Discussion Paper No. 619

RANDOM BINARY SEARCH: A RANDOMIZING
ALGORITHM FOR GLOBAL OPTIMIZATION IN RL™

by

Eitan Zemel**

August 1984

*Research for this paper was: supported in part by National Science
Foundation Grant No. ECS-8121941 to Northwestern University.

**Department of Managerial Economics and Decision Sciences, J. L. Rellogg
Graduate School of Management, Northwestern University, Evanston, Illinois
60201 and the L. Recanati School of Business Administration, Tel Aviv
University, Israel.

This paper was presented at the 5th Bonn Workshop on Combinatorial
Optimization, June 1984, T

ABSTRACT

We analyze the performance of randomized binary search, a randomizing
algorithm for finding the global optimum of a multimodal one dimensional
function. In particular, we give an effective (computable in linear time)
formila for the sampling distribution, i.e., the probabilities of sampling the
various local optima. We also obtain various interesting properties of this
distribution which are relevant to the behavior of the algorithm in

practice. Finally we discuss some issues related to adaptive search.

l. Introduction

There are numerous algorithms which can find the optimum of a unimodal
function defined over a certain region. Yet, in practice, one often-has to
deal with functions which may possess more than one (local) optimum. One
often approaches such problems by using an algorithm designed to handle the
unimodal case. When applied to 2 multimodal function, such an algorithm
typically yields a local optimum. The trick is to force the algorithm to
produce new local optima as it is applied over and over again, until all local
optima have been generated. This can be done deterministiéélly, basically by
enumerétion, or stochastically, by introducing some random elements into the
algoritim so that it follows a different computational path at each
application. There is a large body of literature on the theory and practice
of both methods. We mention here a representative sample of this research [1,
2, 3, 4, 6, 7, 8, 9, 10].‘ Two excellent treatments of this subject with
exhaustive reference lists can be found in the recent theses of Timmer [10]
and Boender [4]. |

In this note we consider a randomizing algorithm for global
optimization. Such algorithms yield a random local optimum at each
application. Thus, they can be viewed as sampling procedures, where a local
optimum is sampled at each iteration from the set of local optima. A key
issué in analyzing algorithms of this type is that of the sampling
distribution, i.e., the probabilities of sampling the various local optima.
Clearly, these probabilities are the key determinants of the algorithm's
efficiency. Unfortunately, there are very few analytical results on the
magnitude of these probabilities as the required analysis is typically very
hard. However, as demonstrated below, such analysis is still possible for an

extremely powerful and well-known algorithm.

The case analyzed in this note is the relatively simple but inherently

basic and important one dimensional case. The algorithm we consider is an

obvious randomizing version of the well-known and effective binary search. We
preéent a detailed analysis of the (stochastic) éerformance of this algorithm
and present an effective (computable in linear time) formula for the sampling
distribution. We also examine several properties of this distribution which
alluow us to reach some interesting (and surprising) conclusions concerning
this algorithm. Although our main motive in this stud& is global
optimization, we have found the stochastic process which underlies the
alghrithm to be very interesting and elegant in itself.

The structure of this paper is the following. In section 2 we present
the necessary preliminaries. The analysis is contained in section 3. Section
4 conccerns the computation of the sampling probabilities. Their properties
are discussed in section 5. Section 6 is concerned with the analysis of the
completely symmetric case. Finally, in section 7, we explore some issues

relat=d to adaptive search.

2. Notations and Preliminaries

Let f be a continuous function of one variable and u = [a,b] a given
interval over which f is defined. The function f may contain several local
minima over u. We wish to find the global minimum, i.e., a point x* € u such
that f(x*) < £f(x) for all x € u. In order to handle computational compiexity
issues for this task we make the following assumptions:

(1) f is almost everywhere differentiable. Moreover, for each point of
differentiability, x, one can evaluate the function and its derivative in
constant time (in fact, the sign of the derivative is all that is required).

(2) For simplicity we assume that the derivative of f is almost

everywhere nonzero. (The reader will note that this assumption is not — -

required and is used here for economy of exposition only.)

