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MARKET STRUCTURE AND INTERNATIONAL TECHNOLOGY TRANSFER

1. INTRODUCTION

One of the main questions in the field of economics of technical
change concerns “market structure and innovation.” A bulk of the
research in this field deals with the impact of market structure upon
innovation. A typical question in this literature is, "what is the
optimal number of firms in an industry which leads to the most rapid
rate of innovation?” An extensive survey of this literature, empirical
and theoretical, can be found in Kamien and Schwartz (1982).

A similar question can be asked in a developing country which
heavily depends on foreign sources for most of the new technologies it
needs. In this developing country, the rate of technical advance
depends on the technologies produced outside of the country through
international technology transfer. The relevant question for the
country is “"what is the optimal number of firms in an industry, if any,
which leads to the most rapid rate of technical change through
international technology transfer?”

As in the previous paper, Lee(1984), we treat a technology as an
economic commodity, so that we can consider international technology
transfer as a pure economic phenomenon in which buyers and sellers are
maximizing their expected profits arising from the trade of the
technology.

Because the demand for a technology is single—unit demand, i.e., a

firm doesn't want to buy more than one unit of the same technology, the



buyer's (buying country or firm) problem is again a timing problem.
They are more concerned about when to buy rather than how many to buy. -
(t = = if there is no transfer).

Whereas Lee(1984) deals with the timing problem of technology
trade between monopolist seller and monopsonist buyer, this chapter
deals with the problem of several prospective buyers in the buying
country.

In Section 2, we will discuss the problem of timing equilibrium
when the technology buying industry is not monopolistic. More
specifically, we will set up a model of "Nash timing equilibrium” in a
duopolistic market structure in the buying industry for a given new
advanced technology available from a foreign source.

The two firms are assumed to be operating using the current best
technology. They are Cournot output competitors with each other, given
market demand. When a cost reducing foreign new technology is available
to the firms, each firm can be the international transferee of the
technology, paying a higher transfer cost and expecting a higher future
profit stream. Or, the firm can be the domestic adopter of the
technology, paying a lower cost and expecting a lower future profit
stream. Of course, domestic adoption by a firm can occur only after
another firm buys the technology at some earler time.

We will follow Reinganum (1980), and Flaherty (1980), in
describing the Nash timing equilibrium. Whereas, in their technology
adoption studies, they assumed two firms face the same adoption cost

function for the acquisition of the technology no matter which firm



moves first, we assume the international transferee and the domestic
adopter of the technology may have different cost schedules which are
functions of time. Reinganum and Flaherty's model can be considered as
a special case of our model. The difference in the cost for the
international transfer and the domestic adoption is essential in the
study of the international technology transfer.

Differing from Reinganum and Flaherty's results, our analysis
discloses that when the intra—-industry technology diffusion effect is
strong enough, there can be a case of non—-existence of a Nash timing
equilibrium. This is because the domestic adopter follows the
international tranferee too soon, lessening the profit opportunity to be
a first mover (international transferee of the technology). That is,
even though moving first gives some positive benefit for a firm, moving
second gives more benefits for the firm, so, each firm wants the other
firm to move first, resulting in a socially inefficient "waiting game
problem™ in the technology adoption game.

In Section 3 we will investigate the relationship between the
market structure and the timing of the technology transfer. 1In
particular, we will study the case in which the buying industry is
composed of ﬁ indentical firms with constant marginal cost.

Qur analysis discloses that an intermediate market structure, one
that is neither monopolistic nor perfectly competitive, is most
conducive to rapid technical advance. The exact number of firms depends
on the size of cost reduction by the new technology relative to the market

demand.



We also found that the socially optimal time of the transfer is
earlier than the private optimal time. Furthermore, the transfer time

with collusion is later than the transfer time without collusion.

2. NASH TIMING EQUILIBRIUM

2.1 Model
Consider an industry composed of two identical firms in a
technology buying country. Each of these two firms is assumed to be a
Cournot-competitor with each other, facing given market demand.
Initially these two firms are using the current best technology
available, the old technology 0. At time t = 0, a cost reducing
advanced technology, the new technology N, is available to both firms.
Each firm has two alternative actions ra2gardiag the new technology:
(1) buying the technology from a foreign seller, paying the
international transfer cost c¢(t), which is the function of the
transfer time (the time at which the firm purchases the technology
from the foreign seller),
(2) waiting until the other firm buys the technology and adopting
it at some later time, paying the domestic adoption cost d(s,t),
where t is the transfer time and s is the time elapsed between the
adoption and the transfer. So the actual adoption time is s + t.
At time t = 0, each firm rust determine when to buy or adopt the

technology, maximizing the expected discounted net profit. This profit



is a function of the other firm's choice and each firm is assumed to be
a Nash competitor with the other.
We will make the following assumptions regarding the transfer cost

and the adoption cost.

(Al) c(t) > 0. c'(t) < 0. c"(t) >0 for all t ¥ [0,=].

(42) d(s,£) > 0, d_ (s,t) < 0, d_ (s,0) > 0,

d, <0, d > 0, dt s >0 forallt >0 and s > 0 .
(A3) d(s,t) < c(t+s) for all t > 0 and s > O,

and d(0,t) = c(t) for all t.

Al states that the transfer cost function is a positive and
strictly decreasing convex function of the transfer time. This transfer
cost 1is considered to include the price of the technology. For the
negative monotonicity of the price of a technology with one buyer and
one seller, refer to Lee(l984). An example of such a cost function is
c(t) = « e Xt Another example is c(t) = k/t.

