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The Theory of Principal and Agent

1. Introduction

A large and interesting class of problems in economics involves delegated
choice: one individual has the responsibility for taking decisions supposedly
in the interests of one or more others, in return for some kind of payment.
Examples are a manager running a firm on behalf of its shareholders, an
employee working for an employer, an accountant handling tax affairs of a
client, an estate agent selling someone's house, an investment advisor
administering a trust fund or share portfolio, a public policy maker, and so
on. It turns out that when this situation is modelled, its formal structure
is applicable to an even wider class of problems, where no formal delegation
relationship is explicitly involved. For example, a person taking out fire,
theft or health insurance will take a decision on the level of some activity
which would reduce the risk of the event insured against and this will affect
the probable income of the insurer; a firm handling dangerous chemicals will_
take decisions which affect the likelihood and extent of damage which would be
caused to others by an accident. The theory of principal and agent is
intended to apply to any situation with the following structure: one
individual, called the agent and denoted A, must choose some action a from
some given set of actions {a}. The particular outcome x which results from
this choice depends also on which element from some given set of states of the
world, {e}, actually prevails at the relevant time, so that uncertainty is
intrinsic to the situation. The outcome x generates utility to a second
individual, the principal, denoted P. A contract is to be defined under which
P makes a payment y to A. A's utility depends both on this payment y and the

value of the action, a. The main purpose of principil-agent theory is to



characterize the optimal forms of such contracts under various assumptions
about the information P and A possess or can acquire and thereby, hopefully,
to explain the characteristics of such contracts which are actually

observed. It should be stressed that the term "contract” is to be interpreted
very broadly. It may refer to a formal document, such as an insurance policy
or sharecropping agreement, or to an implicit contract, such as may
characterize an employment relationship, or to some penalty-reward system
which may not formally be a contract at all--for example, the rules under
which liability for damages following escape of dangerous chemicals is
assessed. As usual in economics, the formal structure suggested by a
particular instance of a problem is capable of much wider application.

This paper provides a survey of the literature on principal-agent theory
in the following sense. I shall set out the model of the problem which has
been formulated in the literature and give an exposition of the main results
so far derived. This is the subject of Part 1. In Part 2 I go on to examine
the main areas of application of the theory. Naturally, in developing the
exposition I will refer to the papers which have developed the analysis and
results. However, I make no attempt to discuss or evaluate individual papers
explicitly--this is not a survey of the "who said what and when (and were they
right?)"” kind. The main aim of the paper is to give a clear account of the
theory and some existing or potential applications, and, hopefully, to show to
economists not already familiar with them that they involve some interesting

and relevant economic ideas.

Part 1: Theory

1. The Formal Model

We begin by setting out the model which will be used throughout the rest



of the paper. The principal, P, has a Neumann-Morgenstern (N-M) utility
function u(x - y), which is not directly dependent on the state of the world,
9, and which is bounded and continuously differentiable to any required
order. In particular, u' > 0 and u" < 0, so we rule out risk-attracted
behavior. Likewise the agent, A, has a N-M utility function v(y,a) with

v, > 0, v <O,va<0,v

vy > 0, so A, also, can only either be risk-neutral

aa

(

= 0) or risk-averse (v < 0). The assumption that a yields disutility

Vyy vy

to A is adopted because in most applications a is interpreted as effort or
expenditure incurred by A iﬁ acting on behalf of P. Note that P is
indifferent to A's choice of a as such, and cares only about the value of the
outcome net of the portion of it he must pay to A. This is therefore a potent
source of conflict of interest between P and Al. If, as we assume, A will
always act in his own best interests, then in designing the contract it must
be recognized that the disutility he receives from a may cause him not to act
in P's best interests. Naturally we will have a lot more to say about this
problem in what follows.

Without serious loss of generality, we can take the set of states of the
world {6} to be given by the closed unit interval [0,1]. A substantive
assumption is that both P and A have identical probability beliefs concerning
the state of the world, represented by the probability density function
f(8). This is a signficant restriction, because it might be thought that one
aspect of the principal-agent relationship would be that A would possess
better information on the likely occurrence of states of the world, as well as
on the definition of the states themselves, than P. At some points in what
follows the consequences of assuming different probability beliefs will be
suggested, but the literature is entirely based on the assumption of identical

probability beliefs and a full generalization is not available.



Given A's choice of a, which is made before the state of the world is
known, the value of the outcome x will vary with 5, and so we can write x =
x(a,9). We assume x(°*,+) is continuously differentiable to any required
order, with X, » 0, x

aa ¢ 0, and, for convenience, x4 > 0, so that higher

values of 6 represent in some sense more favorable states. We can think of Xy
as the marginal product of a, and we are assuming this is always positive but
nonincreasing.

With this notation, the basic principal-agent problem can be stated as
follows. P is to choose a payment schedule, which in its most general form
specifies a payment y to A, which could depend on x, 6, a, and some other
variable,2 z, i.e., vy = y(x, 8, a, z). The variable z could be thought of as
something which gives (usually imperfect) information either about a, or about
8, and which is costlessly available. A central assumption in principal-agent
theory, which distinguishes it from the literature on incentive compatibility
(for which see Hammond (1979) and the companion papers in that symposium) is
that the payment schedule can depend only upon variables which both parties
can observe. It is assumed that A knows a (as well as u(e)) and can observe
both x and 6. Hence different possibilities arise only in respect of the
information available to P. It is always assumed that P knows x{(a,f8) (as well
as v(e,*)) and can always observe x. It follows that if he can observe one of
a or 8 he can deduce the other, ex post, from x(a,8). We therefore have two
cases of interest:

(i) P can observe a (or 8) and therefore 8 (or f)' In that case he does
not need z, since further (imperfect) information is redundant.3 Also, the
payment schedule can be taken to depend on 8 alone and P chooses this payment

schedule and a value of a for A in such a way as to maximize his own expected

utility, subject to the constraint that A receive at least some minimum



expected utility, v°, referred to as his reservation utility.4 As is shown in

the next two sections, in this case a first-best optimum risk-sharing contract
is possible, with the moral hazard or incentive problem being solved by what

is known as a forcing contract. This result extends to the case in which a is

observable only with some random error, provided a certain boundedness
condition is met.

