering of the cost
curves implies that only the efficient producer ever prices below unit cost.
This can be seen from Figure 1, where the competitive industry is, of course,
represented by the 45° line. The price curve for the efficient producer lies
below this curve, just touching it when cost is at its minimum, while the

curves for all other industry structures lie above it.

INSERT FIGURES 1A AND 1B ABOUT HERE

Figures 2A and 2B show the effect of lowering the interest rate; the
other parameter values are as before, but the Interest rate is r = 0.01l. This
leads to a major change in the behavior of a monopolist producer. A lower
interest rate increases the importance of learning, and a monopolist responds
to this by initially pricing below unit cost. Under duopoly, however, the

free rider problem still predominates, so that price is always above unit
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cost. (In this case, initial prices are not ordered for n = 3, 4, and 8
firms. When unit cost = 10, price is 10.9 in an industry with 3 firms, 11.0
with 4 fims, and 10.7 in an industry with 8 firms.) Note too, that with this
low interest rate, the efficient price is almost constant over time. But the
monopolist, even though he internalizes all of the externalities in learning,

charges a higher price initially, and allows price to fall gradually as costs

fall.

INSERT FIGURES 2A AND 2B ABOUT HERE

In the next example, the elasticity of demand is increased to B = 2.3,
the interest rate is kept at r = .0l, and the other parameters are as
before. Recall that with a higher elasticity of demand, Increasing the number
of firms has a relatively smaller effect in a static Cournot model. Here,
with a low interest rate and a high elasticity of demand, the free rider
problem clearly dominates until unit cost is quite low. When unit cost is
high, the curves in Figures 3A and 3B lie in just the reverse of their usual
Cournot order: as shown, price is lower with one firm than with two, and is
highest of all under perfect competition. Over an intermediate cost range the
curves cross, and resume their usual ordering as cost reaches its minimum.
(The curves for n = 3, 4 and 8, not shown, are ordered and lie between those
for n = 2 and perfect competition for ¢ =1 and ¢ = 10, and they cross at
intermediate values.) Note that both the efficient producer and the

monopolist now charge a virtually constant price.

INSERT FIGURES 3A AND 3B ABOUT HERE
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These examples illustrate that changes in industry structure have a wide
range of possible effects depending on other parameters of the model, and that
changes in the elasticity of demand or the interest rate can interact in

rather complicated ways.

6. Conclusions

In this paper, the dynamics of industry behavior have been studied under
the assumption of industry wide learning.4 The existence and uniqueness of a
symmetric equilibrium for any industry structure was established, and
qualitative properties of the equilibria were developed. In particular, it
was shown that price falls over time, and that marginal revenue at any date
lies between current unit cost and minimum unit cost. As shown by example,
price may lie below current unit cost during the early phases of the
industry. That is, firms may earn initial losses. Examples were also
provided to illustrate some of the possible effects of industry structure on
the equilibrium price path.

Perhaps the most dramatic feature of the examples is the wide divergence,
in the early stages of an industry, between efficient prices and equilibrium
prices for any industry structure. This suggests that underinvestment in
learning is not a minor source of inefficiency. The efficacy of policies
designed to compensate for externalities in learning is a subject for further

research.
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Appendix

Overview of the Proof of Theorem 1l: The proof will draw on a series of

lemmas. Let ¥ be the space of continuous functions satisfying the bounds in
(14), with the "sup” norm. Lemmas 1 and 2 show that (11) can be used to
define an operator on ¥. Lemma 3 shows that this operator maps § into the
subspace of itself, 4, consisting of functions that satisfy a Lipschitz
condition. Lemmas 4 and 5 show that this operator is a contraction on each of
a sequence of spaces F [X{,X)] of functions with restricted domain. The proof
of the theorem then rests on an induction argument that involves the
contraction property at each stage. It 1s assumed throughout the Appendix
that the hypotheses of Theorem 1 hold.

Define H: ¥ x [0,X{] » R by
. _ T -t -pT
(A.1) H(E,X,) = pfg e ¥ y(£(x(t)))dt + e °°V

where

[]

x(0) = XO’ x(T) = Xl’ x'(t) nf{x(t)).