A2 states that the domestic adoption cost function is a decreasing
convex function of the time elapsed between the adoption and the
transfer and also a decreasing convex function of the transfer time.

A3 states that once the technology has been transferred to a firm

from the foreign seller, then the cost for the other firm to acquire the



technology by domestic adoption is less than the international transfer
cost. This 1is equivalent to saying that the adopting firm has a choice
between domestic adoption and international transfer for acquiring the

technology.

An example of such an adoption cost runction satisfying A2 is

d(s,t) = ae_(kt+hs)

-kt o s
. Together with c(t) = qe , Assumption A3 is
also satisfied.

There are four possible states for the industry regarding the

technology each firm uses,

(0,0), (N,0), (0,45), (N,N),

where the first coordinate is for firm l's technology and the second
coordinate is for firm 2's technology. So, (0,0) represents that both
firms use the old technology, and (N,0) represents that firm 1 uses the
new technology, and firm 2 uses the old technology, and so on.

Assuming that the market demand is stationary over time the profit
allocation generated by Cournot competition is constant over time in

each of above four states, i.e.,

state (0,0) (N,0) (o,N) (N, i)
BLOfit iod (g7, (m)5my) (ryomy) (mysmey)

Representing this relationship in the time, profit space,
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where, tl is the international transfer time and t2 is the domestic
adoption time
Furthermore, we will make a following assumption regarding the

profit.

4 > > > > 0 nd - > - .
(Ad4) T2 Ty T2, , and x, m, 7 Ty T,

This assumption states that profit increase for the technology
transferee is greater than the profit increase for the adopting firm.
This assumption can be shown to be satisfied when the production cost

function is of constant marginal cost and the market demand is linear.



function is of constant marginal cost and the market demand is linear.
Let Y and t, represent the time of action (buying or adopting) by
firm | and firm 2 respectively, and r represent the interest rate. Then

the firm 1's discounted net profit of moving at time t =t given firm

1)

2's move at t = ths is

t2 -rt © -rt -rtl
- + - -
0 ftle (wl no)dt /tze (n3 no)dt e C(tl)
if t1 < tz,
Vl(tl,tz) =
ftle-rt(n - 1 )dt + fm e_rt(n -t )dt -~ e—rtld(t -t ,t.)
t2 2 0 £ 3 0 1 2’72
i 2 .
if tl t2

Similarly, firm 2's discounted net profit of moving at time t = ty,

given firm l's move at t = > is
t2 -rt rt -rt2
n, - m_)dt + - - -
@) ftle (wz no) ftze (n3 no)dt e d(t2 tl’tl)
_ if t, <t ,
Vz(tl’tz) = 1 2
tl -rt - -rt2
[ te To(n nodt + [T e TN a, - ) - e c(t,)
t 1 o t 3 0 . 2
2 1 if t:1 > t2 .

Notice that Vi(tl’tZ) are continuous at t; = t, since d(0,t) = c(t) for
all t. But they are not differentiable at such a point.

For an analytical simplicity we will exclude the possibility that



a firm will not adopt the technology at all. This can occur if the
transfer cost or the adoption cost is too high to guarantee the firm a
positive value from the technology transfer or adoption. Formally this

can be stated as in the following assuaption.

(A5) Given tj’ there exists sone ty such that Vi(tl,tz) > 0,

where 1 =1, 2 and j= 2, 1.

2.2 Equilibrium

The problem can be modeled and solved as a game theoretic

framework: The game is represented by

where;
1) There are two players, firm 1 and firm 2.

2) The strategy space is § = S) x 8y,

where §; = [0, =) for i =1, 2.

The pure strategy for player i is ti € S

3) Payoff functions Vi, V, are given by

(1), and (2) respectively.

DEFINTION 1. The best response for firm i to tj is




r.(t.) = Inf{t, € S .: Vv (t.,,c.) > V. (t!,t.) for all t! £ 8.}
it i i it Ti’ ] it i’ i i

The mapping ri; Sj + S, is i's best response function.
i

* *
DEFINITION 2. A strategy pair (cl, cz) is a Nash Equilibrium

for the game T if

a. t, € §,, i=1, 2,
i i
x % *
b. Vl(tl, tz) 3 Vl(tl,tz), for all t, € Sl’
x % *
ce. Vz(tl, tz) > Vz(tl,tz) for all ¢, € s,
. * * v - . - . 0 * * * *
That is (tl,tz) is a Nash Equilibrium if £, = rl(t2 ) and t, = rz(tl).

Now, the best response function for firm 1 is

(3) rl(tz) = Inf{arg Max Vl(tl,tz)}
t
1
= Mi 3 > v > v
Min{arg ;ax[tiiTo . 1(t1’t2)’ i éaTt . 1(tl,tz)]}
1 17772 1 2’

Similarly the best response function for firm 2 is

(4) rz(tl) = Min {arg Max [ Max v, (t, ,t ), Max v, (t ,tz)]}

2°°1°72 2771
t, t, € [O,tl] tze[tl,w)



11

LEMMA 1 If a firm moves first (buys the technology), then the firm's

optimal transfer time is either O or ¢t , independent of the other

firm's adoption time, where <t is such that
(5) n, o~ om = re(t) - e’ () .