(ii) P can observe neither a nor 8. In this case we have a true moral
hazard problem. P must recognize that given some fee schedule, A will choose
a to maximize his own expected utility, and this will in general imply a value
of a other than that for which the fee schedule is optimal. The lack of

observability of a (and 6) means that P cannot correct this directly, and so a

contraint, which we can call the incentive constraint, must be added to the

reservation utility constraint in P's optimization problem.5 In other words,
P must take account of the fact that his choice of a payment schedule will
determine a value of E.XEE.A'S maximization procedure and thus ‘affect the
final equilibrium. In general, this leads to a departure from the optimal
risk-sharing solution: there is a tradeoff between the gains from sharing
risk and the need to control A's choice of i--the provision of incentive. It
can also be shown that when a variable z exists which gives information about

a, however "noisy,’

and which is contingent on 8, it is, except when A is
risk—neutral, optimal to incorporate it into the contract and make y
contingent on it, although this result would presumably be modified if z were
costly to acquire.

In the following five sections we go on to analyze these cases. The
analysis draws heavily on Holmstrtm (1979) and Shavell (1979), with reliance
on Harris and Raviv (1978) for rigorous proofs of what is here simply

asserted. The principal-agent problem proper is essentially case (ii), but it



will be useful to consider case (i) first as a point of departure.

2. Optimal Risk Sharing

Since the central problem of principal-agent theory is to find a fee
schedule which optimally trades off the benefits of risk-sharing with the
costs of providing an incentive to the agent, it is useful to begin by
considering the question of risk-sharing in isolation. This can be done by
taking the general model just set out and fiking the value of the agent's
action arbitrarily, at a = 30. We then assume that a and/or 9 can be
costlessly observed so that y can be taken to depend only on 8. By a risk
sharing optimum is meant a payment y*(e) from P to A which is Pareto

efficient, i.e., which maximizes P's expected utility for some given minimum

level of A's utility GO. Thus, we seek a solution to the problem:6

(R) max jé u(x(a®,8) - y(8))£(8)d6 s.t. jé v(a®,y(0))f(0)de > v°
y(8) .

The solution7 y*(e), which specifies a payment from P to A at each 8, can be

characterized by the following condition8

(1) —u(x -y + Avy =0, ¥ € [0,1]

where XA can be interpreted as a conventional lLagrange multiplier which is not,
it should be noted, a function of 8.

Since, from (1), we have that \ = u'/vy, the ratio of marginal utilities
of income of P and A at each 8, we conclude that P's nonsatiation in income
implies A > 0. It follows that the constraint in (R) must be satisfied as an

equality--A receives only his reservation utility v°.

If we take two states 91 # 8,5, then (1) implies (with obvious notation)



u (91) ) u (92) N u (91) ) vy(el)
vy(el) vy(ez) u'(ez) vy(ez)

(2)

Thus, an implication of optimal risk-sharing is that P and A's marginal rates
of substitution of income between any two states are equal. The thoroughly
conventional nature of this result is brought out if we represent the
situation as in figure 1. This is an Edgeworth-Bowiey box, with horizontal
length given by x(ao,el) and vertical length given by x(ao,ez), incomes in
states 9, and 95, respectively. P's indifference curves, which show loci of
constant expected utility are drawn with reference to origin Op, and A's with
reference to origin Oy. The 45° lines from each origin are certainty lines;
along OpC for example, P enjoys complete income certainty. The slopes of the
straight lines? Lg> &1, X, are the probability ratios f(6;)/f(85), and, given
the assumption of identical probability beliefs, are the same for P and A.

The indifference curve v°

corresponds to A's reservation utility, and so one
equilibrium consistent with condition (1) is exemplified by point e. Clearly
this is a standard type of condition for Pareto efficiency in consumption
allocations, where the state—contingent incomes y(8) and x(8) - y(8) are
thought of as ordinary commodities.

Two further results which turn out to be of interest in principal-agent
theory can be illustrated in the figure. Suppose P is risk-nmeutral. Then his

10

indifference curves are like the lines %4, %;, %, in the figure. Again, it

follows from the assumption of identical probability beliefs that the only

point at which tangency with A's reservation indifference curve ¥°

can take
place is along his certainty line O,C, at n. Thus, optimal ~isk-sharing with

P risk-neutral and A risk-averse implies that P "fully insure™ A by giving him

a payment which is independent of 9, i.e., a certain income, and P bears all



the risk. The converse occurs if A is risk-neutral and P risk-averse—-the
equilibrium would be at m in the figure, with P receiving a guaranteed income
and A bearing all the risk. With both risk-neutral, any point along the line
10 is an equilib;ium. |

These remarks can be generalized if we enquire into the possible forms of
the payments schedules which are implicitly defined by condition (1). Insight

into these can be gained by differentiating the condition w.r.t. 8, recalling

1
that A = u /vy is constant across 8. We then obtain

*
_dy
(3) -u (= 'dT-) + )\Vyy

2% X=X
oIS
1]
o

We can now introduce the Pratt-Arrow index of absolute risk aversion, defined

as:

Then, substituting for A in (3) and rearranging gives:

* T .
dy | ox
(4) de

Given risk aversion, rp, ry > 0, and so (4) implies that if, as 6 increases, x
increases (as was earlier assumed), then so does y, but at a slower rate. A
sufficient condition for a linear payments schedule, i.e., a schedule of the
form y = ax + B, is clearly that both A and P have constant absolute risk-
aversion, since in that case rP/(rP + r,) is constant, and integrating (4)

over 6 would give:

~



(5) v (8) = ax(a®,8) + 8, @ = ———t

where B is a constant of integration. Mcreover, if rp = O, implying that P is

risk-neutral, we see immediately that we must have
*
(6) y (8) =8

implying that P bears all the risk as already illustrated in figure 1. If A

is risk-neutral, ry, = 0 and we must have a payment schedule of the form:
* o ,
(7) y (8) = x(a®,0) -+

i.e., A makes a fixed payment y tc P and takes the residual income.

