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A STOCHASTIC MODEL OF PERSUASIVE COMMUNICATION

ABSTRACT

This paper considers an information system involving a communicator
who is interested in influencing a given decision maker's behavior through
persuasive messages. For motivational reasons we first analyze a specific
problem in a marketing context and then provide a general framework later.
A source communicates a message repeatedly through a channel so as to
persuade a subject to purchase a product. In this dynamic process a
subject goes through exposure, comprehension, acceptance and purchase
states. The state transitions are described by a semi-Markovian process
which is nonstationary due to the subject's learning during revisits.

Thus the probabilities of transitions to higher states and the times taken
for such transitions improve with the number of transitions. The model
facilitates analysis of transient and steady state behavior. Some
measures of effectiveness of the communication are provided in order to

compare different competing systems.






A STOCHASTIC MODEL OF PERSUASIVE COMMUNICATION

by
V. Balachandran and S. D. Deshmukh

1. INTRODUCTION

This paper considers an information system involving a communicator who
is interested in influencing a given decision maker's behavior through persuasive
messages. For motivational reasons we first analyze a specific problem in a

marketing context and then provide a general framework later.

In media scheduling, a source repeatedly communicates a message through
a channel to an audience with the final objective of persuading the audience to
purchase a certain product. From the time a subject is exposed to the message
till he makesa puchase he goes through a sequence of intermediate information
processing states. His movement among these states through time is governed by
a stochastic process. Thus it seems logical to represent and analyze such a
persuasive communication process in the dynamic probabilistic framework. Further,
in any given state, the subject not only decides probabilistically to move to
some other state but also requires some random amount of time to make that
decision. Moreover, it is realistic to expect that when he revisits a state
a certain amount of learning has been acquired since his last visit and that this
learning may lead to an improved chance of his moving closer to the final pur-
chase state with a possible decrease in the time required to reach that state.
Incorporation of these considerations leads to a non-stationary semi-Markovian
model, which is described in Section 2.

Effectiveness of a communication depends on characteristics of the source,
the channel and the audience. A professional expert or a trustworthy person
may make a credible source yielding an effective communication (Hovland, Janis
and Kelley [3], Jhonson and Watkins [7]). A video channel is likely to be

more effective than an audio one. The demographic and personality characteristics



of the audience affecting communication seem to have been studied more
exhaustively by (McGuire [8]). A detailed review and excellent bibliography
is provided by Sternthal [10]. 1In Section 3 we provide some quantitative
measures of effectiveness of the source and the channel in communicating a
message, so that, for an audience of given characteristics (assumed to be
homogeneous and fixed) one may be able to compare abilities of different sources
and channels in persuading the audience. One such measure is the average amount
of time a subject requires before making a purchase, another criterion is the
average amount of profit per unit time accruing due to such communication, while
a third one is appropriately weighted average proportion of the audience found
in each one of the information processing states per dollar invested in operat-
ing the system.

In the last section we give a general conceptual framework for analyzing

persuasive communication as an explicit compounent of any decision-maker's problem.

2. THE MODEL

The model proposed here is based on the initial work of Hovland. Janis and
Kelley {3] and McGuire [8], which was later applied to marketing by Howard and
Sheth [6], Engel, Kollat and Blackwell [2] and most recently presented by
Sternthal [10] and Howard and Ostlund [5].

Given that the source emits a message through the channel it is necessary
for communication that the subject be exposed to this message. Whether the
subject is in this "exposure" state or not can be identified by observing his

presence or absence. Due to existence of multiple stimuli he is usually selective



in his exposure to each. For example, if his initial opinion about the message
is favorable or if the message is novel and useful the probability of his being
exposed to it is high. Similarly his education and self confidence also

affect the selectivity of messages he chooses to receive.

Given that the subject is exposed, he either comprehends the message or
becomes a candidate for further exposure. Between the exposure and the com-
prehension states the subject needs to go through the arousal and attention
phases (see Sternthal [10]). Though good arousal and attention are necessary
for comprehension, they are operationally difficult to measure, while comprehen-
sion can be measured by aided or unaided recall tests. Hence we will unify
these into a single state to be called as "comprehension'. Many factors such
as the rate of communication and the degree of organization of the message affect
comprehension.