PROOF Without loss of genmerality, consider the case in which firm 1

~

moves first, that is tj} < t, Suppose we found such a ¢t

Because firm 1 is predetermined to be the first mover, t < t

So, firm l's problem is

h \
t AaTO . l(tl, tz)
1 5 Hh
(6)
2 -rt ® -rt —rtl
= [ % e T (a, - mdde + [T e N (n, - n )dt - e c(t).
t 1 o t 3 o
1 2
The first order condition is given by
dv -rt
(7) oo M, - ) - (et ) - (e D]} .
dtl 1 o 1 17

The second order condition for maximum can be shown to be satisfied

using the assumption Al. Since tl < t2 , the solution is not

binding by tZ' So, by Equation (7) the optimal trasnfer time is



. R 12
t such that (nl - no) = re(t) = ' (o)

(8) t* _ if (nl - no) <roc(u) - ¢'(0),
0 otherwise.
So E is independent of Lo, and uniquely determined since the RHS
of (5) is strictly decreasing in t,.
Q.E.D.
Notice that the LHS of Equation (5) represents the marzinal loss of

delaying one more period, and the RS represents the marginal gain of

the delay.

LEMMA 2 1If a firm moves second, i.e., it is the domestic adopter of the
technology, then the optimal adoption lag for the firm is either O

or s{t) , where s(t) 1is the function of the transfer time, t,

such that
(9) Ty T M, = rd(s(t), t) - dS(S(t),t)-
Furthermore the adoption lag will be shortened as the transfer time
is delayed, i.e.,
d -
- < 0.
it s(t) <0
PROOF Without loss of generality, consider the case where firm 1
moves second, i.e., t1 = t, + s where s 3> 0. . The firm's problenm

is



I3

Max Vl(t + s, tz)

s€[0,=) -
t,ts _ . o et -r(t +s)

= . e (nz - no)dt + It +s® (n3- no)dt - e d(s,tz).
2 2

The first order condition is given by;
v, -r(t, + s)
(10) vl {(ﬂ3 - nz) - [rd(s,tz) - ds(s,tz)]}.

The second order condition for a maximum is also satisfied by
assumption A2. Therefore the optimal adoption lag, given the

transfer time, t, is;

s(t) such that (n3 - ﬂz) = rd (s(t), t) - ds(s(t), t)
*
(11) s (¢t) = if Ty T T, < r d(0,t) - dS(O,t)
0 otherwise.

~

Since the RHS of Equation (9) is decreasing in s, s(t) is uniquely
determined given t.
Now, using the implicit function theorem and assumption A2 on
Equation (9), we get Eg ;(t) <0 for all t.

Q.E.D.

By Lemma 1 and Lemma 2 we established the set of possible Nash

timing equilibria in pure strategies as follows:
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A A

((0,0), (0, 5(0)), (8(0),0), (r,0), (t, s(£) + ©), (s(t) + ¢, )}

Now regarding the non-zero symmetric equilibrium (t,t) , we state the

following lenma:

LEMMA 3 There is no non-zero symmetric Nash equilibrium in pure

strategies, i.e., (t,t) 1is not an equilibrium.

PROOF: It suffices to show that ;(;) > 0 » Suppose ;(g) =0,
then
Ty T M, 2 rd(O,E) - dS(O,E), by (11)
> re(e) - o' (0), by 43
=TT omy,

Therefore TyT T, > T Ty which contradicts to a4,
The second inequality holds because c¢(t) = d(0,t) , and c(t+s) >
d(s,t) for all s > 0 implies c¢'(t) > dS(O,t) for all t.
Q.E.D.
So we have excluded the non-zero symmetric equilibrium (E,E) from
the set of possible Nash equilibria.

~ ~

LEMMA 4 There exists a unique t and to such that

. < ~ <~

1) Vl(t,t) S Vl(t + s(t), t) as t 3 ¢,
2)  V(0,0) S v (t+ (o), t) A

140, 5 1 s , as t 3 t,e

PROOF: Suppose firm 2 moves at time t. Then the dirference between
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PROOF: Suppose firm 2 moves at time t. Then the difference between

noving first and moving second for rirm 1 is given by

~

Vl(t,c) - Vl(t + s(t), t).

1)

ale)
By Lemma 3, A(t) < 0.

Also notice that

~

Lin 8(t) = [7 (%, = w)e”Mdu - e Fe(r)
t e N °
t
ts(t) ~-r = -ru
- [lim {J (n, = n))e "du + [ (n, - n.)e " du
t 2 0 0
to® t+s(t)

R T )

Therefore there exists some sufficiently large number T such that
A(T) > 0 . Since A(t) is a continuous function in t, we can use
the intermediate value theorem to conclude that there exists a ; R
such that, T > ; > ; which satisfies A(E) =0

Notice that A(t) 1is a strictly increasing function of t,

since

(12) %; At) = SE'Vl(g’t) ~ %? Vl(t + ;(t), t)

PN

St + s(o),t)

=V e =V

>0,

where the first subscript denotes firm !, and the second subscript

denotes partial derivative. The second equality holds using the
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envelope theorem.

Therefore t 1is uniquely determined and

AP
(md

N < -
\/l(c,t) 5 Vl(t + s(t), t) as ¢t

~

Similarly we can show that there is a unique t > 0 such that

t

VA

< -~
Vl(J,t) 5 Vl(t + s(t), 0) as t 0°

Q.E.D.
The above lemma states that a firm prefers moving first, that is,
buying the technology from the foreign seller at time E , if and only
if the other firm adopts it later than ; .
Now we can describe the firm i's best response function as follows:

First note that

rce(0) = ¢'(Q) >n, - = implies rd(0,0) ~d (0,0) > n, - 7. ,
1 o s 3 2
which can be shown easily using conditions A3 and A4. Therefore, we

need to consider only three cases listed as below.