Although the simplicity of each of these special cases is attractive, in
general constant risk aversion, let alone zero risk aversion, would be
regarded as rather special. If, as would more usually be assumed, rp and rp
are both decreasing in income, the shape of y(8) will depend on the relative
changes in risk aversion as well as on the shape of x(a®,8) and so y(8) could

be nonlinear, convex or concave, or neither.11

No doubt a taxonomy of cases

is possible, but this would take us far from our present purpo;e. The case of
pure risk-sharing is a preliminary step in examination of the principal-agent
model, so let us return to this by considering the implications of allowing a

to vary.12

3. The Incentive Problem

We now show that in the present case, with a observable, a "first-best”
Pareto optimum with respect to toth risk-sharing and A's checice of a is

available. Thus, P can solve the problem
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(FB) max fé u(x(a,8) - y(8))f(H)d8 s.t. fé v(a,y(8))f(9)ds > °

a,y(®)
with a as well as y now variable. Note that since a is go be chosen before
the state of the world is known, it will not depend on 6. A first-best Pareto
optimum will then be an optimal action a* for A and an associated optimal
payment schedule y*(e). The contract between P and A would then specify this
schedule in exchange for A choosing a*. As we shall see, A does have an
incentive to cheat on the contract and, gizgg_that he will receive y*(e),
choose some % # g*. However, if P can costlessly observe a then the contract
can contain a “forcing clause”: if, ex post, é < g* then some ;(6) < y*(e)
will be paid, and of course §(e) can be made sufficiently unattractive as to
force A to choose f* (recall that P knows v(y,a)). Let us therefore examine

the first-best solution corresponding to the absence of the incentive problem.

The solution to FB can be characterized by the conditions:
8) -u +Av_ =0
( y
1
(9) E[u X, t XVa] =0

where the expectations operator E has replaced the integral notation. Again,
the Lagrange multiplier A > 0, given u' > 0. Thus A receives only V°. Note
that, since a is chosen optimally, condition (8) is identical to (1), and we
have optimal risk-sharing just as before: given choice of a, P and A share
the risk associated with the resulting distribution of x in a Pareto—-efficient
way. The new element is condition (9), which relates .to the optimal choice of

a and has a straightforward interpretation. In any one state of the world,



]

u x, can be interpreted as the marginal value product of a measured in terms
of P's utility or "u—utils,” i.e. du _ QE-QEn Then, Av, can be interpreted
i ' da 9x 0a ’ a
1
as the marginal cost of a in "u—utils": at the optimum, A = u /Vy gives the

number of "u-utils” P has to give up to yield A one "v-util”; while v, gives
the number of "v—utils™ A requires to be paid to supply the marginal bit of a

(recall v, < 0). Thus (u'x

"u—utils"l3. Now if a were state-contingent P would choose a so as to set

+ Av,) is net marginal value product of a in

a

this net marginal value product at zero (marginal value product equals
marginal cost) in each state. But because a must be chosen before the state
of the world is known, the marginal value product and marginal cost are
equalized in expected value terms—-—on average across all states.

Since our earlier analysis of the form of the risk-sharing contract was
conducted for arbitrary a, it applies equally now for a at the optimal value
of a. The important point is that observability of a implies that Pareto-
efficient risk-sharing is still possible. The two special cases of P risk-
neutral and A risk-neutral are again of interest. Thus, suppose P is risk-
neutral so that u is a constant. Then from the earlier analysis we know tﬁat
y* is a constant and so, since i is independent of 9, we must have that in

*  x -
each state v(y ,a ) = v®. On standard assumptions, we can draw this contour

of A's utility function as V° in figure 2, treating y as certain. If we treat

u as a constant in (9), substitute for A, and note that both v, and vy are

independent of 9, we have:
(10) Elx ] = -—

or, at the optimum the expected marginal product of a is equated to A's unique

marginal rate of substitution between a and income. Then, define the
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function:
(11) x(a) = [ x(a,0)£(8)d0

which gives the expected value across 6 of x at each a. This is graphed as
the curve X in figure 2. Then the optimum for a risk-nmeutral P is given by 3*
in the figure, since at this point the slope of x(a) is equal to the slope
va/vy of ¥°. This has a straightforward interpretation. To induce A to
choose any given a, P will offer him a fixed payment (efficient risk-sharing)
which must lie on ¥v° (A > 0, so A receives only his reservation utility).

