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"Price Adjustment Speed and Dynamic Duopolistic Competitors”
by
Chaim Fershtman and Morton I. Kanmien

Introduction

Some sixty years ago, G. C. Evans (1924) proposed a dynamic model of
monopoly in which a single seller sought to maximize profit over an interval
of time and in which demand was a function of current price as well as its
first derivative with respect to time. The relationship between the quantity
demanded at each instant of time and the product's current price and its first
time derivative was supposed to be linear while the cost function was assumed
to be quadratic with respect to the quantity produced. There was no
discounting of future profits in this formulation. After some rather
complicated calculations, in order to avoid explicit use of the calculus of
variations which he regarded as a rather exotic methodology, he found that the
particular solution to the derived second order linear differential equation
in prices was exactly the static "Cournot monopoly price” when the time
derivative of price was absent from the demand function. Moreover, he
observed that this was the only asymptotically stable solution as the time
horizon was extended to infinity. Thus, he had found a dynamic formulation of
the monopoly model that yielded the static monopoly price as its stationary
state.

Shortly thereafter his colleague Roos (1925) extended Evans' model to the
case of duopoly under the same assumptions regarding the demand function, the
cost function, and the discount rate. The duopolists were supposed to be
identical and to behave according to the Cournot zero conjectural variation
assumptions. Roos found too that the symmetric stationary solution to this

problem yielded exactly the same price as the counterpart static Cournot price



when the time derivative of price did not appear in the demand function. A
further generalization of the Roos model in which non-zero conjectural
variations were allowed was conducted by Smithies and Savage (1940).

The interesting feature of the Evans—Roos formulation, of course, is that
it yields the static Cournot solution as its stationary state. For the
stationary-state of a dynamic model describes the persistent characteristics
of the economic situation being studied rather than its transitory ones. Now
a major justification for the employment of static models of analysis is
precisely that they focus on the persistent features of the economic situaion
under study and ignore the transitory ones. Indeed, it is implicit in static
analysis that transitions are regarded as taking place instantaneously. Thus,
it is an important achievement when it can be shown, as in the Evans-Roos
model, that the stationary state of a dynamic model coincides with the static
analysis of the same economic situation.

The Evans—Roos model was formulated and analyzed long before the
development of optimal control theory, dynamic programming, game theory, and
the theory of differential games. Analysis of dynamic oligopoly models
employing the theory of differential games have been conducted since then——see
Simaan and Takayama (1978), Case (1979), and the references cited by him as
well as the references provided in the survey papers by Clemhout and Wan
(1979), Feichtenger and Jorgensen (1983), and Reynolds (1984). Fudenberg and
Tirole (1983) provide a review of recent works on dynamic models of oligopoly
involving the use of supergames and games of incomplete information as well as
differential games. .

In this paper we analyze a dynamic duopoly model similar to the Evans-
Roos model., The analysis is carried out by employing a differential game

framework that allows us to capture the dynamic structure of the game, A main



emphasis of the paper is to investigate the relationship between the
equilibrium of the dynamic game and the static Cournot equilibrium.

In discussing dynamic duopoly there are two major strategy sets that can
be considered. The first is the open-loop strategies in which the players
choose a path of action to which they commit themselves. In this case players
cannot condition their actions on state variables that will be observed. In
Roos's analysis only the open-loop strategy set was considered. The second
possible strategy set is the closed-loop strategies in which each player
chooses a decision rule that specifies his actions as a function of the state
variables as well as a function of time. Thus, the closed—-loop strategies,
although more complicated to analyze, are more appropriate to use in the
investigation of dynamic interaction among firms. Moreover, the Nash
equilibria in open-loop strategies are usually not subgame perfect while the
closed-loop strategies we discuss in this paper constitute a subgame perfect
Nash equilibrium.

One of our main concerns is to examine the Cournot equilibrium in light
of our new finding about the dynamic game. In order to carry out this
investigation we incorporate a speed of adjustment term in our formulation of
the price equation. When this speed of adjustment is infinity price converges
instantaneously to the price indicated by the static demand function and the
structural dynamic aspect of the game disappears. In this case the game is
similar to the repeated Cournot game in its continuous time version. We
denote this game as the "limit game” and investigate the open-and closed--loop
equilibria of this game. Our most important result in this investigation is
that the Cournot equilibrium price is the limit of the open—-loop equilibrium
while the closed=-loop equilibrium price converges to a price below the Cournot

equilibrium price. This result is especially surprising since the open—loop



equilibrium is not subgame perfect whereas the closed~loop equilibrium we find
is. 1In order to understand this result and its relationship with the
traditional analysis of oligopolistic competition we elaborate on the
different meaning of subgames. While in the regular analysis of a repeated
Cournot game a subgame is a game that starts at a later period in our
formulation it is a game that starts at a different (date, price) pair. Thus,
the consistency property of the open-loop equilibrium is sufficent to obtain
subgame perfection only under the previous definition of subgame but it is not
sufficient for subgame perfection in our formulation. Moreover, the
equilibrium strategies that we find are decision rules that specify the output
rate as a function of price while the Cournot equilibrium strategies are just
output rates and do not specify the players' strategy out of equilibrium,
i.e., if the players observe a price different than the equilibirum price.