CASE 1: 1If (ﬂl - no) < re(0) = ¢'(0),

then

r (t,) =
i3

(7]

(t.) + t, ift, <t ,
J J

for i = 1, 2, and j = 2, 1.

CASE 2: 1If (nl - no) 3 re(0) - ¢"(0)



and (m., - nz) <rd (U,0) - d (v,0),
>

3

then

r () =
1 ] ~
s(0) if t,<t .

CASE 3: If (nl - no) > rc(0) - ¢'(0),
and (n3 - nz) > rd(0,0) - dS(O,O),
then

r.(t.) =0 for all t. > 0.
1 ] J

Firm 2's reaction function for case 1 is shown in Figure 1.

rz(tl) s(e,) + ¢

T >

Figure 2



This Figure illustrates that firm 2's optimal time is along S(tl)
curve as t; moves from O to t , at that point jump down to t and

stays there as t; increases starting from t

PROPOSITION 1

a) When r1c(0) - ¢'(0) > nl T there are Nash equilibria in

pure strategies if and only if s(t) + t 3> t . If they exist, the

PN

set of Nash equilibria is {(t, s(t)+t), (s(t)+t, t)}

b) When rc(0) = c¢'(Q) < n, - =n and rd(0,0) -d (0,0) > n. - =
1 o) s 3 2

there are Nash equilibria in pure strategies if and only if
s(0) » t, - If they exist, the set of Nash equilibria is

100,5(0)), (5(0),0)} .

¢) When rc(0) - ¢'(0) <« nl - and

rd(0,0) - dS(O,O) < Ty T, (0,0) is the only Nash equilibrium.

PROOF:

a) When rc(0) - ¢'(0) > T, T M., by Lemma l, the first mover's

optimal transfer time is t which is independent of the second

mover's adoption time. Since re(d) - c¢'(0) > nl - 1 implies
o

rd(0,0) - dS(O,O) > Ty T T, the second mover's optimal adoption

time, given the transfer time, t, is s(t) + t which is greater

~

than t . Therefore, by Lemma 3, only candidates for Nash

18



will move first if and only if the other firm moves later than

t . So, the equilibria will occur if and only if s(t) + t > t.

b) When rc(0) - c'(VU) < TT T by Lemma 1, the first nover's

optimal transfer time is t = 0, that represents the immediate
transfer. Given this immediate traunsfer, since

rd(0,0) - 4 (0,0) > Ty T T, the second mover will adopt the
technology at ;(O). So, (O, ;(O)) and (;(O), 0) will be the

only candidates for Nash equilibria. By Lemma 4, the equilibria

will occur if and only if s(0) > t,-

c) If re(0) = ¢'(0) ¢ . - no and rd(0,0) - dS(O,O) {x

1 3~ Ty

then it is clear from Lemma ! and Lemma 2 that immediate transfer is
the optimal choice for the transferee and immediate adoption is the

optimal choice for the domestic adopter.

Q.E.D.

The case a) is illustrated in Figure 3 and Figure 4 below. 1In

Figure 3, where s(t) + t » t, best response functions intersect at

(t,(t)+t) and (s(t)+t,t) , which are Hash equilibria. But in Figure 4,

A

where s(t) + t < t, the best response functions do not intersect,

therefore there is no Nash equilibrium.
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2.3 Waiting Game Problem

In order to better understand the situation in which there is no
equilibrium, let us go back to Figure 4., Suppose a firm moves first.
Then it will choose E, and the other firm will follow at ;(E) + E .

A ~

Now because s(t) + t 1is less than t , the first firm is better off to

A A

choose s[s(g) + E] + [

A A

s(t) + E] . Therefore no firm moves first,
resulting in no equilibrium.

This "waiting game” problem can arise if the domestic diffusion of
the technology is too fast, resulting in an adoption lag that is too
short. In section 2.4, we will use a specific form of adoption cost
function to study the relationship between the diffusion speed and the
existence of equilibrium.

The shortened adoption lag will raise the follower's net profit and
lower the leader's net profit. Even though the net benefit of the
leading is positive, the net benefit of the following is greater than
that of the leading so every firm would rather be a follower than a
leader. 1In this case there will not be any leader; no firm can be a
follower either,

This "waiting game” problem will obviously lead to social
inefficiency for the technology buying country. One way to correct the
problem by the government, as can be observed in developing countries,
is to lengthen the adoption lag by protection of the leader for a

certain period of time. But this policy will lead to another kind of



inefficiency, which is the suppression of otherwise beneficial
technology diffusion in the industry.

Another policy measure for the government is to designate a
specific firm to be the leader. This can be done by alternating leader
designation for different technologies, or by compensating the
designated firm with some subsidy plans. But notice that even without
any subsidy the leader may have positive benefit, even though it is less

than that of the follower.

2.4 Diffusion Speed and Equilibrium

In this subsection we will use a specific form of a transfer cost
function and an adoption cost function to study the timing equilibrium
discussed previously.

1) Transfer cost function

(13) c(t) = ae—kt, where a > 0 and k > 0.

The transfer cost function is assumed to be an exponentially
decreasing function of the transfer time with exponential

coefficient k, and ¢(0) = «¢ . This is illustrated in Figure S.
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c(t)

Figure 5

Notice that ¢'(t) < 0 and c¢"(t) > O for all t, satisfying the

assumption Al.

2) Adoption cost function

-kt -h
(14) d(s,t) = ae e ®

, where h > k.