© is a type of "total cost curve" to P.14 Since P is risk neutral,

Hence, ¥
the output distribution x(a,8) can be valued at its expected value, and so the
vertical distance between the two curves in figure 2 can be thought of as P's
"expected net income.” P then seeks to maximize this, implying that he wants
A to choose 3*, and pays him y* in exchange. P's income distribution,
x(a*,e) - y*, will then be given from the distribution x(a*,e) of which % is
the expected value. |
In the case where A is risk-neutral, P retains a constant payment, Yy, and

so again u is constant. But vy is also constant (risk-meutrality), and so

(9) becomes:
(12) E[Xa] = -E[—]

In this case, the optimal a equates the expected marginal product with the

expected value of A's marginal rate of substitution between a and income,
. * . . *

which, for a = a , varies with x(a",8) - ¥

Thus, when P can observe a or 9 costlessly, the first-best is
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attainable. If he can observe neither, then the nature of the incentive or
moral hazard problem is as follows. Since 8 cannot be observed the payment
must be expressed as conditional on x. If P naively seeks to implement the
solution derived in this section, he could find x = x(a*,e), and offer A the
payment schedule y*[x(a*,e)], that is, he rewards A upon the occurrence of an
observed x oan the assumption that a = f* and that the observed x is derived
from the distribution x(a*,e). If A is individually rational, he will then

solve the problem:

1 *
(AR) max fO v(y [x(a,0)], a)f(6)ds
a

That is, he will choose an a in the light of the income distribution which

will result under the payment schedule y*(x). But there is no guarantee in
general that the solution to (AR), which we can denote by ;, is the same as
a*, the solution to (FB). For example, if P is risk-neutral y*(s) = B. But
substituting into v in (AR) will result15 in % = 0: why should A incur any
disutility if he will be paid anyhow? More generally, the solution to (AR)A

must satisfy the condition:

dy* Va
(13) E[Vy(a— xa +§)] = 0

This can be compared to the condition determining a* which, from (8) and (9)

is

' v
(14) Elu (x, +;§)] =0

*
In income terms, the marginal product of a to A is %%— X since the effect on

e



his own income of a change in x is determined via the payment schedule, while

to P the marginal product of a is x_., given y. Since, from (4) dy*/dx <1 at

a»
a*, the two differ in their valuation of the marginal product of a quite apart
from the differences in their marginal utilities of income.

Intuitively, the problem is that since P's choice of a is not optimal for
A given the associated payment schedule y*(x), it will be possible for A to
make himself better off by choosing a # a* if he can do this unobserved and
unpenalized. This is the moral hazard problem. Before examining how P must
deal with this, we consider two cases in which the incentive problem does not
arise. The first is that in which A is risk-meutral. Here the first-best
solution is available essentially because when P gives A the first-best
payment schedule, A's optimal choice of a is the first-best level of a, so the

incentive constraint is in effect not binding. The second case is where,

although a cannot be observed perfectly, it can be observed with a random

error which is independent of 6. 1In this case, by means of a forcing

contract, the first best is again available.

A is Risk-Neutral

Harris and Raviv (1978) and Shavell (1979) show that if A is risk

neutral, so that v is a constant, then P can achieve a first-best allocation

y
and no incentive problem arises. This can be expressed in the form of the
proposition that if A is risk neutral, a contract which specifies y contingent
only on x is at least as good as one which makes y contingent on a and 9 as
well as x. Thus, information about a or 9 has no value, or, to put this
another way, it does'not matter if a and 9 cannot be observed. Here we will
give a simple account of the proposition which brings out its essential point.
Recall that first-best risk-sharing when A is risk-neutral requires that

P retain a fixed payment y and A receive the residual uncertain income
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x(a,9) - y. The condition for first—-best optimal choice of a, from (12) is

If now, even though a is not observable, P offers A the same payment schedule

(i.e., asks for the same fixed payment y) then A will choose a to solve

(ARN) max [ v(x(a,0) - y,a)f(8)ds
a

which, with v, constant, yields precisely condition (12). Thus, in this case,

y
A's choice of a does not differ from P's given the payment schedule. A will
of course accept the fee schedule x(a,d) - y, because, since y is derived from
the solution to the first-best problem, it satisfies the reservation utility

constraint. Essentially then, the incentive constraint described previously

is non-binding at P's optimum.

4, Imperfectly Observable a

A relaxation of the assumption of nonobservable a, which turns out to
have strong implications, was suggested by Harris and Raviv (1976, 1978).16
Suppose that P can observe a random variable ¢ = a + &, where & has zero mean
and probability ¢(e) > O on some interval [eo,el] and zero elsewhere. Thus
there is a kind of measurement error in P's observation of a. The key point
is that ¢ is independent of 6, the state of the world. Then it is easy to
show that P can adopt a forcing contract to achieve the first-best solution,
and so a moral hazard problem does not really arise. Suppose for example that

€ is uniformly distributed over [eo,el], as illustrated in figure 3, where a*

is again P's first-best values of a. It is of course assumed that P knows the



function ¢(g). Then P need simply threaten an arbitrarily low y17 if he
observes some a < 3* + €p, since this occurs if and only if a < f*' Since A
will not choose a > f*’ for a given payment schedule, he will then choose f*’
If ¢(e) was not positive only on an interval, i.e., if it were positive
everywhere on the real line (for example, if ¢ is the normal distribution),
then P is involved in a problem of hypothesis testing. At its simplest, this
would involve choosing some critical value, a*, such that an observation
@ < a” would be taken to indicate a < a* even though there is some positive
probability that a = a*. Hence P would have to weigh up the losses from
“type 1" and "type 2" errors—-respectively, the errors of falsely rejecting
a = a® and of falsely accepting that-—-in choosing a*. This problem does not
appear to have received explicit attention in the literature, possibly because
in outline it looks less interesting than the case in which P observes not a
simple distorted value, but rather a variable z which depends upon_BgEE_i and
8. The implication of such a possibility of observation will be considered in
section 6, below. First, we consider the solution to the mixed risk-sharing

and incentive problem.

5. Solutions to the Principal-Agent Problem

We now assume that P can observe only the outcome x and has no
information whatever about a and 9. Then his problem is taken to be that of
choosing a payment schedule y*(x) which maximizes his expected utility, taking
into account the constraints that A must receive at least his reservation
utility and will, given any y(x), choose an a which maximizes his own expected
utility.