Once the subject comprehends the message he either accepts or rejects it,
which can be measured on an agreement-disagreement rating scale. Evidence
suggests (McGuire [8]) that, if the subject rehearses thoughts consistent with
the message received the message is likely to be accepted, while if he counter-
argues it then he becomes a candidate for further persuasion through exposure.
If he accepts the message we will define him to be in the '"acceptance' state.

Given the subject in the acceptance state he may decide to purchase the
product (and thus enter the ''purchase' state) with certain probability; other-
wise, he becomes a potential receiver of further communication.

Finally, even if he purchases the product at this time, he remains brand
loyal only with a certain probability. If he changes his mind then he becomes
a subject for further persuasion. Thus, it is not enough just to make sure

that the subject accepts the message and makes a purchase, but this should be
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reinforced by continued communication.

The following notation will be used for the rest of the paper. Let the
exposure, comprehension, acceptance and purchase states be indexed by i = 1,2,3 and
4 respectively. Let Y(t) denote the state of the subject at time t ¢ [0,=)
and let J(n) be the state immediately after the nth transition, n = 0,1,2,...
It is natural to assume that the subject starts at time O in the exposure
state, so that Y(0) = J(0) = 1. Denote by Xn the time between the (n-l)St
and the nth transition; for example, given that the subject has comprehended
the message (i.e. J(n-1) = 2), he takes a random amount of time Xn to decide
whether to accept it or not (i.e. J(n) = 3 or 1). Let Mi(t) denote the
number of visits made to state i in [0,t] and let M(t) be the vector
(Ml(t)""MA(t))' Similarly, let N(n) = (Nl(n)”..,wfn)) be the vector of

the number of visits Ni(n) to state i in n transitions. (Note that

P

M(0) = N(0) = (1,0,0,0) and Ni(n) = n+l).

1

o

i
The subject’'s learning process through time is reflected in the dependence of

various probability distributions or N(n) as described below.

p; (N,) = PriJ(ntl) =i + 1 | I = 1, Nm =Nl 1< i3

(2.1)

P (N,) = Prli(atl) = 4 | J(n) = 4,N,(n) = §,]

where pi(Ni) is monotone non-decreasing in Ni (and hence has a limit as

N - o). Thus, in any state the probability of success (i.e. moving to a next
1

higher state) increases with the number of visits made to that state, indicating
the learning process induced by the persuasive communication. For i = 1,...4,

(1 - pi(Ni)) is then the probability of going back to state 1 and thus being

a candidate for exposure once again. The state transition probability matrix



for the embedded Markov chain at the nth transition, given N(n) = N, can

then be defined to be P(N) and its limit P as N -+ = as follows.

1 - p, (N Py (M) 0 0

L - p,(N,) 0 Py (N,) 0
(2.2) PV = i

1 - py(Ny) 0 0 p3(N3)%

1 - p, (N,) 0 0 P, (N,)

|

(2.3)  p; = lim p,(N), 1<ig<4, P=1limP(N)
N i—»m N

It is realistic and more interesting to assume that P < 1 for all i, so
that, even in the 1limit, communication is necessary to persuade the subject to
make a purchase, i.e. the purchase state is not absorbing in P. Thus, as

N; =, every state stays recurrent and Mi(t) *ee 1<i<é4 as t-+e, In
the limit the subject has learned as much as possible and there is no further
learning, i.e. revisits to the states do not affect his decision process and

hence the transition probabilities. The intertransition times have distributions

defined as follows. Let

2.4) Hi(t t Ni) = Pr[Xn+1 <t \ Jmo)= i, Ni(n) = Ni], 1<i<bé,

which is assumed to be monotone non-decreasing in N and hence has a limit

as Ni -2 e, Let
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(2.5) Hi(t) = lim Hi(tiNi) at all points of continuity of Hi(- ).
N.?e
i