(3) A constant & is supplied in advance such that it is sufficient to
identify a given point to within 8. (See [5] for a discussion of this
issue.) This implies that any interval of size & or less cannot contain more
than one local optimum and that one can decide which among two local minima is
better based on their specification to within such constant 8.

The randowmizing algdrithm we consider is a natural modification of binary
search. At the k-th step, pick a random point 2z, from the uniform
distribution over the subinterval uy = [ap,by] of u = uy which is still under
consideration and evaluate the sign of the derivative f at zy. If that sign
is positive then f contains a local minimum in [ay,z,]. We set upyy = lap,z]
and proceed to the k + 1 step. 1If the derivative is negative at z; we proceed
analogously. The iteration terminates when luk', the length of u, is less
than §. When it does, a unique local minimum, X, has been singled out.
Obviously, the identity of thi: minimum is random. We can thus view the
algorithm as a process of sampling a local minimum of f. We are interested in
computing the sampling distribution. Before proceeding further the reader may
find it instructive to examine the following three simple examples (figures
1-3) and establish on his own (at least qualitatively) the probabilities of
the algorithm terminating at each of the local minima. We will examine the

correct answers in section 5.

Fiaure 1

o 1 3 5 ¥
Figure 2
0 1 2 3 4 s °
Figure 3

3. Analzsis

Consider the interval u = [a,b] and denote the number of local minima in
this interval by n (possibly including the end points of the interval). Let
the positions of these minima be at X = (xl’xz""’xn) with
a < x; < xpyeee, <Xy € b. Then, the number of local ma;:ima of £ in u is
n~1, n, or n + 1, depending on whether one or two of the minima of f are

obtained at end points. We use the following convention: if a or b is a

local minimum of f then we include it also in the list of local maxima. Under
this convention the number of local maxima is always n + 1. Denote their
positions by Y = (y{,¥2,¢++,¥+1) with y; < y3 < ¥3,.++, < yp41- Thus,

a =79y <% < Ygyee0, < X, < Vo4 = b. Let Ry = (vi,x4) and Ly = (x1,¥i41)
i =1,...,n be the open intervals surrounding the local minima X;. We denote
the lengths of these intervals by 24 and rjy, respectively. The general case
is depicted in figure 4. Figure 5 depicts the situation when a is a local
minimum. This causes x; to coincide with y; and thus L; =@, 2; = O. For

i=1,...,n let ty;_1 = L3, ty; =14, T = (ty,.ees,ty). For each interval

v [e,d] S up let |v| dennte its length.

/
y\ x1 yé x2 ;3 x3 y#
Figure 4
y1;x? yé xﬁ y3 x3 yk

e i =

In general, the progress of the algorithm can be described by a (possibly
infinite) nested sequence of intervals U = (ul_z up 2 ...) and of points

z = (z1,29,...) such that z; is uniformly distributed over up and up4) is the
intersection of u with one of the intervals [a,z.] or [z, ,x] depending on the
sign of the derivative of f at z;. In principle, the sequence of points Z
need not converge. However, this is highly unlikely. 1In fact, the
probability of the interval shrinking in size to § in a finite number of steps

can be made arBitrarily close to 1,

Theorem 1., let r = logy (|u|/5) and let K* = 3mr for some constant m > 1.

» Then

Let t(m) = g(m ; 1)2

Pr [luk+1’ > 8) < e—t(m)

The proof of Theorem 1 is standard, and will be omitted (see, e.g., [11] or
[12] for similar applications of the normal approximation to the binomial

distribution). 1|

The implications of Theorem ! concern the computational complexity of
each iteration. Note that assumption (1) implies that the work per step is
0(l1). 1In principle, the work per iteration is a random variable which may
assume arbitrarily large values. The theorem guarantees (probabilistically)
that this random variable is also bounded by a constant, which depends,
however, on log(lul/&).