A formal approach to this problem would be to take the problem FB and
append to it condition (13) as a constraint, implying that P's choice of y(x)

will now take account of its affect on A's choice of a via A's maximization



condition. This indeed was the approach adopted by Harris and Raviv (1976),
Ross (1973), and Spence and Zeckhauser (1971). It turns out, however, that
this problem is not well-behaved. If y(x) is not restricted to some finite
interval at each x, an optimal solution to the problem may well not exist, as
shown by Mirrlees (1975). If y(x) is restricted to a finite interval, as is
quite reasonable, the derivative y'(x) which appears in condition (13) may not
in fact exist at all points. Since the approach to solution of the problem,
based on the calculus of variations, takes y'(x) as a control variable in
solving the problem, this is a serious weakness.

An alternative approach, suggested by Mirrlees (1974, 1975), and
developed further by Holmstrdm (1978) gets around this difficulty by
eliminating 6 from the problem and regarding x itself as the basic random
variable with respect to which expected values are taken. Thus, given some a,
there is an x for each 8 with associated probability density £(8). Then the
function x(a,8) and the density function f(8) jointly determine a probability
distribution for x. An increase in a is taken to shift this distribution
rightward, with the proviso, reqﬁired on technical grounds, that the upper and
lower bounds of its distribution, which will be at x; = x(a,l) and xy = x(a,0)
respectively, are invariant to changes in a. This means that however much a
the agent chooses, the outcome x is unchanged in the most favorable state
8 = 1, and the least favorable state 8 = 0.

It turns out, however, thét this approach does not guarantee the
uniqueness of a solution to condition (13), i.e., there may be multiple
solutions to A's problem of maximizing his expected utility subject to a given
payment schedule y(x), and this may iIn turn imply that the conditions for a
solution to the principal-agent problem derived under the Mirrlees-Holmstrom

procedure do not in fact characterize an optimum. This is neatly
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illustrated!® by a diagram in Grossman and Hart (1983), and reproduced here as
figure 4. In the figure, n refers to a payment schedule (not a value of y)
ranked in (continuous) order of P's preference from left to right, and a is
again A's action. The possibility of multiple choice of a for given payment
schedule 1 is reflected in the shape of the curve a(n), which illustrates A's
choice of a for each n. However, given any n, A will choose only an a on the
dotted portion of the curve because he prefers less a to more and so these
points dominate the others. P's indifference curves are as shown (though a is
not a direct argument of u it enters indirectly XEE_X)' Then, the Mirrlees-
Holmstr¥m procedure characterizes P's optimum as being at point E in the
figure, since it yields the highest utility of all the points which satisfy
A's first-order condition (13), but T is in fact the true optimum, since it is
the best point for P dut of the points which he can actually induce A to
choose——-setting % would induce point W, not E. The existence of this
possibility is a pity19 since, as Holmstrtm shows, the procedure he adopts
leads to a relatively simple characterization of an optimal solution to the
principal-agent problem.

It would seem from this discussion that only two courses are open. One
could guarantee a well-behaved problem by making some more-or-less drastic
simplification of the structure.20 Alternatively, one could assume the
uniqueness problem does not exist and just enjoy the niceness of the results
that follow. In a certain sense the problem is purely a theoretical one: 1if
P knows v(y,a) and x(a,B8), then he knows the relationship between A's choice
of f and any payment schédule that might be chosen, and so, in principle at
least, could always find a global optimum. For example, in figure 4, if P

knows the curve a(n), then why should he be fooled into choosing point E?

However, given our analytical concerns the problem is a substantive one: we
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wish to characterize an optimal solution using standard procedures and have to
take seriously the risk that they do not work properly for all cases.

Here we provide an exposition of the Holmstr¥m-Mirrlees apprcach, since,
taken across the literature, this seems to combine the most general form of
problemstructure with the simplest statement of the results, one which gives
a clear insight into the effects of introducing the incentive constraint.
Thus:

(i) v(y,a) = vl(y) - vz(a), the additive sepagagility assumption.

(ii) Take x as the random variable, whose distribution is derived from
x(a,d) and £(8), and is written ¢(x,a). It remains the case that
the payment schedule is expressed in terms of the observable
variable, x. However, x itself is now invariant to i’ since it is
in essence the state variable.

(iii) An important property of ¢ is: ¢(x,a) = 0 for x ¢ [xo,xll, for all
a, and ¢(x,a) > 0 for x € [XO’XI]'

Figure 5 illustrates the assumed type of behavior of ¢ as a changes. For
higher a the whole distribution shifts to the right, but with unchanged
support, Xxgp, Xj. Note that, for given x, it is assumed:

(iv) The derivatives 6,y 04, are well-defined, with ¢a-§ 0, as the figure
illustrates. Thus, increased a makes low values of x less, and high
values of x more probable.

(v) The distribution resulting from a higher value of a is always
preferred by P to one resulting from a lower value of a. Thus
increasing a leads to "better™ distributions of x.

The incentive constraint now is the first-order condition for solution of

the problem of maximizing A's expected utility w.r.t. a, i.e.,
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X R
(8) nax IX; v, 3016 (x,a)dx = v, (a)
yielding:21
X1 PN 1
(15) IXO vlly(x)]¢a(x,a)dx - vz(a) =0

where y(x) is any given payment schedule. Given (15), P now has the problem

of finding a function y(x) to solve

x
(PA) max f 1 u(x - y(x))d(x,a)dx
y(x),a %0

X
s.t. fx; vl[y(x)]¢(x,a)dx - vz(a) > v

(o]

1] xl
v,(a) = Ixo v, [y(x) 1o (x,2)dx
where the first constraint is again A's reservation utility and the second is
the incentive constraint from (15). It should be recalled that x is not a

variable in this optimization-—it plays the same role as did © in the earlier

problem. Then, associating multipliers A and u (not dependent on x) with the

respective constraints we have the conditions:22
1] 1 1]
(16) {[-u + Kvl}¢(x,a) + uv1¢a(x,a) =0
xl xl ! xl 't
(17) fxO u¢adx + k[fxo vl¢adx - v2] + u{fxO vl¢aadx =V, } =90