Thus the time required by the subject to make a decision decreases stochastically
as his experience of being in that state accumulates. Let ui(Ni) be the

corresponding expected amount of time, which is non-increasing in Ni-

224
(2.6) p, (W) =o“r £dH (elN), T<i<h
2.7) by =jt dHi(t) = lim “i(Ni)’ 1<i<é
0 N A
1

It is assumed that Wy > 0, so that even after the subject is saturated with
experience his decision process is not instantaneous. (Technically, this
assumption is necessary to avoid the possibility of infinitely many transitions
in a finite amount of time).

It should be noted that pl(Nl), Hl(tiNl), Py and Hl(t) are more influenced
by the source and channel than the other pi(Ni), Hi(tﬁNi) etc., which depend
mainly on the audience characteristics. The first proposition examines the
transient behavior of the embedded Markov chain., Here T(n) = (Hl(n),...ﬂa(n)),
where Hi(n) is the probability of the subject's being in state i at the

end of the nth transition.

Proposition 1 Given TI(0) = (1 0] 0] 0),

E(N(O) = (1 0 0 0) and
E(P(N(0))) prespecified,

for n=1,2,... the following recursion relations hold.

(2.8) Tm) = T-DE[PWN{(n-1))]



(2.9) E[N()] = E[N(n-1)] + Ti(n)

4
(2.10) E[P(N())] = E[PM(-1)1+ = {1, ()E[p, (N, (1-1)+1)-p, (N, (a-1)]8,}

i=1

101 0 o0 _j 0 0 0 07

o 0o o o 1 0 1 0 %

vhere B = o o 0 o0 B 0 0 o o
0 0 0 0 _ 0 0 0 o0

S0 0 0 0 0 0 o0 o 7

o 0o 0 0 o 0 o0 o |

%7 -1 0 1 0 T O 0 0 0

proof: Given N(n-1), M(n-1) and P(N(n-1)) we have I(n) = H(n-1)P(N(n-1))

so that (2.8) follows. Also, given N(n-1), N(n) N(n-1) + e,
with probability ﬂ(n-l)Pi(N(n—l)) of visiting state 1 next, where
Pi( ) denotes the ith column of the matrix and e, is a vector
of all 0's except 1 in the ith place. Hence
E[N(n) {N(n-1)] = N(n-1) + [[(n-1)P(N(n-1)) giving (2.9). Finally,

4

5 [T(a-1)PF (N(n-1))]P(N(n-1) + e,)
i=1

E[P(N(n)) |N(n-1)]

o~

LlHi(n)P(N(n-l) +e)

i
while P(N(n-1) + ei) = P(N(n-1)) + [pi(Ni(n—l) + 1) - pi(Ni(n-l))]Bi

yvielding (2.10) Q.E.D.

The communicator is interested in knowing the probability that the subject

is in a specific state at some time in future given his state and the learning



experience at present instant, say T. Define

(2.11) Qij(tiN) = Prob[Y(T+t)=j|Y(t)= i, M(T) = N. M(T ) = N - e,]

Thus, Qij(t]N) is the probability of the subject being in state j t time
units from now, given that he has just entered state 1 and that his cumulative
experience is summarized by the number of visits vector N. Since every state

stays recurrent, we know that 1lim Mi(T) = o with probability 1, for all i.
T-H0

Then, with M(t) = (»,...®) we may define stationary probability in the long

run by

(2.12) Qg (t) = Prob[¥(t) = ilY(0) = 1]

Finally, the steady state probability (which will be shown to exist) may be

defined by

(2.13) gy = Q= LlimQ (¢) l<ic<b

We shall use a convention that 1+ 1 =4 if i = 4 and 6ij= {

Proposition 2

t
(2.14) (@ Qg (ei® = [ I (N)Q ) ((exiN + e )
0

+[1 - Pi(Ni)]QU(t'X‘N + e HAH, (x{N) + 6. 1 - H (£[N)]

j[

t
(2.15) () Qg (v) = {piQi+1,j(t-X) 11 - py oy (e-0)
0

dHi(x) + éij[l - Hi(t)]
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(2.16) (c) aq; = “1/p, q, = P42 /p, ay = PPyt a/p, q,= P1P2P3s

where D =u_. + p i, + p.pu, + PPoP3iy
1 172 17273 =
(1 - pa)

(1‘P4)D

Proof: (a) and (b) follow by first conditioning on the time of the next

transition out of state 1 and the next state entered and then

unconditioning. If 1 = j, the probability of not leaving i by t must

be added to this.