The intuitive reason for the difference between the open-loop and closed-
loop stationary state Nash equilibria is that in the formulation of its
closed-loop strategy each rival takes into account the optimal reaction of its
rival to a change in the state variable while in the formulation of an open-
loop strategy it does not. The stable equilibrium closed-loop strategy, in
the problem we analyze, is an increasing linear function of the state variable
price. Thus, each firm will decrease its output when price decreases. Let us
see what taking the rivals' reaction to a decrease in price into account means
in terms of a firm's output decision. If a firm ignores this reaction by its
rival and simply makes the Cournot assumption that its rival's output will
remain at its present level, then it will make its output decision on the
basis of the residual demand curve it faces. If, on the other hand, it takes
its rival's reaction into account, it will know that as it expands its output

and causes prices to fall, its rival will contract its output. Thus, its



movement down its residual demand curve will be offset somewhat by an outward
shift of its residual demand curve as its rival contracts its output. This,
of course, will cause the firm to optimally expand its output beyond the
optimal level when its rival's reaction is ignored. As both rivals will take
each others' optimal reaction to a change in price into account in the
formulation of their closed-loop strategies, the equilibrium output will be
greater than in the equilibrium of the open-loop strategies where rivals'
reactions are ignored.

In the first section we pose the duopoly differential game as one in
which each firm seeks to maximize the present value of its profits over an
infinite time horizon subject to a state equation describing the movement of
the price of their common product. We then define the open—-loop and the
closed-loop Nash equilibria of this game. In the second section we derive the
open—loop Nash equilibrium of this game and characterize its price path
through time. We also find the unique stationary open-loop equilibrium and
prove that it is below the Cournot price and we then show that this
equilibrium posses the global asymptotic stability property, i.e., all the
equilibrium price paths that start at different initial prices converge to
this stationary equilibrium. In the third section we derive the subgame
perfect closed-loop Nash equilibrium of this game. We show in fact that there
are two equilibria, a stable one and an unstable one. We study only the
stable one and characterize its price path through time. In this case too we
show the existence of a stable stationary closed-loop equilibrium and prove
the existence of the global asymptotic stability property. In the fourth
section we discuss the limit game by letting the price adjust
instantaneously. It is here that we demonstrate that the Cournot equilibrium

price is the limit of the open—loop equilibrium and thus it is not subgame



perfect while the limit of the subgame perfect closed-loop equilibrium is
below the Cournot price. 1In the fifth section we consider the finite horizon
version of this differential game and derive its closed-loop Nash

equilibrium. We then show that the closed-loop Nash equilibrium strategies of
this finite horizon game possess a turnpike property, i.e., they approach the

infinite horizon closed loop strategies as the finite horizon is extended.

1. Formulation and Notations

Consider a symmetric duopoly in which both firms have the cost function
. L) = ' i =
(1.1) c(ul) cu, u,, i 1,2

where u; > 0 is the i-th firm's output rate.

In the traditional static analysis an inverse demand function is given by
p = a - b(u; + up) where without loss of generality b can be assumed to be
equal to one. 1In this paper we assume that prices do not converge
instantaneously to the level suggested by the static demand function but
rather change according to the kinematic equation

(1.2) p =%—E— = s[la - (u1 + u?_) - pl; p(0) = Py

where 9 < s < «» denotes the speed in which the price converges to its steady
state. In other words, a finite s implies that it takes time for the market
to react to changes of quantities., When s = «», the price in the market
converges instantaneously to the price indicated by the static demand function
p =a- (ul + u2)' Thus, the static case can be viewed as a special case of
this formulation. Under these assumptions the objective of each firm is to

maximize its discounted profits



(1.3) Ji = IB e—rt[pui - cuy --% ui]dt, i=1,2
subject to (1.2) and uy 2 0.

In order to discuss this dynamic game it is essential first to discuss
the informational structure, i.e., the information that each player has at the
time it makes its output decision. In what follows we will study two solution
concepts based on different information sets. First we will study the open-—

loop Nash equilibrium for the above game, and second, we will study the

subgame perfect closed-loop Nash equilibrium.

Definition 1. The open-loop strategy space for player i is

= {ui(t)'ui(t) is piecewise continuous and u;(t) € [0,3;] for every t}.

Thus, an open-—loop strategy is a path that the player commits to. The
player's actions in this case depend only on time and not on the state

variable p.

Definition 2. An open-loop Nash equilibrium for the game described by (1.2)

and (1.3) is a pair of open-loop strategies (uf,u;) such that
Sl > dtw ), 1= 1,2
up,u,) 2 ui’uj , 1 =1,

ol
for every u; € S~

Definition 3. A stationary open--loop Nash equilibrium is a pair of stationary

* *
strategies uf(t) = u? and u2(t) =u, and a price p* such that uf,u;

constitutes an open-—loop Nash equilibrium for the game that starts at



p(0) = p* and p* - (a ~ (u; + u;)) = 0,

Definition 4. The closed-loop strategy space for player i is

5, = {ui(t’p)lui(t’p) € [O,Gi], ui(t,P) is continuous in (t,p) and

'ui(t,p) - ui(t,p')|< m(t)'p - p" for some integrable m(t) > 0}.

The closed-loop strategy space is a set of decision rules. At every t

each firm observes the price that exists in the market and choose its output

rate accordingly.

Definition 5. A closed-loop Nash equilibrium is a pair of closed-loop

x S, such that

. ( * *) cs
strategies uy 54, 1 2

gi * % i * . . .
(ui’uj) 2 J (ui,uj), Vui € Si’ i=1,2, j#i

for every possible initial condition (pg,tg).

Dafinition 6, A stationary closed-loop Nash equilibrium is a pair of closed—

* x % * % P
loop strategies ul(t,p) =y, uz(t,p) = u, and a price p such that (ul,uz)

*
constitutes a closed-loop Nash equilibrium and p* - (a - (u? + u,)) = 0.