First note that in (17), the middle term in square brackets is zero from the

incentive constraint. The conditions can then be written:
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1

(18) == A+ e /o

v

1

~ 2,2
(19) Efug ] = —pEld"v/da”]
2,421 = 1 '
where E[d<v/da“] = Ix v1¢aadx - v, is a notation designed to bring out the
0

fact that the incentive constraint is of the form E{dv/da] = 0, and the third
term in (17) is then simply the derivative of this w.r.t. a. It can be shown
(see Holmstr®m, p. 90), that u > 0, so the incentive condition represents a
binding constraint23 on P. (18) then shows that risk—sharing will not be
Pareto-efficient (compare condition (1)) and is distorted by the need to take
account of the incentive effects on A, i.e., the effect of the choice of vy,
given x, on A's choice of a and hence the effect on the probability of getting
X,¢,+ The simplicity of the earlier results on the form of the risk-sharing
contract is also lost: this now cannot be completely determined by the
attitudes to risk, but will also depend in general on how o, and ¢ vary with
x, 1.e., on the underlying functions f(8) and x(a,e).24

However, Holmstrdm is able to establish some interesting results on the
precise way in which the payment schedule will change as a result of the
incentive constraint, and these can be described quite simply if we redefine
the problem slightly. Interpret A now not as the multiplier associated with

the reservation utility constraint, but simply as a fixed weight given to A's

25

expected utility in forming the maximand of the problem:

X b X
(PA") max fxl updx + A fxl {vl - v2}¢dx s.t. | ! iz-¢dx =0
0

y(x),a 0 *g da

The solution to this problem is evidently identical in form to conditions (18)



- 22 -

and (19), but we have the added advantags that A is now a constant (and is
certainly non-zero--it is not clear from Holmstrfm's analysis that A # 0 in
general, since having to meet the incentive constraint could lead to A
receiving more than v°). Then consider condition (18), and note that, because
of diminishing marginal utility, u'(x - y)/vi(y) is increasing in y for given

x. Now suppose, for given x, we have the first-best y*(x) such that:

(20) “'(T "*Y*(X)) =2

v (v (%))
There are two sets of values of x of interest: first, X+ = {x'¢a(x,a) > O}
and secondly, X = {x'¢a(x,a) < O} (refer back to figure 5). Then if we add
to (20) the term kd,/¢, with X constant, to obtain (18), we observe, since
p > 0, that u'/vi must increase when ¢, > O, and decrease when ¢, < 0. That
is, y(x) > y*(x) when x € X+, and y(x) < y* when x € X°. Thus the incentive
effect requires deviation from optimal risk-sharing by increasing A's payment
in states when increased a increases their probability, and by reducing A's
share in states when increased a reduce: their probability. One implication
of this is that a risk-neutral P would not now make a fixed payment to A.

The second-best solution is strictly worse for both P and A than the
first-best, implying that there are efficiency gains to be had if only a could
be observed?® by P. This then leads to the question: supppose some variable
z can be acquired costlessly by P, which gives some kind of information about
a. Should it then be incorporated into the contract, in the sense that
payment to A should be contingent on observed z, so that y would differ, for
given x, if z differed? As the next section shows, the answer is yes, in

general, even though z may give very imperfect information about a.



6. The Use of Imperfect Information About a

Suppose now that although a and 8 cannot be observed directly, there is
some variable z which provides information about a in the following specific
sense. The value of z depends on f and 6, i.e., we can write z(a,es, so that
a change in a shifts the entire distribution of z. Then, since we have
x(a,9), there will, for some given a, be a joint probability distribution of x
and z. P is assumed to be able to observe z costlessly, and alsc to know the
joint probability density function, which can be written ¢(x,z,a). Then, the
question is, given some outcome for x, will it pay P to use the outcome value
of z in determining the payment he makes to A?

On the face of it, it is not immediately obvious that information of this
kind necessarily would be incorporated into a contract by making y contingent
on both x and z. As Harris and Raviv argue, although the increased
information about probable values of a is a benefit, there is alsc a cost in
that this information is uncertain, and so if P and A are risk-averse this may
make the incorporation of z into the contract unattractive. However, as
Harris and Raviv, Shavell and Holmstr®m show, it is always optimal to
incorporate such information into the contract when a and 6 are not observable
(except, as we have already indicated, where A is risk-nmeutral), so that the
benefit of extra information outweighs whatever cost the extra uncertainty
might impose (although the assumption that z can be observed costlessly is
important. here).

For a proof of this proposition the reader is referred to Shavell (1979,
appendix, p. 69). Here we adopt the simpler and more transparent approach of
Holmstrdm, who incorporates z into P's optimization problem in a
straightforward way and then shows how condition (18) is affected.