To prove (c) define the Laplace-Stieltjes transform of a function

~

F(.) by F(s) = [ e ""dF(t). From (2.15) we get
0

~

Qu;(8) = PyQyyy 5 ()M (8) + [1-p; 10 ()H; () + 6, [1 = H ()],

Solving this set of equations and using the well known fact that

lim F(s) = lim F(t), yields (2.16), which is q. = Hjuj/ s T
sS40 e J -~'ﬁi’
i=1

where (Hl,...H4) =1 is the vector of steady-state probabilities

in the embedded Markov chain with transition matrix P satisfying
4

T =1P and 7 Hi = 1. It turns out that
i=1

mo=[1+ + ( ) 17 = pomy, 1, =

1 PPy ™ (P PyP3 /(1-p,)" 7 2 T P11y M3 T PiPoty and
n = A
Yy T PyPoPy 1/ (1-p,). Q.E.D.

It is also of importance to the communicator to know the distribution of

the time the subject takes to make a purchase since he is exposed.

In general,
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define rij(N) the random variable denoting the time at which the subject
reaches state j for the first time given that he has just entered state i
with his experience vector N. Let the corresponding distribution function

and expectation be

IA
v
L
A
s

(2.17) Fij(t}N) = Prob[rij(N) < t] 1

(2.18) uij(N) = E[rij(N)] 1

IN
.
—
IA
~

In steady state let r. ’F'j(t) and uij be the corresponding values as

Ni + o for all i.

Proposition 3

t
(a) Fi,i+1(t1N) = - Pi(Ni)]F1j+l(t-xlN+el)dHi(xlN) + pi(Ni)Hi(th)
0
, t
(2.19) Fi}l(t{N) = f pi(Ni)Fi+l’l(t—xiN+ei+l)dHi(xlN) + [1'pi(N1)]Hi(tiN)
0
t
Fij(t\N) = [Pi(Ni)Fi+l}j(t—X\N+ei+l) + [1-pi(Ni)]Flj(t-x|N+el)]dH§ﬂN)

0

if j # i+l or 1

(b) “i,i+1(N) =p, (N + (1 - p; (N1 “1,i+1(N + e)

(2.20)  uy (M) = u V) F R (e (N e )
= + -
by =0 N+ [1opy (9 Ty (ke ), (N))
+ if ] i+1 1
ui+l,j(N ei+l) if j#i or

(c) F..(t) and uij satisfy expressions (2.16) and (2.17) respectively.
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Proof: (&) The event of going from i i+l for the first time in time ¢
can be realized by either making the next transition to i+l at time ¢t
or by making the next transition to state 1 at time x and then
going to (i+l) for the first time in the remaining time (t-x).

Similar argument yields the other expressions in (2.19)

(b) The average time required to go from i to (itl) 1is the sum of
the average time spent in 1 before making a transition and the average
time required to go from the new state to i+l for the first time.

Other equations in (2.20) follow similarly.

(c) follows similarly.

Solving (2.20) vyields 14 the average amount of time the subject

requires in the long run to make a purchase since being exposed to the message

_ ! o k3

W, =
14 pipyPy PyP4 Py

(2.21)

Similarly, it can be shown that the average time between successive purchases

b, and the average time between the subject being available for exposure M1

are given by

4
= 1 = -
(2.22) w,, izluiui/UA g t (1 - Py,
) 4 P1P2P3
. = 71, = U, T p, t PZETYEY

where [, 's are as in (2.16).