The adoption cost function is assumed to be an exponentially
decreasing function of the time elapsed between the adoption time
and the transfer time, with the exponential coefficient h. It can
be considered that the coefficient (h - k) represents the degree of
the domestic diffusion speed of the technology. The greater h,
given k, the faster domestic diffusion, and the lower the adoption

cost. This adoption cost function is illustrated in Figure 6.



d(s,t), c(t)

c(t)

d(s,t)

Figure ©

Notice that first order partial derivatives of the adoption cost
function are negative with respect to t and s, and the second order
partial derivatives are positive with respect to t and s including the
cross partial derivative. This satisfies assumption A2, Together with

_ kt . .
the transfer cost function, c¢(t) = qe , the adoption cost function

satisfies assumption A3.
In order to check this, notice that

-kt =hs ~k(t+s)
ae

ae e < for all h > k,



Therefore,

(15) d(s,t) < c(s+t). for all s > 0, t » 0.
When s = O,
(16) d(0,t) = c(t) for all t » O.

Notice that inequality (l15) states that domestic adoption is always
less costly than international transfer. Equality (l6) states that an
immediate adoption doesn’'t lead to any positive cost saving for domestic
adoption compared to the international transfer. Actually the adoption
cost function employed here can be considered to include the opportunity
to buy the technology directly from the foreign seller by paying the

transfer cost.

3) Optimal transfer time

Firm l's problem as a first mover is

Max v {(t ,t.)
1771772
t,€ [O,t2]
(17)

t
2 -rt ® =-rt -(k+)t
= —_ dt + -
It e (ﬂl no) jt e ( ae 1

~ 7 )dt
1 , s 10)

The first order condition gives

-kt
~ ﬂo) - alk + 1)e = 0.

(18) (ﬂl

Therefore the optimal transfer time is



if k+r >, -7 )«
1 o)

*
(19) tl =

0 if k+r<{n, -n)la.
l o)

Notice that the optimal transfer time is independent of the other

firm's adoption time. It is decreasing in (nl - no) and increasing in

ax, r, and ke And for a sufficiently large profit increase,
(nl ~ no) , or for a sufficiently small initial cost ( a ), the optimal

decision for the transferee is the immediate purchase of the technology.

4) Optimal adoption time

The firm l's problem as a domestic adopter is

(20) Max V(s + t., t.)
ce(0. @) 20 52
S+t2 -rt © -rt
= e " (m, - )dr + / e (ny - m )dt
t2 s+t2
-[(ktr)e, + (htr)s]
- ae - .

The first order condition is

—(kt2 + hs) )

(21) (n, - nz) - alh + r)e =0 .

3

Therefore the optimal adoption lag, given the transfer time t, is



o
~J

- n3 - nz Kt
s(t) = — N (ln.—;kh+r) + kt ) if trr > (n3 - nz)e /a

*
(22) s (t)
0 otherwise,
where, for the sake of simplicity, we eliminated subscript 2 for
transfer time.
The optimal adoption lag is a decreasing function of the transfer
time. Specifically,

d;(t)

at < 0.

(23) -1 <
Inequality (23) states that the adoption lag will pe shortened as
the transfer is delayed but the size of the reduction will be less than
the transfer delay.
Again, notice that the adoption will be hastened, the greater the
(g, — n.) , the smaller the interest rate (r), or the smaller the

3 2
degree of diffusion speed (h).

5) Nash timing equilibria
Using Equation (19) and Equation (22), the possible Nash timing
equilibria can be shown to be as follows. When kx + r < (nl - no)/a R

the optimal transfer time is t = 0. Given t = 0, the optimal adoption

lag is



(24) - o1 _ o . _
s (0) = -+ anl(ny th)/x(h+r)] if  (ntr) > (n, ﬂz)/l
*
s (0) =
0 if (ntr) ¢ty - n,) /a.
When k + r > (nl - no)/a , the optimal transfer time is E .
Given t = t , the optimal adoption lag is
n o~ (n, - =) A
_ .1 3 27 (k * r) . 1 0
(25) s(t) =~ 1 in x ~ %) b+ o if (ktr) < —————— (htr)
£ A 1 o 3 2
s (t) =
0 otherwise.

See Figure 7 for the relationship between the magnitude of k and h,
and the possible realization of equilibria. ©Notice that we employed
(k + 1) x (h + r) space instead of k x h space for diagrammatic

simplicity.
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(k+1) A B

(1v) (I111)

(t,0) (t,s(t)+e)

(1) /______ (11)

(0,0) 0,5(0)) ————

o

45
0 (h+r)

(n3—n2)/a

Figure 7

The slope of line 0A is (m, - nO)/(n3 -

1 ) and that of OB is unity.

™2

In region I, where both the cost reduction rate (k) and the
domestic diffusion speed (h) are low, the transfer and the adoption will
occur immediately, resulting in an equilibrium at (0,0).

In region II, where k is small and h is large, the transfer will
occur immediately and the adoption will occur at some time later,
resulting in a possible equilibrium at (0, ;(O)) .

In region III, where both k and h are large, the transfer will

~

occur at some positive time t , and the adoption will occur at some

later time, resulting in a possible equilibrium at (¢, g(t)+t)
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Finally in region IV, where k is large and h is small, the transter
will occur at E , and the adoption follows it immediately, resulting in
a possible symmetric equilibrium at (E, ;) .

But with the condition h > k as we assumed in (l4), together with
the assumption A4, line OA lies above line 0B. Therefore rezion IV is
excluded and the relevant area becomes the shaded one which is below

line 0B. So the possibility of non-zero symmetric equilibrium is

eliminated.