The problem can now be taken as that of defining a payment schedule
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y(x,z) where, formally, z, like x, is treated as a state variable. The
function ¢(x,z,a) gives the joint probability of x and z given a, and P's

problem now becomes

(PAZ) max f f 1 u(x - y(x,z))9(x,z,a) dzdx
v(x,z),a X0 "%

s.t. f 1 f 1 v, (y)d(x,z,a) dzdx - v(a) » °
X z 1
0 0
*1 2 '
f jz vl(y)¢a(x)z,a) dzdx - v (a) =0

LA

which differs from the previocus formulation (PA) only in that expectations
must be taken with respect to the joint distribution of the random variables x
and z. Since we maximize w.r.t. y at each pair of values (x,z) we obtain as

the counterpart to (18)~

u' ¢a(x,z,a)
—_—— = -+
21 . M ST

Thus, if ¢a/¢ varies with z, the payﬁent P will make to A on observation of x
will now be modified in the light of the observation of z. For example, if ¢,
varies inversely with z, the payment P makes to A for a given x will be lower
when z is incorporated into the contract than when it is not. The essential
reason for incorporating z into the contract is not that it provides
additional information about the likely value of 3—-after all, given the
payment schedule, P knows exactly what that will be—-but rather because it
provides a more discriminating way of giving A an incentive to increase his
value of a. Or, equivalently, it reduces the cost to P of providing A with

the right kind of incentive. This can be put intuitively in the following
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way. If the contract depends on x alomne, then, given the distribution ¢(x,a)
a high value of x could be observed, and a correspondingly high payment made
to A, with given probability, even though a is low. Similarly, a low value of
X could be observed and a low payment made even when A chooses a high a. Each
of these possibilities is undesirable from the point of view of providing an
incentive to A to choose high a. If now some variable z is observable, whose
value, let us assume, also increases with a and 8, it becomes less likely that
high values of both x and z would be observed when a is in fact low, and also
less likely that low values of both x and z would be observed when a is in
fact high. Thus, incorporating z into the contract reduces the chance of
wrongly rewarding low a and wrongly penalizing high a. This improves the

incentive properties of the contract.27

7. Conclusions to Part 1

In this part of the paper we have set out what may be regarded as the
"basic” principal-agent model and have explained the main results on contracts
which have been derived from this. Where a is either directly observable or
observable up to a random error, a first-best risk-sharing contract is
feasible, which will involve a clause penalizing A for choosing an a below the
optimal level. 1In this case if A is risk-neutral P retains a fixed sum and A
bears all the risk; if P is risk-—meutral A receives a fixed sum and P bears
all the risk. 1Indeed, if A is risk-neutral then the first best is available
to P even when he cannot observe a, since A, in acting in his own interests,
will choose the first best value of a provided P offers him the first-best
fixed payment. The incentive problem proper then arises when A is risk averse
and neither a nor 6 is observable. 1In that case there is a genuine second-
best problem. The optimal contract now must take account of the need to

influence A's choice of a——the incentive requirement--and so will have to



provide for a different payment schedule than that which optimally shares
risk. For example, a risk-neutral P would not now pay A a fixed sum. In
general, the incentive requirement calls for a higher payment to A at
relatively high values of x and a lower payment at relatively low values of x,
as compared to optimal risk-sharing, in order to induce A to increase a from
the below—optimal level which his distaste for a would otherwise lead him to

choose. Finally, if there is costlessly available information on some

vériable z whose distribution of values depends on a, the optimal second-best
contract will always incorporate this to make the payment to A contingent on
both x and z, essentially because it reduces the chances of wrongly rewarding
A for low a, and wrongly penalizing him for high a, and thus improves the
incentive properties of the contract.

There have been a number of interesting extensions to the "basic” model
in the recent jourmal literature, and there are also some possible extensions,
not yet made, which could be discussed. However, it would seem most useful to
consider these at the conclusion of this paper, after we have examined some

applications of the basic model. This is the subject of Part 2.
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Notes

Part |

lThe two papers by Ross (1973, 1974), which initiated study of the
principal-agent problem, in fact assume that a does not enter into A's utility
function. A conflict of interest then arises-if the two utility functions are
essentially different, i.e., if there do not exist a > 0, B such that
v £ qu + B (recall that N-M utility functions are unique up to a positive
linear transformation). If a is excluded from v, however, the model is then
one purely of risk-sharing, and does not encompass the problem of incentives
and moral hazard, which would generally be regarded as a central issue in the
principal-agent relationship. The following sections should make this point

clear.

2Needless to say, in a fully general treatment any or all of x, a and 2z
could be vectors rather than scalars. Nothing essential is lost by

restricting the exposition to the simpler case considered here.

3Harris and Raviv (1978) provide rigorous proofs of this and some other
assertions which will be taken for granted here. Harris and Raviv also show
that the results given in this paper for the case in which a is chosen before-
the state of the world is known extend quite readily to the-case where a is

chosen after 6 is known.

4This reservation utility is never discussed at any length in the

literature. It is usually taken as "market determined” and left at that. Yet
it turns out to be important because at the solution to most models A receives
only v°, with P appropriating all the gains from trade (indeed, the only paper
to consider the issue of whether, in equilibrium, v > ¥°, explicitly, is
Grossman and Hart (1983), in Proposition 3). Clearly what is required is some
theory of the market interaction between principals and agents, a suggestion
for further research made at the very outset, by Ross (1973), and so far not

taken up.

5This additional constraint then creates a second-best problem relative
to the problem in case (i). 1In fact the structure is quite analogous to the

types of problems first considered in the theory of the second-best--see, for
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example, Lipsey and Lancaster (1956), and Davis and Whinston (1965).

6Strictly we should also impose upon this problem the condition that
y(8) € (v°,x(a%,9)], ¥, where y° % 0 is some lower income bound for A, but
for simplicity we assume an interior solution: in each state both P and A

receive a positive share of the outcome x.

'This is found by forming the function {u + A(v - vo)}f(e) and finding
the maximum of this w.r.t. y at each 9; i.e., we carry out a pointwise

maximization.
8This solution appears first to have been developed by Borch (1962).

9It is no accident that the convex indifference curves are tangent to
these lines along the certainty lines OpC and 04C. For example, since
expected utility is constant along an indifference curve, we must have
ay(0,)  ~£(8))v (8))

dy(8)) - f(ez)vy<e 5)

But at y(8;) = y(8,), vy(el) = vy(ez), and so marginal rate of substitution of
state—contingent incomes is equal to the probability ratio at such a point.