From the kinematic equation (1.2) we can learn that the game under
consideration has a dynamic structure. The price in this formulation is a
state variable and changes over time according to a differential equation.
Thus, the game does not repeat itself every period since at different periods
the game can start at different p. An important question that can be asked
here is how the equilibrium of this game behaves as s, the speed of price

adjustment, approaches infinity. 1In this case there is no delay in price



adjustment and the price adjusts instantaneously to p = a - (u; + uz). This
description is somewhat similar to the static game that is associated with the
above dynamic game. In this static game the demand function is given by

p=ar- (ul + uz) and the price at the Cournot duopoly equilibrium is given by
*
(1.4) Py =22

The cooperative solution in which the firms maximize their profits jointly is

* 2
(1.5) P . o=3at e
cooperative 5

For the sake of later comparison we define the competitive solution of
the static game as the outcome in a market in which both firms behave

according to the rule marginal cost equals price.

(1'6) pC - —:‘;'_

However, since the game we investigate in this paper takes place through
time it is appropriate to compare it with the repeated game and not with the

one shot static game. This investigation is carried out in section 4.

2. Open-Loop Nash Equilibrium

The open—loop strategies (Definition 1) can be characterized as path
strategies. Each player chooses a path of action u;(t) to which he commits
himself. Neither has the option to reconsider its strategy and change it. A
Nash equilibrium in such strategies (Definition 2) is a pair of paths (or
n-tuple in the case of n players) such that each player's path is the best

reponse to its rival's path. An important characteristic of the open-loop



equilibriuwn is that a pair of open—-loop strategies that constitutes an
equilibrium for the game starting at some initial price pp do not necessarily
constitute an equilibrium for a game that starts at a different price. Thus,
we can conclude that the open-loop equilibrium is in general not subgame
perfect., However, it is important to emphasize that the open—-loop Nash
equilibrium has the consistency property, which means that if (u?(t),u;(t))
constitutes an open-loop Nash equilibrium for a game that starts at pg, then
for every t;, the truncated paths constitute an open-loop Nash equilibrium for
the game that starts at t; and the price that is reached at ty, i.e., ptl.
Nevertheless, it is clear that the use of the closed-loop strategies is much
more realistic since players have the opportunity to observe prices and to
condition their action on the price that they observe. Moreover, the closed-
loop Nash equilibrium that will be discussed in the next section has the
subgame perfectness property. We chose to solve also the open-loop
equilibrium to demonstrate the differences between the open-loop and the
closed-loop equilibria. In particular, when we discuss the limit game in
section 4, it will be shown that the static Cournot equilibrium is the limit
of the open—-loop equilibrium while the limit of the closed-loop equilibrium
yields a different output rate and different equilibrium price. This result

is surprising especially if we note that the open-loop equilibrium is not

subgame perfect.,

Theorem I. There is a unique stationary open—-loop Nash equilibrium for the

above game. The price at this equilibrium is

p* _as + (a + 2c)(s + 1)

(2.1) s + 3(s + r)

and the firums' strategies are given by
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* _(a-c)(s +1) ._
(2.2) Yi TSEFIGE T D i=1,2

Proof. For every given path uj(t) of firm j, firm i faces the problem of
maximizing (1.3) subject to (1.2) and given uj(t). The current value

Hamiltonian of this problem is given by

— — - — 2 - —
(2.3) Hi = pu, cu, ui/Z xis[a (ui + uj) p]

A similar problem of course faces player j. An equilibrium in the market
is a pair of open-loop strategies that solves the two optimization problems

simultaneously. Thus, the necessary conditions for open—loop equilibrium are

(2.4) aHi/aui =p=-c-u - N\s=0, i=1,2

and

(2.5) -X, = ®H./8p =u, - A, (s + 1), i=1,2
1 1 1 1

and the transversality condition for control problems with infinite horizon

implies that the discounted Hamiltonian vanishes as t approaches infinity (see

Michel (1982)). From (2.4) we obtain
(2.6) A, = ————
P - u, s(a - (ui + uj) - p) - u,

. _ i - i
(2.7) A= - 3
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Substituting (2.6) and (2.7) into (2.5) yields

s(a-(ui+u.)-p)-ﬁi P-c - ou
(2.8) S +ui -M“‘S‘- (S + r) =0

The conditions that must prevail at the stationary point are that
ﬁ = ﬁl = &2 = 0. Moreover, since we consider the symmetric case, at the

equilibrium u; = uy = u, these conditions and equation (2.8) imply that at the

stationary open—loop equilibrium the conditions that must hold are

* * *
(2.9) T R_.-..;;.--Ji_(s +1) =0
and
(2.10) a-2a -p =0

Substituting p* from (2.10) into (2.9) and rearranging yields (2.1) and (2.2)

as claimed. 0.E.D.

The above theorem implies that if player j plays the strategy

1]

uj(t) u* the optimal response of player i to this strategy is to play
ui(t) = u*. In this case the price that will exist in the market is p*, which

will remain fixed over time.

Remark . Notice that equation (2.4) implies that at every instance each

player will follow the policy

(2.11) u, +c=p - kis

This rule is the well-known MC = MR, but in this case the marginal revenue

consists of two elements. The price is the instantaneous marginal revenue and



- 13 -

-\is is the long run effect of an incremental change in the output rate.
Thus, this condition equates the marginal cost with the long run marginal

revenue.

Proposition l. For every r > 0, the stationary open-loop equilibrium price is

below the static Cournot price. Only for r = 0 do the two prices coincide.
Moreover, as the interest rate increases, the equilibrium price declines. As
r approaches infinity the stationary open-loop equilibrium price converges to

the static competitive price.