6) Waiting game problem

In Proposition 1, we have shown that if ; > ;(E) + ; then there
is no Nash timing equilibrium. That is, no firm wants to move first,
resulting in the "waiting game” problem.

A A ~

Since we cannot explicitly compare the size of ; and g(t) + ¢t
(because E is not explicitly determined), we will compare the change
of E and ;(E) with respect to the domestic diffusion speed h, to see
the relationship between the size of h and the equilibrium outcome.

We will write the equation (24) and (25) here again, for

convenience.

- nz)/a(h + r)] if (h + ) > (n3 - nz)/a,

0 otherwise.



(25)  s(t) = - ¢ n

x -
s (t) =

And t 1is such t

where

ae-(k+r)t(e—(h+r)s(t) -1+ fE 2T

(26) Alt) =

\a(e—

CASE 1: Region I
The possible

differentiating (

(27)

if and only if

(ty, = m,) . T, -

2 K is 1
: - n-) %ﬁri r% if (k + 1) < T, = no (h + 1),
o) 3 2

1

1

otherwise.

hat A(t)

1
(o

: L ﬂo)du

+ ft+;(t)e—ru(

‘ n3-n2)du if (k + 1) > (nl - no)/a,

[(k+r)t + (h + £)s(t)]

- 1) + fge-ru(n - no)du

1
t + s(t)
+] e

t

-ru N
- + / .
( [3 7[2) du if k r < (TEl"]E )/(I

II, k and h are large.

equilibrium is at (t, (s(t))) . Partially

25) with respect to h,

(n, = m,) (k + 1)
1 1 3 2 1
h { h in (n

=7 (h+ 1) T htr

} <0,
1
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(28) (k + ) < (ﬁl -1 )/ (n. ~ = )e[_h/(h + r)]
o 3 2

<

(h + r).

Using the implicit function theorem for equation (26), we get

d(t)

(29) ah

> 0 for all h,

which can be derived with the condition A4, (23) and using Leibnitz's
Rule for differentiating an integral with respect to a parameter. (Sece
Kamien and Schwartz (1981: p254)).

CASE 2: Region II; k is small, h is large.

G B LU g s mp/atis D v UG D)
0

if and only if

{-h/(h + )]
e

(31) (h + 1) > (n3 - nz)/a.

Similarly, as in deriving (29), we get
—— > 0 for all h.

In both cases we have shown that 3t/dh > 0 . And the sign of

A A

ds(t)/dh depends on the size of h relative to k.

In Figure 8, the shaded area R represents the set of points where

A A

the sign of 3s(t)/dh 1is negative. 1In the figure, line OA, OB are the



same as those in Figure 8. 1§ 1is such that

%un% - my)/a(h + 1)+ 1/(h + ) =0

where

5s(0) _ .
5 =0 holds.

Notice that (n3 - nz) <ath + r) < (wl - no).

(k+ 1) A B

!
1o / e
a A0
SRR
SR T T N O B
|
i
0 ] AJ i ; ! (h+r)
(n3-n2)/;\'—fﬂ~r
Figure 8

The slope of line OC is (nl - Tro)/(wt3 - wz)e , to which line the

boundary curve for ds(t)/dh = U 1is asymptotic as h increases.

In the shaded area R, as h increases, the adoption lag is

33
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~

shortened, whereas t 1is increased.

Therefore when the degree of the domestic diffusion speed (h) is
high enough relative to the rate of cost reduction for the international
transfer (k), the gap between E and ;(E) + E is getting wider as the

diffusion speed becomes higher. So the waiting game problem can be

caused by a relatively high domestic diffusion speed.
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3. MARKET STRUCTURE AND THE TRANSFER TIME

In this section we will investigate the relationship between the
market structure and the time of the technology transfer. In particular
our question will be "what is the optimal number of firms, if any, which
leads to the earliest technology transfer?”

In order to answer this question we will assume that the firms in
the technology buying industry are Cournot-oligopoly firms, of which
there are n » 1 firms. Initially, the firms in the Cournot oligopoly
have identical linear cost functions that pass through the origin. So
each firm has the same constant marginal cost.

The industry as a whole faces a linear demand function.

(32) P(Q) = b - aqQ, a> o0, b>0,
where P is the market price, and Q is the industry’'s total output.
First, we begin by stating the formulas for the Cournot equilibrium

quantities, price, and firm profits in an industry with different

technologies.

LEMMA 5 If the n—firms use the cost function fl’ cee, fn respectively
where

33 f = c > 0,

(33) 49y 90 9y

then the Cournot equilibrium quantity, price and profits are given by;

(b - (k + 1) c, + Y oc. ] for i € a
Jj€A

0 for i ¢ A ,
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Q = (kb ~ ) <.1,
(k+1)a €y J
* 1 .
P "+ D [b + ; CJ),
£ A
1 2 .
b= (k+ 1) c., + E c.]” for i € A
(k+1) "a jea 3
*
T, =
i
0 for 1 £ A,

where the superscript * denotes the Cournot equilibrium level and will

be omitted later if obvious in the context. The set A is defined to be
the set of firms who actually participate, with a positive output level,
in this Cournot oligopoly game. And k represents the number of firms in

the set A.

The proof of the lemma can be easily verified.

Remark A simple way to construct the set A is as follows.

1) Rearrange the firms with their constant marginal cost

increasing in order, i.e.,
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*
2) Check whether q) > 0 , with firm 1 as a monopolist.

*
If q, € U, then the set A is a null set.

*
1f 9, > 0, then proceed to the next step.

3) Check whether >0 as {1,2} forms a duopoly game.

9
*
If q, <0 then A= {1y .
*
If q, > 0, then proceed to the next step.