The only information used during the execution of a step is the sign of

the derivative of f at the random points z,. That sign is positive at points

n n
of R U Ri and negative at L = U Li' Thus, the progress of the algorithm
i=1 i=1

is completely specified by the positions and lengths of the intervals Ry, Ly,

i=1,...,n. This means that there is no loss of generality if we view f as a
plecewise linear function with consecutive segments having derivatives of
alternating signs, as depicted in figures 1-5. Moreover, since the position
of the interval u on the x axis is obviously irrelevant, the probability
sought depends only on the vector T = (tj,...,ton)e

Denote the probability that the iteration terminates with the minimum x4
by P;(T) and let P(T) = (p;(T),pp(T),...,p,(T)) with 121 p; (T) = 1. We now
examine this probability in more detail.

Let z € u be arbitrary. Assume we split u at z obtaining two
subintervals ur(z) = [z,b] and uwt(z) = [a,z]. Let the corresponding T vectors
for each of these subintervals be TR(z) and TL(z), respectively. Splits play
a crucial role in our analysis since each step 1s essentially a split at a
random point z. In fact, we can easily state a recursive expression for p;(T)
which is based on the observation that the probability of z falling in Ry oT

Li is equal to ri/‘ul and li/lu‘, respectively, and given that z is in one of

these intervals, it is distributed there uniformly. Thus, we have

Theorem 2.

i x n 3.
(4) P () = TtllT[(.E jyj NG IOMER) I e a1 0
j=1 "J j=l 3
This looks like a hopeless formula. However, we will be able to simplify
it considerably with the help of an extremely useful and interesting Theorem
. 3. To ‘state this theorem, we now concentrate on a very special type of
splits, namely, at the actual minima Xy i=1,...,n. Such splits occur in
practice with probability O. However, they possess some very special and
useful properties. We assume henceforth that x; is fixed and suppress

references to its identity in our various constructs. Thus, we write ul for

uf(x;) and similarly for ur, TR, and TL. Note that TL = (&;, ry,...,%;,0) and
TR = (0, Ty,¢00,8,,T) Obviously, x; i1s the last (i-th) minimum in ul and
the first in ur. Recall that the local minima actually sampled in a given

iteration 1is denoted Xx.

Theorem 3.

(1) pi(T) pl(TR) * Pi(TL).

(ii) pj(T: X € {xl,...,xi}) pj(TL), for every j < i

pj(T: X € {xi,...,xn}) pj(TR), for every j > 1. a
In words, (i) the probability of converging to ¥y in u is equal to the product
of the probabilities of doing so when the search is restricted to the left and
right segments generated from u by a split at xy. (ii) the conditional
probability of converging to Xy given that we converge to a minimum to the
left of x; is equal to the unconditional probability of converging to that

minimum when the search is restricted to uf, and similarly on the right.

Proof. Consider the sequence of points generated by the algorithm

Z = (z1,29,+..) and the sequence of intervals U = (uj 2 up,...). It is
convenient for the purposes of this proof to treat these sequences as
infinite, i.e., to suspend the ;topping rule lukl < & and continue each
iteration indefinitely. It is obvious that this convention does not change
the probabilities we seek sinée when uy reaches the length & a unique local
minimum has already been selected. Recall that 2z, is uniform over u, and that
u depends on the initial segment of Z, Z;_; = (z4,+++,24.7). It follows that

z; depends on Zj_y in a rather complex fashion. We can simplify the situation

by partitioning the sequence Z into two subsequences ZR = (zrl,zrz,--.) and

ZL = (zll,zlz)...) according to whether a given point is to the right or left
of xy. Also, we partition each interval u, into two subintervals

ury = we 0 [x4,b] and Wy = w n [a,x;]. Then z, € ZR exactly if z, € ury and
vice versa for ZL. The probability of the former event is, of course,
]urk1/]ui. A typical sequence 7 = (z,z5,...) may look like