Proof. Substituting r = 0 into (2.1) yields that the stationary open—loop

equilibrium price is

(2.12) p =
which is exactly the Cournot price. Differentiating (2.1) yields

*
(2.13) e—- = - <0

For r » «» it is straightforward to check that the stationary equilibrium price
*
converges to p = (a + 2¢)/3, which is the competitive price (l.6) at which

firms produce at price equal marginal cost. Q.E.D,

The above necessary conditions can be used to find the open-loop

*
equilibrium price trajectory for a game that starts at pg # p .
Theorem 2. The open-loop Nash equilibrium price trajectory is given by

. o « Kt
(2.14) p (t) =p + (pO - p e



where p* is the stationary equilibrium price given by (2.1), pg is the initial
price at t =0, and k| is a negative constant that will be specified below.
Before proving the above theorem, note that an immediate corollary from

this theorem is that the game has the global asymptotic stability property.

The equilibrium price trajectory converges to the stationary equilibrium

price, which does not depend on the initial price po.1

Proof. A detailed proof is long but standard. A proof will merely be
outlined here. Differentiating the kinematic equation (1.2) with respect to t
and substituting in it A, & and u from equations (2.4), (2.5), and (1.2),
respectively, yield that the equilibrium price trajectory must satisfy the

following second order linear differential equation

(2.15) P° + AP + BP = R

2
when P = E—R, and

2

dt

(2.16.1) A=s-r
(2.16.2) B = -s% - 3s(s + r)
(2,16.3) R = -[sza + s5(2¢c + a)(s + 1)]

Clearly, a particular solution of (2,15) is p(t) = R/B which is exactly the
stationary equilibrium price (2.1). ©Note that the roots of the characteristic

equation associated with the homogeneous part of (2.15) are both real--one

1See Fershtman and Muller (1984) for a discussion on the global
asymptotic stability property in open loop capital accumulation games.



positive and the other negative. This is true since B is negative. Then, if
we take the stable solution and use the initial price p(0) = py, the following
trajectory

(2.17) p°(t) = p + (py - ohe

is the open—-loop Nash equilibrium price trajectory where

k, = - 1/2[A + (A2 - 4}3)1/2

1 ] <0 Q.E.D,

3. The Infinite Horizon Closed-Loop Subgame Perfect Nash Equilibrium

The open—loop strategy space assumes that players cannot condition their
actions on the observed price. This restriction is very severe since in a
realistic situation price can be observed and strategies can be contingent
upon the observed price. This is not to say that the open loop-equilibrium is
not consistent. However, if from some reason there is a deviation froam the
equilibrium price path the truncated open-loop equilibrium strategies are not
necessarily (and usually not) equilibrium for the game that starts at the new
price. In order to overcome these two problems we discuss in this section the
equilibrium in closed-loop (feedback) strategies. The closed-loop strategies
(see definition 4) describe decision rules such that each player chooses a
function describing his actions as a function of time and the state variables
he observes. Thus, in this case, players do not commit themselves to some
path and can respond to the different prices they observe., Morever, the way
we define these decision rules makes it clear that they do not depend on the
initial conditions of the game, i.e., on pg. Thus, these decision rules
constitute a Nash equilibrium for every set of initial conditions (po,to), and
the equilibrium is subgame perfect. In what follows we find and discuss the

closed-loop (feedback) Nash equilibrium of our game. We show the existence of
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a unique stable stationary closed loop equilibrium such that for every pg the

equilibrium price path converges to this stationary equilibrium price.

Theorem 3. Let

0 P <1§
*
(3.1) u; (p) = { , i=1,2
(1 - sK)p + (sE - ¢) p>p
where
2 Vi
_r + 6s - é(r + 6s5)° - 12s
(3.2) K = 5
bs
(3.3) g = —ask * ¢ = 2sKe
r - 3s"K + 3s
; 5= C. T SE
(3.4) p =%

Then (uf(p),u;(p)) constitutes a stable closed-loop subgame perfect Nash

equilibirum for the infinite horizon dynamic game under coansideration.

Proof. The proof will be carried out in two steps. First we consider the

case in which P, ?> p. In this case we have an interior solution. Then we

will consider the case P, <p.

Case l. Assume that P, > p. Using the value functions approach the closed-
x %
loop equilibrium strategy (ul,uz) mist satisfy the following Hamiltonian-—

Jacobi-Bellman equation (see S5tarr and Ho (1969)).

(3.5) rvi(p) = x:ax{@ - Oy, - gul + sv;op)[a -p - Gy tu)l}, 112
i

where Vi(p) is the value for player i of the game that starts at price p.
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Note that although in the general case vl is also a function of t and not just
of the state variable under the current formulation the two value functions do
not depend on t. This, of course, implies, as it is shown later, that the
equilibrium strategies are stationary and do not depend on t. The firms'
actions depend only on the observed price. This result can be established by
carrying out the entire proof with Vi(t,p) rather than Vi(p) or by making use
of the discussion which appears in Kamien and Schwartz (1981, p. 238).

Since the right side of the above equation is conave, the u; that

1

maximizes it is given by

*= - —":'L i =
(3.6) u; =p-c st(p), i=1,2

Substituting (3.6) into (3.5) yields

_ _ _ _ gyl _ 1 _ _ gl 2
(3.7) fVi(P) = (p c)lp - ¢ Vps) 7(p c Vps)

i i 3 .
+ Vsla-p- (2p - 2c - sV_ - sV , 1=1,2.
> P P > p)] ,

Equation (3.7) presents a system of two partial differential equations.
By solving this system and finding the value functions (Vl(p),Vz(p)), we can

use (3.6) to find the equilibrium strategies. For every p > p we propose the

quadratic value function
. 1 .
(3.8) Vi) =5 Kp -Ep+g, i=1,2

which implies that
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i _ _ o
(3.9) Vp(p) =Xp-E, i 1,2
Substituting (3.8) and (3.9) into (3.7) yields

1 2 1 2
- + = - -0 -5 + - -0 - + +
3.10) 5 rKip rEip rg, p-p-~-c aKip SEi) 5 p-c sKip SEi)

+ (sKip - sEi)[a ~p-(@p-2- sKip - sij-+ 3E1-+ sEj)], i=12,j#1i

Since the game under consideration is completely symmetric (i.e., the two
firms are identical) we will discuss the symmetric solution. Thus, from now
on we assume that K; = Kj =K, E; = Ej =E, and g; = gy = g Condition (3.10)
must hold for every p, thus K, E, and g must be the solution of the following
system of equations.