10Thus, in footnote 9, set Vy(el) = vy(ez) for all y, since risk-
neutrality implies that A's marginal utility of income is independent of
income. Then dyz/dyl = -f(el)/f(ez) for all y. Then the same would obviously
hold for P's marginal rate of substitution.

11Thus, differentiating (4) w.r.t. © would show that even if d%x/de? is
signed, and both utility functions have diminishing risk aversion, we cannot

in general sign dzy*/dez——everything depends on the relative rates at which

risk aversion of A and P diminish.

12me effect of divergent probability beliefs of P and A can be briefly

indicated. In that case (1) becomes
1]
(") -u £(8) + vag(e) =0

where g(8) Z () is A's probability density on 6. (4) then becomes
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(4" Y-

Thus the way in which the optimal payment y* varies with x or 9 now depends
also on the probability beliefs of P and A, and constant absolute risk
aversion is no longer sufficient for linearity of the payments schedule, and
risk-neutrality of either A or P no longer gives the simple "full insurance”

results previously described.

13'I'hus, the dimension of A\ is

u-utils/$ _ u-utils
v=utils/$ v=utils

and the dimension of I is

u—utils  v-utils _  u-utils

v-utils units of a units of a’

14Grossman and Hart (1983) use the idea of the cost of inducing A to
choose some a extensively to develop a wide set of interesting results for a
special case-of the principal—agent problem, in which A's utility function
takes the form v(y,a) = G(a) + K(a)V(y), encompassing both additive (K(a) = 1)
and multiplicative (G(a) = 0) separability, and where the action a affects-the
probabilities of occurrence of a fixed, finite set of outcomes ragher than the

values of the outcomes themselves.

15In this case strictly the nonnegativity condition a » 0 would have to

be added to AR, otherwise v < 0 implies a » —.

a

16See also the comments by Shavell (1978), fn. 4, and Holmstr8m (1978),
p. 75.

por example, a "Stalinist” solution might have A taken out and shot.
18From a suggestion by Andreu Mas-Colell. The recognition of the non-

uniqueness problem itself is attributed to an unpublished paper, Mirrlees
(1975).
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19The non-uniqueness problem is not hard to establish. To guarantee a
unique global solution to the problem max J(a) = fé v(y[x(a,8)], a) £(8)d8 we

require J to be strictly concave in a for all a but:

v
e ' ' aa L]

1 2 '
J (a) = IO {y xa[vyyy X, + 2vya + =] + vyxay + vyy xaa}f(e)de
y X

which cannot be signed in general because the sign of y" is not known.
Certainly multiple local optima cannot be ruled out and Mirrlees' example

shows that they can plausibily exist.

20Thus Grossman and Hart take a special form of the v-function, assume P
is risk-neutral (although most of their results generalize), take a finite set
of outcomes {xl,...,xn} independent of a, and make the associated
probabilities {fl,...,fn} functions of ;. Holmstr¥m assumes the v-function is
additively separable in y and a and takgs a fixed interval of x—values over
which the probability distribugion changes with a, though, as already noted,

this is still not sufficient to guarantee uniqueness.

21The usefulness of the separability condition on v can be seen in the

simplicity of condition (15).

22Strictly we should take account of the constraint that y(x) lies in
some closed interval at each x, e.g., 0 < y € x. For simplicity, I assume
here that the solution is always at an interior point of such an interval.
The conditions are obtained by differentiating through by y for each x, and
differentiating through by a for all x (since a is chosen before x is known, v
after). -

23It is easy to verify for Holmstr®m's model that, as we saw earlier, if
P solves his first-best problem then the incentive constraint will not be
satisfied in general. Thus, in the present case we would have

X

max f u(x - y(x))d(x,a)dx s.t. f y(x) ¢(x,a)dx - v (a) >
y(x),a *0

yielding
1

u /vy =X and Efup ] + K{E[V1¢a] - vz} =0

where the second condition clearly differs from the incentive constraint.
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However, u > 0 is a rather stronger result than p # 0, and in his proof of
this Holmstrdm assumes the second-order condition for problem (A) is
satisfied, something which may not be true in general. Also note that where A
is risk neutral, in effect u = 0 because the incentive constraint is not

binding.

24Thus, differentiating through (18) gives:

* 1

dy _ Tp u B ¢ax ¢a¢x
ax ( + ) - 7 T, + o { ¢ - 2 }
Tp T TA) Y b

So, for u > O, rp = 0 does not imply dy*/dx = 0 unless restrictions are placed

on ¢. This expression may perhaps explain why Grossman and Hart found it not

possible to assign even such simple properties as monotonicity to y(x).

25In other words, we now simply seek a Pareto optimum relative to the
incentive constraint, where A determines the utility distribution in the final
allocation. This latter may, but need not, coincide with ¥° for A. This
problem could have the interpretation that P and A bargain efficiently over

the contract, and P does not necessarily get all the gains from trade.

20Note that A would also benefit from a move to the first-~best. This
might suggest the thought: then why does A not agree to provide P with the
information on his choice of a? The answer is of course that we then have a
problem of incentive compatibzlity: if the contract is made conditional on
A's report of a then A has an incentive to manipulate this information to his

own advantage.

27For example, suppose A can choose a from the set {1,2,3}, and the

following distributions of x and z are th;n possible:

NN XN
[}
- O ~= O

.1 .5 .9

where x can be only either O or 1 and likewise for z. Then under a contract
based on x alone, A could be rewarded for a "high" effort level, even when he

sets a = 1, with a probability of .2, but this could only happen with a
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probability of .02 if z is incorporated into the contract. Likewise A could
be penalized for a low value of x with a probability of .2 even if he had set
a = 3, while this probability falls to .02 if z is incorporated. Thus, use of

the information on z allows better design of the contract.
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