1
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In the above definitions of P(N), Hi(tINi),Qij(tiN) and Fij(th) we
have incorporated learning through the subject's experience descril:ed by N
to influence his behavior pattern. Such a behavior pattern has a transient
and a steady state component, where the latter has been analyzed above.
In the short run we are interested in the transient behavior, which can be
studied using geometric transform methods. For example, from (2.14) upon
taking the Laplace-Stieltjes transform we get

(2.24) Qij(S}Nl,...Nq) = [pi(Ni)Qi+1)j(s\N1,...Ni+1,...N4)

+ {1 - pi(Ni)]QU(s‘N1+l,...N2,...N4) - éij]Hi(s\Ni)

~

To analyze the behavior of Qij(s}N .N4) as Ni(i = 1,...4) increase in

17

integral steps we may define its joint =z-transform (Howard [4])

® . N1 N2 N3 N4
‘ = - < : !
Qij(slzl’22’23’24) NEEE Qij(s le"'N4)21 2y 23 2 where ]zi\ < 1,
N4-0 N,=0
1
i =1,...4. Such a transform facilitates analytical manipulation resulting in

explicit identification of the total behavior as a sum of the transient and
steady state components. (For an excellent discussion and examples see Howard
[4].) However, inspection shows that taking transforms in (2.24) requires
definition of transforms for products of general functions, for which usual
techniques do not apply. Thus in a“sence of the closed form analytical solution
of the transient behavior we resort to simulation techniques.

The recursive computation of the probabilities {Qij(th)}, for example,

can be carried out utilizing the following algorithm.

Step 0: (Initialization). Let Q (OiN) = 6ij for all N. Store all pi(Ni)

ij

and the inverse of Hi(' lNi) for all Ni = O,l,...NmaX and i = 1,...4.
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(Such inverse functions for standard distributions are available in

many simulation packages.) Let L =0, T = 0,

Step 1: Let N=(1000). T =T+ AT. (where AT is a small discrete time

step.) If T > Tmax then go to step 7.

Step 2: Starting with i = ] and increasing it by 1 till i = 4 repeat the

following steps.

Step 3: Given i, repeat the following steps for Ni = O,l,...NMa .
X

Step 4: For each j = 1,2,...4, repeat the following steps.

Step 5: Generate a random number Tr<[0.1] and find the corresponding deviate

-1
X =H, (r!Ni). If x> T then set Qij(TlN) = 6ij for all j. Let

Ni==Ni+l and repeat step 5.

Step 6: Since x < T, use the same r to check if r < pi(Ni)' If so then
set k = i+1, else set k = 1. Then
IN) = I-x ;
Qij(t\N) = ij(T [AT ]ATlN + ek), where [y] denotes the integral

part of y. 1If all i's. j's and Ni's have been considered, then
T=T+AT. If T > Tmax go to step 7 otherwise go to step 2. Else

go to the relevant step 3 or 4.

Step 7: Set T =0, L=L+ 1., If L = Lmax, go to step 8. Else go to 1.

Step 8: For i,j=1,...4, T=0,...T, ., N-= 0,...N,  add Qij(TlN) for

— . . . '
all L =1,...,Ly,  and divide the total by Lmax to give Qij(T N).

Similar algorithms can be developed for computing other probabilities to
yield the entire transient behavior. The next section considers the normative

implications of the model for the communicator taking into consideration the
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long run steady state behavior of the audience. The transient behavior
output of the simulation could as well be utilized in the next section to

yield similar results for the transient case.

3. OPTIMAL SYSTEM DESIGN

Designing an effective communication system involves selecting an optimal
combination of a source and a channel so as to maximize some measure of communi-
cation effectiveness in persuading the audience of given characteristics. 1In
the previous section it was assumed that the message is shown continuously
through time. However, it is more realistic to assume that the message is showr

intermittently. TLet Ty be the time for which the system is to be "on'" and

let Ty be the consecutive time for which it is to be "off'", together the
T
total duration (T, + T,) will be called a cycle length. Let a = L
1 2 T1+T2

be the proportion of time the system is to be on; it is the system availability.
Suppose Cy is the cost of showing the message per unit time and C, is the
cost of maintaining the system when it is off per unit time, C1 > C2 > 0.
Define r to be the profit per unit time when the subject makes a purchase.