1

(3.11.1) -5 rK + 1 - sK —'%(1 - sK)2 + 252K2 ~ 3Kk =0

(3.11.2) rE - 2¢c + sE + 3sKe - (1 - sK)(SsE - ¢) + askK - 452

KE + 3sE = 0
(3.11.3) -rg + c2 - sEc - %(SE - c)2 - saE - 2scE + 2s2E2 = 0.
Equation (3.11.1) can be rewritten as

(3.12) 352K 2

- (r +6s)kK +1 =0

In a similar way equation (3.11.2) can be rewritten as

(3.13) E(r - 3s2K + 3s) + asK - ¢ + 2sKe = 0
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and thus

(3.14) E = —asK + ¢ - 2sKe

r - 3SZK + 3s

Now substitute (3.9) into (3.6) to yield that the strategies
*
(3.15) u; = (A = sKp + (sE - ), 1i=1,2

where K and E as defined by (3.12) and (3.14) respectively constitute a
subgame perfect closed-loop Nash equilibrium for the dynamic game under
consideration. However, since (3.12) is a quadratic equation it has two
possible solutions for K. These two solutions define two possible equilibrium
strategies. In what follows we will show that just one of these solutions is
stable.

Substituting (3.15) into the kinematic equation (1.2) and rearranging

yields
(3.16) p=s[(2(sk - 1) - 1)p +a+ 2(c - sE)]

In order to solve the above first order linear differential equation we
will find a particular solution and then solve the homogeneous part of the
equation.

A particular solution to (3.16) is

- _a+ 2(c - sE)
(3.17) P = 7(1 = sky ¥ 1
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which is the stationary solution of (3.16).

The homogeneous part of (3.16) is
(3.18) p+ s(2(1 - skR) + 1)p =0

Solving (3.18) yields

(3.19) o(t) = cePt

where D = s{2(sK - 1) - 1] and C is the constant of integration. Thus, the
complete solution of (3.16) is

(3.20) p(t) = p + cePt

Substituting the initial conditions p(0) = py into (3.20) yields that
Py = P+ C and C is equal to Po ~ P. Thus, the equilibrium path, which is the

solution of (3.16), is
- -,_Dt
(3.21) p(t) =p+ (p - pe

and can be rewritten as

Dt ) Dt

(3.22) p(t) = p(l — e + Pe

Thus, lim p(t) = p iff D < 0. This means that s[2(sK - 1) - 1] < 0, or that a

tro
necessary condition for asymptotic stability is that
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3

Zs

(3.23) K <

Note that the explicit solution to (3.12) is

r + 6s t //(r + 6s)2 - 1232

632

(3.24) K =

Taking first the positive sign in (3.24) implies that
5 3

(3.25) K >-§§ >-§§

which contradicts (3.23).

Taking the negative sign in (3.24) implies that

3

1
(3.26) K < 55 < 55

In this case XK is sufficiently small to satisfy condition (3.23). Thus,
let K be given by (3.24) with the negative sign. Since the choke off price a
is above P, We can conclude that a > ;. This condition is sufficient for p
(given by (3.17)) to be above B. Using (3.22) we can conclude now that p(t) >

~ *
p for every t. Thus, the equilibrium strategy u; is always positive.

Case 2. P, < 5. In this case the constraint u; > O is binding and thus we
need to make some modification in the proof. In maximizing the right hand
side of (3.5) for p < 5 no interior solution can be reached and the optimal
output policy in this case is u; =0, i = 1,2. However, as (1.2) indicates
when u; = uy = 0 the price goes up. If a < 5, price will go up until it will

be equal to a, but since a < 5 no production will take place. If a > 5, price

will go up until p > 5 and then the equilibrium is the one discussed in
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Case 1., 1In order to establish the subgame perfectness of this equilibrium we
need to define a value function also for prices below p and then to show that
condition (3.5) is satisfied for this value function. When u; = 0, i = 1,2,

1

the price path p(t) can be found directly from the kinematic equation
(3.27) p(t) = p e " + a(l ~ &7°%)

Thus, if at time t the price p(t) is below ﬁ the equilibrium strategies imply

*
ua; = 0, 1 = 1,2, and the price in the market changes according to (3.27). Let

i
E(p) denote the time that it takes for the price to reach the level ﬁ from the

level p. Now for every p < 5 let
(3.28) vip) = & THP) yigpy,

where Vi(ﬁ) is defined by (3.8), be the value function for every p < ﬁ. The
economic explanation of this value function is straightforward. For every p <
; the optimal output is zero and thus profits are zero. The first time that
the firms deviate from zero production level is when price reaches ﬁ, the
value of a game strating at B is already discussed and defined by (3.8).

Thus, the value of the game that starts at p < ﬁ is the discounted value of
vi(p).

Using (3.27), the condition that t(p) must satisfy is
(3.29) p=pe °F +all -e

Differentiating (3.29) yields
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(3.30) So o=
Thus, differentiating the value function with respect to p yields

(3.31) vip) = =X vi(p), i =1,2
p a -
Thus, the suggested value function satisfies (3.5) since for every p <

pu; = 0. 0.E.D.