*
4) Continue this process until 94 <0 with 1,2,...,1,
*

954 >0 with 1,2,..., i-1,

participating in the game, but

participating in the game, concluding that A = { 1,...,i-1 } .

Suppose initially each firm in the industry is using the current
best technology characterized by the marginal cost c. At time t =0, a
cost reducing new technology, characterized by the size of the marginal
cost reduction € , becomes available for the firms. Throughout this
section the cost structure aqd the market demand are assumed to be
stationary over time except when there is a technical change through the
adoption of the new technology, in which case only the cost function of
the adopting firm will change.

By proposition 1 only one firm will be the transferee of the
technology. Therefore, without loss of generality, suppose firm 1 is

the transferee. Then each firm's cost function is

(¢ - E)qi if i=1,
(34) fi(qi) =

cqy if 1+ 1.



Then immediately from Lemma 5, we get the following lemma.

LEMMA 6

If the cost functions are given by (34) and the market demand

given by (32), then the Cournot equilibrium levels are;

S S
(n+l)a

(b -

c+n e

* 1
a (n,e) = 2a[b - c + €]

N S
(n+l)a

(n+l)a

.
Q (n,e) =

*
P (n,e) =

*
n,{n,e) =
i

(b -

c - €]

{n(b = ¢) + €]

+ ne - ¢},

- €]

[b-c¢c+ n el

c + €]

b - ¢ - €]

+H

H

<,

<,



1 2 2 2
> [n(b - ¢) + 2e (b-c) +(n +1n- e ]
% (nt])” a if e < b - c,
T (n,e) =
4; [b - ¢+ e]z if e > b - ¢,
: [n(b - ) + €]2 e <b-c,
2(n+l)"a
%
S (n,g) =
1 2
— {b~-c + €] e » b - c,
8a
*
where 1) 9 (n,e) denotes the Cournot equilibrium output level of

firm i when the industry is composed of n firms and the new
technology is characterized by the cost reduction size € ,

*
2) T (n,e) denotes the total industry profit, i.e.,

3) S*(n,s) denotes the consumer surplus.
Following Arrow (1962), we will call an innovation with € > b - ¢ a
drastic innovation, and one with & < b ~ ¢ a nondrastic innovation.
Now, to compare the post-transfer equilibrium levels with pre-

transfer levels, set € = 0 . The pre-transfer equilibrium levels are:

39
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* 1 .
qi(n,O) = (Da (b - <] for all i,
* n
Q (0,0) =g (b -l
* 1
P (H,O) = (n+1) [b + nc] )
* 1 2 .
n, (n,0) =————— [b - c] for all i,
* (n+1)”a
* 2
T (n,0) = — [b - cl®,
(n+l)"a
2
*
S (n,0) = —"— [b - K
2(n+l)"a
Remark We can compare the pre—~transfer and the post—transfer
equilibrium levels as follows;
For all n and e > O,
* *
1) ql(n,s) > ql(n,O) ,
* *
2) qi(n,s) < qi(n,O) for all i#1 ,
* *
3) Q (n,e) > Q (n,0) ,

* *x
4) P (n,e) <P (n,0) ,
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* *
5) ) (n,e) > 7, (n,0)
* *
6) ni(n,s) < ni(n,O) for all i#l ,
* *
7) T (n,e) > 1 (n,0) ,
* *
8) S (n,e) > S (n,0) .

Therefore,

% *
W (n,e) > W (n,0),

*

where W (n,e) represents the society's total welfare gain from the
production of the goods, when the industry is composed of n firms and
the maginal cost of production is ¢ - € . That is

* % *
W (n,e) =0T (n,e) + S (n,e).

LEMMA 7 Given a value function V(n,a) defined on the set of integer
N, with a parameter a € R, if the following condition holds for

some strictly increasing function g(n);

(35) V(n,a) > V{n+l, a) iff a < g(n),

then for all a € (g(0), 1lim g{n)), there exists a positive finite
% n>e
integer n (x) which maximizes V(n,a) over n € N.



PROOF: Since g(n) is strictly increasing in n, for all
a £ (g(0), lim g(n)), there exists a unique k € N,
n¥>o

such that

(36) gk = 1) < a < glk~-1 + j)

for all 1 € N ,such that, i < k,and for all j € N.
For such k, by condition (35) and using mathematical induction, it
can be shown that
V(k,a) » V(k=i,a) for all i < k
and

V(k,a) > V(k=-1*+j,a) for all j € N.

Therefore V(k, a) » V(n,a) for all n € N. By the strict
monotonicity of g(n), the condition (36) is equivalent

to g(k-1) < a < g(k). Therefore n*(a) is such that

(37) g(n*(a) - 1) < a < g(n*(a)).

Q.E.D.

PROPOSITION 2
Given a cost reducing technology characterized by the reduction
size € > 0, there is an optimal number of firms n*(e) which leads
to the most rapid rate of technical change. That i% for all ¢ > O,

there exists n*{(e), such that
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* * *
t (n (e), €) ¢t (n,e) for all positive integer n.
Furthermore,
® if b~ ¢ < ¢
1) n*(g) =\ k such that 1 < k < = if 2/7 < g/(b-c) <1
1 if g/(b=-c) < 2/7
2) n*(e) is nondecreasing in €.

PROOF
CASE A: Nondrastic innovation (¢ < b - ¢).
Suppose firm 1 is the transferee of the technology. The firm

expects to have per period profit after the transfer,

(38) nl(n,e) -1 (b=-c+n 5)2 (by Lemma 6).