Given a source, a channel and an audience, the objective is to determine

Ja
W

an optimal utilization of this communication system by determining a  so as
to maximize the net profit per unit time in the long run given by

_ C1T1+ C2T2

(3.1) o, -
4 T1+ T2

where ﬁ? is the expected proportion of time the subject makes a purchase.

Proposition 4

The optimal proportion of time the message should be shown is given by
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TP1P)P3 -1
. P,P,P
* _|Y (1-p,) €y -Co) + L 1273
(3.2) a = 4 P, T PPy (1p,) )
where o < ax <1

proof: In the long run, given the system is on (which happens with probability

T
o = ————L————> the transition matrix is identical with the one in

+
Tl T?

(2.3). However, the first row of the matrix will be changed to

(1 0 0 0) 1if the system is off (which happens with probability
1 - a). Thus the long run transition matrix for such an on-off system
has the first row (1 - apyg apy G 0), the remaining rows being
the same as in (2.3). The corresponding steady state probability ﬁ;

is given by

_ aAp P, P P.P,P
_ 17273 N 172734 -1
“ T o vhere
P,P,P P.P,P
17273 17273
3.4y A= 0t B = p,+ + <" ,B>AZ20
(3.4) (1p,) Pt PyPy (1-p,) * B2
Then (3.1) becomes
rAa
(3.5) R(a) = TrBe Cla - Cz(l—a)

which is concave in ¢ and is maximized when
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(3.6) 2=q =+ , which is (3.2)

|
=
~~
(@]
— .
]
(g
(@] :
N
S
—
]

Note that the communication source and channel determine A, B, (through

pi's), C1 and CZ' If rA< (Cl- CZ) we define o = 0; in that case the

cost of showing the message is prohibitive in relation to the profit resulting
from sales, Cy being the resulting cost. 1If, on the other hand,

2 %
rA > (Cl— CZ)(B + 1) we define o =1, yielding the continuous communication

rA
process considered in section 2 with the average profit rate of ( 1 +38 Cl)'

The set of communication sources and channels yielding 0 < a < 1 given by
(3.2) 1is non empty since B > 0. Thus operating a given source and a channel

optimally so as to persuade a given audience yields the net long run return per

unit time

1

(C,- C
(1 + rA)i
J

1 2)
rA

o=

(3.7) R(a*) = {cl - C,(B+ 1) +1 -
The next problem of interest is to choose an optimal source and a channel for

a given audience so as to maximize the average long run net return per unit

time. Let  be the set of all available sources and let (¢ be the set of

all available channels communicator can choose from. Now all the channels

may not be compatible with all the sources, (due to, for example, language

or coding difficulties), hence. for any source s ¢ ./, let T'(s) ©C be the

set of compatible channels, thus Q = {(s,c): s ¢ 4, ¢ € T'(s)} is the feasible

set of the communication systems to choose from. For each w = (s,c) = Q
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we have the cost of procuring (or leasing) that system given by K(w)
with an upper limit on total budget as L. Also associated with each
w € ) we have the operating and maintenance costs Cl(w) and Cz(w)
respectively and constants A(w) and B(w) as in (3.4). Let a*(w) be

the optimal proportion of time the s;stem w 1is to be on as given by (3.6).

e
K

Then the problem is to choose an optimal system @ = (s ,¢ ) which solves

Max R(a*(s,c))

s.t. K(s,c) < L
(3.8)
s e

ceT(s)

This yields a conceptual formulation of the problem of optimal design, which
may be solved when the functions involved are known. A heuristic sequential

procedure would be to choose for each source s ¢ 2/ an optimal channel

c“(s) € I'(s) so as to yield a maximum R(aw(s,cﬁ(s))) subject to K(s,cx(s)) < L,

KN e

and then to choose the best source s which yields a maximum R(a“(s",c

o o,

(s
then the total optimal system is w* = (S*,C*(s*)).