Corollary 1. From the above proof it is evident that there is a stationary

closed-loop Nash equilibrium price given by

* _a+ 2(c - sE)

(3.32) 2(1 - sK) +1

and the appropriate strategies defined by (3.15). This price is actually the
stationary solution to (3.16) given by (3.17). Thus, if the game starts at
the initial condition p(0) = p*, the closed-loop subgame perfect equilibrium
strategy defined by (3.15) is such that we will not observe any deviation from
this price, i.e., the equilibrium price path is p(t) = p*. Moreover, the

equilibrium price path (3.22) implies that the game has the global asymptotic

stability property, for if a game starts at Py # p* the closed-loop subgame

perfect equilibrium price path converges to the stationary price given by

(3.32).

Corollary 2. As the price in the market increases the firms increase their

output rate.

Proof, The equilibrium strategies are given by (3.1) which are linear

functions of price. The coefficient that multiplies p is given by 1 - sK.
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Using (3.26) we can conclude that 1 - sK > O, Q.E.D.

An immediate corollary of the ahove discussion is that as r > = the
equilibrium price converges to the competitive price. This is true since
(3.2) and (3.3) imply that 1im K = 0 and lim E = O which implies that V; =0,

r>w r>o
*
i = 1,2, The equilibrium strategy in this case (see (3.1)) is u; =p-c, i
1,2, This policy implies that u* + ¢ = p which is identical to the well-known
rule MC = MR, when MR is taken to be the instantaneous marginal revenue and

not the long run marginal revenue. The stationary equilibrium price can be

calculated in this case from (3.32) and is given by

which is exactly the "competitive” equilibrium of the static game in which
firms charge price equal to marginal cost. This result is intuitively
appealing. A very high interest rate implies that the importance of the
future declines. As r approaches ianfinity firms stop taking into
consideration the future effects of their current actions. Thus, the policy
that they follow is marginal cost equal short run marginal revenue which is
equal, under the assumption of this model, to the price. The resultant

equilibrium price in this case is, of course, the "competitive” price.

4, The "Limit Game”: The Dynamic Game With Instantaneous Price Adjustment

In previous sections we based our dynamic game on the assumption that the
speed of adjustment is finite, It is this assumption that makes the game we
consider different from the regular repeated Cournot game even in its
continuous time version, The assumption of finite speed of price adjustment

introduces the dynamic structure to this game., In this section we let s, the
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speed of price adjustment, go to infinity and examine what we define as the
limit game., In this case the price jumps instantaneously to the price
indicated by the static demand functions p = a - (u; + uy) (see (2.17) and
(3.21)), and firms cannot take advantage of the delay in price adjustment,
Thus, under this assumption the limit game is somewhat similar to the repeated

static game——in its continuous time version.

Theorem 4. The Cournot equilibrium of the static game, given by (l.4) is the

—— .

limit of the stationary open-loop equilibrium.

Proof. The stationary open—-loop Nash equilibrium of the dynamic game is given

by (2.1) and therefore when s +» « yields that

*
4.1) limp =2Fc¢

which is identical to the Cournot equilibrium of the static game, given

by (1.4). 0.E.D,

Theorem 5., The stationary closed-loop equilibrium price converges to a price
which is a convex combination of the Cournot duopolistic equilibrium price

(1.4) and the competitive price (1.6).

Proof. The stationary closed-loop equilibrium price is given by

* a+ 2(c - sE)
(4.2) BVICSERS OEE!

From (3.2) it is evident that X » 0 as s » =. Similarly, from (3.3) E » O as
*
s » =, However, in the expression for p , sK and sE appear. Let us denote

B = 1lim sK and y = lim sE. Now, using equation (3.2) yields that
S>> S>rw®
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(4.3) B=1-V2/3>0

Similarly, from (3.3) we obtain that

(4.4) Y =C Z aB = 2cB

Note also from (3.2) and (3.3) that 1lim sK = 8 and lim sE = y. Using (3.22)
r>0 r>0

it is evident that p(t) = p + (py ~ 5)eDT where D is a negative constant which

depends on the parameters of the model. Thus, the equilibrium price

trajectory converges to the stationary equilibrium price. Moreover, as s +» «

or r > 0, the equilibrium price approaches

(4.5) p =2 +32‘£C2g—; ¥)

Substituting (4.4) for y in equation (4.5) and rearranging yields

* _(a+ 2c)( -B8) + 2(a + ¢)
(4.6) p “-’—-—jrj‘:—iﬁ =%

From (1.4) and (1.6) it is evident that pp = (a + ¢)/2 and pp = (a + 2¢)/3.
Thus, the equilibrium price p* can be written as a convex combination of py
and pg such that

x Pg + 2/273 Pp

(4.7) p = ~ Q.E.D.
1 + 2273

L . . s, ox .
Remark. Since pp < pp and p 1is a convex combination of the two it is evident

that p* < pp. Moreover, using Theorem 4 we can conclude that the closed-loop
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equilibrium price of the limit game is below the open~loop equilibrium price
and, since the two prices are below the cooperative price the closed-loop
subgame perfect equilibrium yields lower profits than the open—-loop. Since
the open-loop equilibrium presents the case in which each player commits
himself to some output path and does not condition his output rate on the
observed price it is clear from the above result that the players can benefit

from such commitments.

Remark. Besides the stable equilibrium, discussed above, there is another

equilibrium which is the limit of the unstable equilibrium. This equilibrium
yields a price higher than the Cournot price and the equilibrium strategies

are decreasing linear functions of price.