Y

Also define b(x) = y(a(x)), x € [0,X;], and B y(A). The relevant properties

of H are given in

lemma 1: H as given by (A.1l) is well defined, with

(A.2) b(X,) < H(£,X)) < B, £ €F, X € [0,X].

Moreoever, H is once continuously differentiable with respect to X3, with
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(A.3) IaH(f,xo)/axol < p[B - b(0)]/na(0) = ky, f€F, X € [0,%]

Proof: Since a(x) is increasing, a(x) < A, and f satisfies (14), it follows
that the integrand in (A.1) lies in the interval [y(a(XO), y(A)] = [b(XO),B],
for all t € [0,T]. Then (f) implies (A.2).

For any f € 7, XO € [0,%], and & > 0, define
H(f,XO,é) = epé[pfg e—pty(f(x(t)))dt + e—pTV],

where x(t) and T are as in (A.1). Note that for any ¢ > O, if & > 0 is chosen
so that x(8§) = Xy + &, then by definition H(f,XO,é) = H(f,XO + eg). Moreover,

for ¢ > 0 sufficiently small, ¢ = 6nf(X0). Therefore

BH(F,X

oe e=0 |%® 5=0 4¢|e=0

dé

+ ¢e) 6H(f,X0,6)

|H(E,X,0) = oy (£(X())| /af(x,)

p|H(E,X) = Y(EX ) |/nE (X))

N

p[B = b(X]/nalX)

N

p[B - b(0)]/na(0),

where the last line uses the fact that a(x) and b(x) are both increasing.

Q.E.D.

Next, note that (c)-(e) imply that ¢ has an inverse with respect to its
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first argument. For each XO € [O,Xl] define ¢ by
(A‘A) ¢(¢’(Z)XO)) Xo) = Z, z € [b(XO))B]‘

Lemma 2: ¢ as given by (A.4) is well defined, and for each X3 € [0,Xy], the
range of ¢( ,X3) on [b(Xy),B] is contained in [a(Xg),A]. Moreover, $b(z,%y) 1s

continuous and satisflies the Lipschitz conditions

\

0 < |¢(z,x) - ¢(z',x)l < !z -z |/kl,

?

z, z € [b(x),B], x € [O’Xl]’
(A.5)

0 < |¢(z,x) - ¢(z,x')| < kzlx - x'l/kl,

A\l

z € [b(x))B], X, X € [O)Xl];

and if ¢ is once differentiable, then so is ¢.

Proof: The claims follow directly from, (c)-(e), the inverse function

theorem, and the chain rule. Q.E.D.

From lemmas 1 and 2, it follows that (11) can be written as
(A.6) b(H(g,Xy),X5) = 8(Xg), X, € [0,X;].
The next step is to use (A.6) to define an operator T on ¥. For f € ¥, let

(A.7) TE(Xy) = ¢H(£,X5),X5), X5 € [0,X].
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Lemma 3: The operator T on F given by (A.7) is well defined, and T: ¥ > ¥.
Moreover, Tf satisfies the Lipschitz condition

(A.8) |Tex) - Tf(Xg)l < [kofky + ky/k 1%y - xél = k|x, - X,

If ¢ is once differentiable, then so is Tf.

Proof: It follows from (A.2) and (A.4) of lemmas 1 and 2 that Tf is well
defined, continuous, and satisfies the bounds in (14). Hence, T: 5 » ¥. It

follows directly from (A.7), (A.5) and (A.3) that

1}

|TeCx ) - TECR)| = |oG(E, %), X) = $C(E,X),X)]

N

|ace,x ) - H(f,Xé)'/kl + %, - Xélkz/kl

N

%, - Xé'[kolkl + ky/k ]

The differentiability of Tf follows directly from the differentiability of ¢

and H. Q.E.D.

The proof that (A.6) has a unique solution will be by induction. Each
stage in the induction will use a contraction argument, which in turn requires
defining an appropriate sequence of function spaces.