Another possible measure of effectiveness of the communication system is
the average amount of time a subject requires to make a purchase since being

exposed to the message, as given by | in (2.21). Since the decision

Y14
times g, My Mg and W, are dependent mainly on the audience characteristics,

the source and the channel influence uq, through Py Py: Py. For simplicity

assume that for any values of (pl’ Py p3) there exists a feasible communication
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system ® ¢ (0 giving those probabilities. 1If there are more than one such
w we select the least expensive system. Thus selecting a system is

equivalent to choosing (Py+ Py p3), which solves the following

-1 -1 -1 -1 -1 -1
in. +
Min. w Py Py Py FhyPy Py T 4Py
s. t. 0<p; <1
(3.9)
0<P2§1
0 < P3 <1
K(py:Py-P3)
— <1

where K(pl,pz,p3) = K(w), ®w being the corresponding system. Assume

p¥iT K(pl,pz,p3) = o and K(pl,pz,p3) is increasing in P for each i, thus
i

implying that a perfect persuasion is prohibitively expensive. If the K
function is a polynomial with positive coefficients (or a posynomial) or can

be approximated by a posynomial. then (3.9) becomes a geometric program

(see Duffin et. al [1]). This program can be solved utilizing the geometric
programming algorithm to yield the optimal solution (pi,p;,pg) and thus

the corresponding system w* which minimizes the expected time between exposure
and purchase states. Further from the normality condition (see Duffin et. al
[1] p. 79) the three dual variables corresponding to the three terms of the
objective function give us the relative importance of different pi's in the

optimal Hopg It turns out that it is better to invest resources to increase

P3 relative to P, Oor P, and to increase Py relative to Py- This means,



-19-

for example, that it is more rewarding to increase the probability of the
subject's accepting the message given that he has comprehended it than that of
his comprehending the message upon exposure.

In the same spirit we may consider the problem of choosing the system so
as to minimize 4+ the long run average amount of time between successive
purchases. From (2.22) it is seen that the objective function,
ly + (1 - p4)u14, is a linear transformation of the one in (3.9). The new
problem of determining optimal (pl-pz,p3,p4) is then similar to (3.9), so
that it will yield similar conclusions as above, though the optimal solution
may be different.

Another general criterion for comparing cost-effectiveness of different
communication systems would be the expected utility per dollar invested. In
any zeneral persuasive communication process the communicator may value not
only the audience in the final state 4 but also those in the intermediate
states of acceptance and comprehensicn as well. Let Uy be the utility to the
communicator per unit time of findirg the subject in state i (i = 1,...4).

(In general. U; = U, < Us §_U4.) Recall from (2.13) that a4 is the
probability of finding the subject in state 1 1in the long run. Invoking the
earlier definitions of c1r S and « and (2.16) we wish to maximize the expected
utility per unit cost of operation ziven by

(3.10) U = Uy OPpRgUy F AP Py guy (X PyPyPa, )/ (1mp,)

L+ apiigt ap pyu gt (ap pypai, )/ (1-p,) ] [eja + ¢y (1-0)]

Evaluating U for each system w we can choose the optimal system yielding

maximum U.

This concludes the discussion of various measures of effectiveness for

comparison and choice of a source and a channel in persuading a given audience..
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4, GENERALIZATION

We have presented a semi-Markovian model of the information processing
and decision-making behavior of a consumer who is being persuaded by a commun-
icator to make a desirable decision (i.e. to purchase a certain product) through
a repeated communication of a message. The final objective was to yield some
quantitative measures of effectiveness of a given message, source and channel
and to consider the communicator's problem of optimally choosing the communica-
tion system.

Though the model was posed and analysed in the marketing context in order
to yield a specific motivation, it seems clear that its broader implications
can be interpreted in a general decision-making framework.