(n+1)"a

The difference between the profit after the transfer and the profit

before the transfer is

(39) Anl(n,e) z nl(n,s) - nl(n,o)

1 2.2
=——————[€n

5 + 2¢(b-c)n]
(n+l1)” a
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From this we get

(40) Anl(n,a) > A nl(n+l, g),
if and only if,

g/(b-c) < (2n2 + 2n - 2)/(2n2 + 4n + 1).

Define g(n) = (2n2 + 2n - 2)/(2n2 + 4 nt 1), and notice that
g(n) is strictly increasing in n. Now we can use Lemma 7 to
conclude that for all 0 e b= c¢c, there is a unique finite
number n*(e) which maximizes Anl(n,s) over n.

Therefore we can conclude that there is a finite number of
firms in the industry given by n*(e), which leads to the earliest
technology transfer.

Actual n*(e) is determined by the inequality
* *
(41) gn (e) = 1)) < e/(b-c) < gla (e)).

CASE B: Drastic innovation (g » b - ¢);
By Lemma 6, per period profit for the firm after the transfer

is given by

1

-c +
a[bC E])

(42) nl(n,s) =

4~

which is independent of n, since the firm will become the monopolist

after the transfer. Before the transfer the firm has profit given



by

1 .2
Ty [b-c]

(43) Tcl(n,O) =
(n+l)"a

which is strictly decreasing in n. Therefore Anl(n,s) is strictly
increasing in n. So the time of the transfer will be earlier when
the market is more competitive.

Q.E.D.

So far we have discussed the technology transfer time, when firms
are non-cooperative Cournot competitors. We will compare this with the
cooperative outcome where firms collude by making a cartel. And we will
also compare these with the socially optimal time of the transfer where
the consumer surplus should be also included in the consideration.

We need the following notations.

*
t p ¢ the transfer time determined by non-cooperative firms.
*
t oG the transfer time when firms collude.
*
t g ¢ the socially optimal transfer time.

PROPOSITION 3. When firms collude the transfer will be delayed and

the socially optimal time of transfer will be earlier than the one

determined by either collusive or non-collusive firms, i.e.,



. X .
t <t <t .
s P c

PROOF: We will show only the nondrastic innovation case, since
the proof of the drastic ianovation case is just similar to that of
nondrastic innovation case except tor the fact that after the
transfer of the drastic innovation the transferee of the technology

will become the monopolist in the industry.

From Lemma 6, firm l, which we assumed to be the transferee of the

technology, will have a profit increase given by

(44) Anl(n,e) S S [2n(b-c)e + nzgz].

(n+l)~a

The industry's total profit increase due to the transfer is

(45) Mi(n,e) = ——5— [2(5 - e + (a° + n=D)e’].
(n+l)"a

Therefore, we have

(46) Anl(n,e) > All(n,e) for all n > 1.

The increase in consumers' surplus due to the transfer is

1

2

2(n+tl)“a

(47) AS(n,e) = 2n(b-c)e + ¢°}.



The social welfare increase due to the transfer is

(48) AW(n,e) = All(n,e) + A S(n,e)
1 2 2
=—————[ 2(n + 2)(b - c) e+ (2n" + 2n - 1)e"].
2
2(n+1)"a
So we have
(49) AW(n,e) > Anl(n,s). for all n.

Combining (48) and (49) we get

All(n,e) < Anl(w,s) < AW(n,e) for all n.

Therefore we have

*
X

% ,
t <t < ¢t.
S p
Q.E.D.
VI. CONCLUDING REMARKS

A firm in a technology receiving country has alternative choices

regarding the adoption of a new advanced technology. One is buying the
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technology from a foreign seller, paying a higher international
technology transfer cost and expecting a higher profit stream until the
other firms adopts it some time later. The other choice for the firm is
to wait until some other firm buys the technology and then adopt the
technology domestically, paying lower domestic adoption cost and
expecting lower profit stream.

In our two-firm Nash competition model, our analysis discloses
that, in some situations, such as the intra—-industry diffusion effect
being strong enough, there may not exist an equilibrium.

A necessary condition for a firm being able to be a domestic
adopter is some other firm's buying the technology from a foreign seller
at some earlier time. If the domestic diffusion speed is high enough,
the domestic adoption follows the international technology transfer too
soon to allow a sufficient profit opportunity for the international
transfer to occur. Therefore each firm prefers being a domestic adopter
to being the international transferee of the technology, resulting in a
socially inefficient "waiting game problem”.

In order to correct the problem, the government can lengthen the
adoption lag by protection of the leader for a specified period of
time. But this policy will lead to another kind of inefficiency, which
is the supression of otherwise beneficial technology diffusion in the
industry.

Another policy measure for the government is to designate a
specific firm to be the leader. This can be done by alternating leader

designation for different technologies, or by compensating the



designated firm with some subsidy plans.

In the last section we investigated the relationship between the
market structure and the timing of the technology transfer. 1In our n-
firms Cournot output competition model, our analysis discloses that an
intermediate market structure, one that is neither monopolistic nor
perfectly competitive, is most conducive to rapid technical advance.
The exact number of firms depends on the size of cost reduction by the
new technology relative to the market demand.

We also found that the socially optimal time of the transfer is
earlier than the private optimal time. Furthermore, the transfer time
with collusion is later than the transfer time without collusion.

Changing or relaxing some of the assumptions on the profit stream,
technology transfer cost, adoption cost, commodity production cost and
market demand will make the models richer. One could also consider the
case in which there are more than two firms or more than two

technologies available.
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