For any X; € [0,X], suppose that there exists a continuous function g;
on [Xi,Xl] satisfying (14) and (A.6). Then for any Xi41, with
0 < L4 € X <Xy, define F[Xi415%1] to be the space of continuous functions

on [X;41,%;] that satisfy (14), and coincide with g; on [X;,X;]. Let
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]k[Xi+1,Xl] be the space of functions that in addition satisfy the Lipschitz

condition
(A.9) l£x) - £x )] < k|x - x |,

where k is given by (A.8). Note that ﬂc[xi+l,Xl] is a complete metric space.
The main step in the proof is to show that for an appropriate choice of
Xi's, T is a contraction on each of the sequence of spaces defined above. A

preliminary result is proved in Lemma 4.

Lemma 4: let X;, gi, X 41 and # (X;41,%;] be as above, let
£, f5 € 7 [X341,%11, with ||£; - £,]] =6, and let © = (X; - X;41)/na(0).

Choose X; € [Xi+l’xi]' Then

ke
(A.10) |, (8) = xy(0)] < 2 ™ - 1), £ 0,
and
_ 6 . nkt _
(A.11) |1, - 1,] < fnacoy € 1),

where xl(t), xz(t), T, and T2 are given by

(A.12) xj(O) Xy xj(Tj) = Xi,

1
(t f.(x.(t)), O<t, j=1,2.
xJ( ) n J(XJ( ) |

Proof: First consider (A.10). Iet A(t) xl(t) - x2(t). Then

2 ()] < ap]E; G () = £ Gpen] + |5 Gy (8)) = £, (xy ()]
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< nfkjae)| + 81,

and (A.10) follows directly.

Next consider (A.1ll). Note that

B T
Jo nE (x (ENdt = (X, - X)) = [ nf, (x,(r))dt.

Without loss of generality, suppose To » T;. Then

T, - T1| na(0) < |T2 - Tll na(X,)

N

T
|jTlnf2(x2(t))dt|

T
|fo il () = £ (x,) + £ (x,) = £, (x,)]dt]

N

Tl
IO n[klx1 - xz' + 61dt

T
[ons ™ -1+ Dac

N

N
|
r—

[tY

]

-
—
-

where the last line uses the fact that since f, satisfies 14), Ty < 7.

Q.E.D.

The next lemma uses these bounds to show that, given Xi <Xy and a
solution gq on [Xi,Xl}, for a suitable choice of Xn < Xy, the operator T is

a contraction on the space of functions Jk[Xi+l,Xl] defined above.
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Lemma 5: Suppose that for 0 < Xi < Xl’ there exists a coatinuous function gy
on [X;,X;] satisfying (14) and (A.6). Choose 0 < B8 <1, and choose

0< X545 <X;, such that

(A.13) §I1Eﬁ;%§7;(e(“k'p)f ~ 1)+ Eiig%é%l-e‘pe(enkf - 1] < 8,

where 1 = (X; - X;41)/na(0) and 6 = (X; - X441 )/nA, and such that

(A.14) X, = X, <na(0)a/p(a - a(0)).

There exists a unique continuous function gj;q on [X;47,X;] that satisfies
(14) and (A.6) and coincides with g; on [Xi,Xl]. Moreover, g;,; is once

continously differentiable.

Proof: TLet X, g; and X;,y satisfy the hypotheses of the lemma, and let the

space J[Xi+1,X1] be defined as above. Any continuous function gy.y satisfying
(14) and (A.6), and coinciding with g; on [X;,X;] is a fixed point of the
operator T defined in (A.7), applied to ](Xi+1,X1]. By Lemma 3, any such
function is once continuously differentiable on [Xi+1’xi]' Hence it is
sufficient to show that T has a unique fixed point on Jk[Xi+1,X1]. Since
Jk[xi+1,X1] is a complete metric space, it is sufficient to show that T is a
contraction on it.

Define

Vi T pfge_ptv(gi(X(t)))dt + e Ply

where



- 28 -

x(0) = Xi’ x(T) = Xl’

x (1) = ng, (x(0)).