Consider a decision-maker who has to take an action a ¢ 7 1in face of an
environment (state of the world) e ¢ # so as to yield a payoff W(e,a), where
7 1is the set of all available actions and # the set of all possible environ-
ments. The decision-maker's behavior is affected not only by the environment
but alsc by the behavior of an exterral communicator who is trying to influence
the decision maker's choice of actions. (Thus the communicator's behavior
together with the environment forms the set of uncontrollable variables from
the decision-maker's viewpoint). The communicator chooses an input message
m ¢ ?”, (where ™ is the message space), a source s ¢ ./ (where . 1is the set
of all available sources), a chamnnel ¢ ¢ 2 (where (¢ 1is the set of all available
channels) and an operating variable g ¢ ® (where © 1is the set of available
operating variables, e.g. values of scheduling variables such as Ty, Ty, a etc.).
In short, let w = (m,s,c,g) be a communication system chosen from the set

QO = 7S xCx0. As a function of the environment e ¢ £, and the decision-
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maker's action a ¢ 7 the communicator receives a payoff R(e,a), and has to
pay a cost of C(e,w) for operating the system y ¢ 2 in enviromment e. For

a given environment e and the system ¢ = (m,s,c,8) the output message is

m' = y(e,w) € 7, m' may be different from m due to noise in the channel ¢,
inaccuracies in coding at the source s and operating characteristics 4.

This output message m' together with the state of the world e 1is further
processed by the decision-maker's information processor T to yield information
i =M(e,m'") ¢ 5 (where 5 1is the set of all possible values of the information
variables). The decision-maker uses a decision rule § to yield an action

a = 6§(i) €77 on the basis of information i. Let A be the set of all decision
rules. As a function of the environment e and the action a the decision-
maker not only receives a payoff W(e,a) but also incurs a cost K(e,T,8) of
operating the information processor 7 and the decision rule & in environ-
ment e.

If the environment set < has a probability measure P defined (on its
appropriately chosen g-algebra), then the decision-maker's and the communicator's
dual optionization problems could be stated in terms of the expected net returns
with respect to P, as follows.

The communicator's problem is to choose a system

o = (mys,c,9) ¢ M x #x Cx@ =0, given the decision-maker's
choice of an information processor 7, and a decision rule &, so as to
maximize E[R(e, 5(M(e,v(e,w)))) - C(e,w)]. On the other hand, the decision-

maker's problem is to choose an information processor T ¢ N and a decision

rule & ¢ A, given the communicator's choice of the system ¢ ¢ (), so as to
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maximize E[W(e,5(MN(e,v(e,qw)))) - K(e,MN,5)]
Thus the actions of each are included in the other's problem as being an un-
controllable variable (see Fig. 1).

Another application of this framework is to the analysis of decentralized
planning for resource allocation in economic systems. Here we may view the
planner as a communicator and each economic agent as a decicinn-maker. The

the environment e (e.g. technology, asarket - c aLLlen
i i av. a0t (e.g. his production level or trades he offers < o4 together
with the planning procedure w (e.g. a mechanism for computing prices and incentives)
yield a message m (e.g. prices, incentives, production requirements etc.).
The agent then processes this message m together with his environment e so
as to yield a decision a. The utility of this process to the planner is
Ul(e,a,w,m) while to the agent it is Vz(e,a,w,m), where U1 and U2 are,
in general, different functions. The planner's persuasive behavior is reflected
in his choosing the rules and incentives for following them as summarized in the
message m and the procedure y so as to persuade each agent to select an

action a closer to the one maximizing the expected value of U On the other

1
hand, given the planning procedure ¢, operating rules and incentive system m,

each economic agent's problem is to choose an action a maximizing the expected

value of U2. We may call a procedure -message combination (w,m) as being

incentive-compatible if it results in each agent choosing an action a maxi-
mizing the expected values of both U1 and U2 simultaneously.

A natural framework for analyzing the problem of choosing optimal strategies

for both then seems to be in the theory of stochastic games.