Before discussing the new equilibrium note that the closed--loop

equilibrium strategies are given by
*
(4.8) u; = 23 p+ (y = ¢), 1=1,2

which describe a pair of decision rules that prescribe output rates for every

price while the open-loop (Cournot) equilibrium strategies are given by

(409) ui ""‘"Z“""" 1=

* a-—-c¢ . 1.2

which describe a pair of output rates independent of p.

It is the difference between the equilibrium strategies that can lead to
a better understanding of the limit game and the repeated static game. While
discussing the dynamic game with a finite speed of adjustment it was clear

that the appropriate strategy space that should be used is the closed-loop
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strategy space. Firms do have the opportunity to condition their output on
the observed price and unless commitment is somehow enforced, firms can
reconsider their strategy and change it. The open-loop strategy set describes
just such path strategies in which each firm commits itself to a path and does
not have the opportunity to change it., In general we can say that the open-—
loop equilibrium, although satisfying a consistency property, is not subgame
perfect. The closed~loop strategy space describes decision rules, not
commitment to some output path, The firms' output depend on the price they
observed. The closed-loop equilibrium that we discuss above is also subgame
perfect. Thus, it is clear that the closed-loop strategies are a more
appropriate description of reality. 1In discussing the limit game it is
therefore obvious that we should choose the limit of the closed-loop
equilibrium rather than the limit of the open-loop equilibrium. However, the
limit of the closed-loop equilibrium price, as given by (4.6), is different
than the Cournot price. If the game starts at this price, i.e., p(0) = p*,
players will play the equilibrium strategies (4.8) and the price in the market
will continue to be p*. If the game starts at any different price, including
the Cournot equilibrium price, the equilibrium price path will converge to

p*. From the above discussion it is evident that the Cournot equilibrium as a
limit of the open-loop equilibrium is not a subgame perfect equilibrium for
the limit game. This result is very surprising especially if we confront it
with the well-known results in the supergames literature in which the Cournot
equilibrium is subgame perfect. However, in order to understand this result
we need first to elaborate on the meaning of a subgame in the two games that
we discuss here, i.e., limit game and supergame. In the supergame framework
the meaning of a subgame is a game that starts at a later period. Under this

definition of subgame it is clear that the Cournot equilibrium is subgame
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perfect since in our discussion about open~loop equilibrium we noted that the
open—loop equilibrium is consistent, which means that for every t; > ty the
truncated output paths constitute an equilibrium for the game that starts at
t;. In the model we consider in this paper a subgame is a game that starts at
(p,t) different than (p,,t,). From this definition the consistency property
is not sufficient for obtaining subgame perfectness. The equilibrium
strategies must also constitute an equilibrium for the games that start at

different prices. The strategies given by (4.6) satisfy this condition.

5. The Finite Horizon Subgame Perfect Closed-Loop Nash Equilibrium

In this section we consider the dynamic game under the assumption of
finite planning horizon. Our objectives are twofold: first, we want to
demonstrate that although in the finite horizon case the equilibrium path does
not converge to a stationary equilibrium the technique used in section 3 can
be applied under some modifications to the finite horizon case. Second, we
will prove that as T approaches infinity, the equilibrium path converges to
the equilbrium path of the infinite horizon game. This property was denoted
by Friedman (1981) as a turnpike property in games. TFor a discussion of
turnpike properties in dynamic games, see Fershtman and Muller (1984bh).

Using the value function approach the closed-loop equilibrium strategies

% %
(ul,uz) must satisfy the Hamiltonian-Jacobi-Bellman equations.

(5.1) Vi (t,p) + 1VH(e,p) = ¥ax{(p -~ Do, -

u,
1

va—l

2 i . . s
uj + sz(t,p)[a -p- (ui + uj)]}, i=1,2, j#1

Notice that the right side of the above expressions is concave., For

*
simplicity we assume that p, is high enough so that there is u; > O that

(o)

maximizes the right hand side of (5.1). In the infinite horizon case we

discuss in detail the relationship between p, and the value function. In this
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section we analyze only the interior solution case in which both firms produce

throughout the horizon. Thus uz that maximizes this expression is given by
(5.2) u, = p-c - sV;, i=1,2
Substituting (5.2) into (5.1) we obtain that
(5.3) Vi(t,p) - rVi(t,p) +(p-c)lp-rc- svi) --% (p~c- sVri))2
+ Vis[a - (2p - 2¢ - sVi - st) -p]l =0, fori=1,2, j#1i.
p p P
As in the infinite horizon case we counsider the quadratic value function
(5.4) vi(e,p) = £ K (0)p? - E (£) p + g (£), 1i=1,2
2 i i i

Differentiating with respect to t and p yield

i l o 2 _ s . .
(5.5) Vt(t,p) -Q-Ki(t)p ui(t)p+gi(t), i 1,2

(5.6) V;(t,p) K, (£)p - E, (t)

where X, = dX,/dt and B, = dE,/dt.
i i i i

Substituting (5.5) and (5.6) into (5.3) yields

s 2
Kip

6.7

o) —~

[] L] 2
-Ep+ g -1k -re + (- -c- + oF,
Eip g ~IXp /2 +-IEip g p-abp-c sKip s l)

1 2
- - - + + - - 2 -
7{p c-sKp SEi) s(X;p Ei)[a 3p +2c + sKp ~ sE; +
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+ sij - SEj] =0, alli=1,2,

Since the game under consideration is completely symmetric (i.e., the two
firms are identical) we will discuss the symmetric solution. Thus, from now

on we assume that K; = Kj =K, E; = Ej = E and g; = gj = 8

Theorem 6. For the game described above, the subgame perfect closed-loop

equilibrium strategies are
*
u, = (1 -~ sK(t))p — ¢ + sE(t), 1i=1,2

where K(t) and E(t) are the solutions of the following system of Riccati

equations.