Since f satisfies the bounds in (14), it follows that b(x(t)) < y(gi(x(t)) < B
for t € [0,T). Since a(x) is increasing, (f) implies that v; € [b(X;),B].
For any X; € [Xi+1’xi]’ it follows from the definitions of of T and H,

and from Lemma 2, that for f, f,, € 7 [X;,1,%4],
[Tfl(xo) - sz(xo)l

= |4 (E], XD %y) = $E(Ey,X),X)]

1
< EI—|H(fl,XO) - H(fz,xo)l
T T
é—'Ifole~ptpY(fl(x1(t)))dt - foze_ptpY(fz(xz(t)))
1
-pT -oT
t e T-e By |,

where xl(t), xz(t), Tl’ T, are given by (A.12).
let § = l‘fl - lel. Without loss of generality, suppose that Ty < Tj.
Note, too, that since f, f, satisfy (14), 6 < T{,Ty < t. Hence it follows
from (b), the bounds on vy, and lemma 3, that the expression above is
T

< S e ot vee Gy )y = v (E G+ [¥CE (1)) = ¥ (£, (x| 1aE
1

=

T, _ -pT -pT
+ lfT;e PEoy (£, (x )t + (e Loe 2)vil}
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T T
< %Iijoze Prou{k|x, - x,| + s}ar + 'fT;e PEl (v (£ (x)) = v }de]]

—pT p(T,-T.)
1 —ot kt 2 271
El{fge Prowse™ tdt + (B - B(X e [l - e 1.

N

Since Xj4q - X; satisfies (A.14), and fy, f, satisfy (14), it follows that
0« plT1 - T2| < p(t - 8) 1. Now for any z > -1, An(l + z) < 2z, so that

-2 » 1 - e®. Hence it follows from lLemma 4 that the expression above is

%I{gggg{e<“k'p>f - 1]+ (B - b(0))e Pon(r, - T,)]
o) w (nk-p)t B - b(0) -16, nkt _

< Ef{nk~p[e -l s kna(0) ¢ (e D]

< .

Since all functions in Zk[Xi+l,Xi] coincide on [Xi'XI]' it follows that for

Xo € [%,%], |T6;(Xg) - TE,(Xp)| = 0. Hence

[lme, - me || < 8lle; - £,]], a11 £, £, €7

1’ "2 i’

and T is a contraction on Jk[Xi+l,Xi]. Q.E.D.

Proof of Theorem 1: Since V € [b(X;),B], by Lemma 2 there exists a unique

value g, satisfying

gl = QJ(V,Xl)-

Moreover, g1 € [a(X7),A]. Clearly, any solution of (11) must satisfy
1 1
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gXy) = gy-
Then by repeated application of Lemma 5, this solution has a unique
extension to the interval [0,X;]. If ¢ is differentiable, then by Lemma 3, so

is Tf, for all f € F. Hence the solution g 1s continuously differentiable.

Proof of Theorem 3: If V =B and f is nondecreasing, then it follows from

(A.1) and the hypotheses of Theorem 1, that H(f,Xy) is nondecreasing in Xg-
Hence by (A.7) and Lemmas 2 and 3, Tf is strictly increasing. Hence the
arguments above apply when attention is restricted to the space

]' = (f € 3|f is nondecreasing). Hence g € 3', and since g = Tg, g is

strictly increasing. Q.E.D.
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114 this respect the model is quite different from those of Rosen [1972],
Spence [1981], and Fudenberg and Tirole [1983], in which firm—-specific
learning is considered. Rosen considers the decision problem facing a single
firm, Spence analyzes industry equilibria in path strategies (i.e., with
precommitment), and Fudenberg and Tirole compare equilibria in path and
decision-rule strategies (i.e., with and without precommitment) for a two—
period version of Spence's model, showing that they may be qualitatively very
different. See Reinganum and Stokey [1985] for a discussion of equilibria
with and without precommitment, and an example where the difference is

crucial.

2An analysis of the monopoly problem, including more general
specifications of the cost and demand functions, may be found in Clarke,

Darrough, and Heineke [1982].

3The solutions were computed using a BASIC program, available upon

request from the author.



4The analysis in this paper also applies, with ome sign change, to an
industry extracting a common property resource, where unit cost increases with

cunulative extraction to date.
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