2¢2 4+ (6s + DK - 1

e
1]

(5.8) -3s

(r + 3s - 3SZK)E + (sKa + 2sKc - ¢)

txie
i}

(5.9)

The solution to this system of Riccati equations will be specified after

proving the above theoremn.

Proof. The proof follows the same method used in proving Theorem 2. lLet g(t)

be a solution of the differential equation
(5.10) £ -rg+c’ - sEe -2 (s - o) - sEa - 2sEc + 25°E% = 0

where E is defined by (5.9). Thus, equations (5.8), (5.9), and (5.10) define
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a triple of functions (K(t), E(t), g(t)) that solve equation (5.7). By making
use of equations (5.2) and (5.6) it is evident that the above strategies

constitute a closed~-loop subgame perfect equilibrium. Q.E.D.

Let a; and ay be the two solutions of the quadratic equation
332K2 - (s + r)X + 1 = 0. Then X(t) = ay and K(t) = ay are both solutions
of (5.8).

Thus, the general solution of (5.8) is given by (see Ford (1955))

- _ _ 2
R(t) a, (a1 a2)3S t

(5.11) mr:—(—{-z-= Ae

Note that by switching ay and ay in (5.11) we obtain another formula for
general solution, Since V;(T,p) = 0 for every p, this boundary condition
implies that at time T, R(T) = E(T) = g(T) = 0. Thus, evaluating (5.11) at

t =T yields

o) -(al—a2)3szT
(5.12) — = Ae
)

which implies that

o (a -a2)352T
(5.13) A=—"rc
)

1

Substituting (5.13) into (5.11) yields that

(al—a2)352(T—t)
e (K(t) - «

R(t) - « )

[}
Ql 133
—

5 2

which implies that
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2
(a, —a.)3s“(T-t)
e (1-e b 2 )

(5.14) K(t) = 1

2
oy (al-az)Bs (T-t)
l - —-¢e

%

After K(t) is known we can solve (5.9) and find E(t). The general solution of
(5.9) is

~f% 135K (2)-r-3s1dr

(5.15) 2(t) = e [c+ [5e

-jg[r+3s—3szK(g)]da

[sak(7) + 2scX(1) - cldx

Using the boundary condition E(T) = 0, we can find C, the constant of

integration

T f8[352K(g)—r-381dg
(5.16) c = -jo e [saK(1) + 2scK(1) - cld=x

Substituting (5.16) into (5.15) yields

—IS[3SZK(g)—r-3s]d§
(5.17) E(t) = -e .

[T13s%R(2)-r-35 148

T e [saX(t) + 2sck(t) - cldx

t

which can be rewritten as
T j:[3s2K(g)—3s—r]dg
(5.18) E(t) = _jt e [saK(1) + 2scKR(t) - cldx

Thus, the closed-loop equilibrium strategies are given by

u:(t) = (1 - sK(t))p + (sE(t) = ), i = 1,2.
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where K(t) and E(t) are given by (5.14) and (5.18), respectively.

Given the above equilibrium strategies for the finite horizon game we
want to find out how they relate to the infinite horizon equilibrium
strategies. Specifically, we want to show that the game satisfies the
following turnpike property: the closed-loop equilibrium strategies for the
finite horizon game tend to the equilibrium strategies of the infinite horizon
game as T approaches infinity. However, note that the closed-loop strategies
are actually functions of prices and not output rates. Thus, we need to
clarify in what norm the finite equilibrium strategies converge to the
infinite equilibrium strategies. Clearly we cannot use the supremum norm
because for every finite horizon problem, end game considerations imply that
the finite horizon equilibrium will deviate from the infinite horizon

equilibrium. Nevertheless, the following turnpike property can be proven.

Theorem 7 (Turnpike Property). For every ¢ and Ty there is T, such that for
every T > T, the equilibrium strategies for the finite horizon game are in €

neighborhoods of the infinite horizom equilibrium strategies for every

0<t<Tye

Proof. The equilibrium strategies of the finite horizon game are given by
NOERE + L= 1,2
u, (t) = sKT(t))p (sET(t) c), i =1,

Note that we deviate here from our previous notations and we write KT(t)
and Ep(t) to emphasize that these two functions depend on the horizon of the
game., For the infinite horizon game the equilibrium strategies are given by

the same expression when K_ and E_ are specified by (3.2) and (3.3),
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respectively. The proof then will be carried out by comparing Ky and Egp with
K, and E_ . Observe that a; and ay are actually the two solutions of the
quadratic equation (3.12) which are explicity described by (3.24). Let a; be
the solution with the negative sign and ap be the solution with the positive
sign. Thus, oy < an. From the discussion in section 3 it is evident that

K, = ay. By investigating (5.14) it is clear that for every g and T there
is Ty > Ty such that for every t < T, 'KT(t) - aI' < g; for every T > Ty.
This is true because for any given t < T, KT(t) > a; as T » =, Now compare
equations (5.9) and (3.3). <Clearly, for the same value of X, (3.3) describes
a particular solution of the differential equation (5.9). From the continuity
of these equations and from the above discussion it is long but rather
straightforward to prove that for every €5 and Ty there is Ty > Ty such that
for t < Ty, lET(t) - Ewl { ey for every T > Ty. Clearly, by choosing g and
€9 to be sufficiently small, we can find such Ty that the equilibrium
strategies for the finite horizon game will be in the & neighborhood of the

infinite horizon equilibrium strategies. Q.E.D,

An immediate corollary of the above theorem is that the same turnpike
property holds for the price equilibrium path, i.e., the price equilibrium
path of the finite horizon game tends to the price equilibrium path of the

infinite horizon game as the horizon approaches infinity.
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