Z.= (zrl,zrz,zll,zr3,...), i.e., is composed of alternating subsequeaces of
ZR and ZL. The evolution of the process Z could thus be described in the
following equivalent way. First, choose one of the two intervals ury or ufy
with probabilities |urk|/|u{ and |ulk[/|u', respectively. After this interval
is chosen, pick %, using the uniform distribution over that interval. 1z is
classified as the next element of the ZR or ZL sequence in the obvious way.
Finally, update the intervals ury and uly as follows. If z, € urpy N L then
urp4) = ury N {z,b] and w4y = @, and, if 2z, urp N R, then urpy; =

ury n [xy,z] and Wy = uly. Similarly, we handle the case of 2z € ufy.
Note that the only dependence between the sequences ZL and ZR is through the
interval update in the case Z €urg N L or z € uly N R. Call the first
element which satisfies one of these conditions a pivot. Note that the pivot
2z € uly N R (a pivot the left) precisely when the process Z converges to a
point strictly to the left of x; and similarly to the right. The process
converges to Xy precisely if no pivot occurs. |
Define a process W = (wl,wz,...) which is closely related to Z but easier

to analyze. Specifically, we start with intervals vy = uj, vry = urg,

vi] = ulj. At each step we choose vry or v with probabilities proportional
to their length and pick W, uniformly from the chosen interval. We include W
in the WR seqﬁence if it comes from vry and similarly for WL. The only new

feffgff/yere is the updaﬁE”ﬁf/;fk and v&. If w is chosen from vry N R then

- 10 -

Vo4 = VA and VIpg) = VI 0 [xi,wk] as is.the case for the intervals U.
However, if w € vry N L then we leave vlk+1 = vlk (instead of setting it to @
in the case of U) and set vrpy; = vry 0 [w,bl. Similarly, we update only v
if w € vl . Naturally, the sequence W is not implementble algorithmically

since x;

i 1s typically unknown.

Clearly, the processes WL #ﬁd WR are completely independent.

Furthermore, the distribution of WL relative to u is identical to the
distribution of Z relative to wl and similarly for WR. Also, the processes W
and Z are identical until the occurence of the first pivot.l‘If that pivot is
to the left, then Z continues to coincide with WL after this pivot. If the"
pivot is the right, then Z coincides with WR after the pivot.

We can now finalize the argument. For (i) note that the probability that
both WR and WL converge to x; is the right hand side of the assertion since
the two processes are independent. Also, since 7 and W are identical until
the occurence of a pivot, the probability of a pivot occuring is identical in
both processes. Finally, no pivot occurs in Z precisely if Z converges to xy
and no pivot occurs in W precisely if both WL and WR converge xy. For (ii)
observe that Z converges to a point to the left of Xy precisely if no pivot to

the right occurs. a0

Remark. The reader may note that Theorem 3(ii) holds without any modification
if the split is taken at a local maximm y; € Y.
An immediate but rather surprising corollary of Theorem 3(i) is the

following crucial observation:

.Corollary 3.1, Pi(tl,tz...,tzn) = P (0,t9,000,tp,1,0).
In words, the sampling probabilities P are independent of the length of

the first and last subintervals of T, %; and T, (t; and tzn).

- 11 -

Proof. Consider a split at xl(xz) and apply Theorem 3(ii). (1

In the sequel we set, without loss of gemerality, %; = r, = 0. Note that

n
in this case lul is simply x, - x;. Applying the corollary to Formuia (4), we

get the following.

Theorem 4.

1 i ml
= (=
) Py = — - [(j__}i'2 20, s (TRGE,)D) + jzl r;p; (TL(x,))]
n
1 i 1)

(6) is a finite recursion which involves only subvectors of T. I: can be
y
used to calculate the entire vector P(T) in 0(n3) operations (an 0(n™)
implementation is trivial). However, using Theorems 3 and 4 togéther, one can

do mich better, This will be discussed in the following section.

4, The Computation of P(T)

We are now in a position to obtain an explicit expression for P(T). The
expression can be evaluated by an extremely simple algorithm which requires u
computational steps. We start by examining the expression (6) for the special
case 1 = 1, This yields

1 n-1

2 (Yj+1 - xj)Pl(O,rl ,12,...,13.,0)

7) Pl(O,rl,l - X, .
1 1 j=1

ln,O) =

2,000, X

Define q5 = pl(O,rl,lz,...,lj,O) for j = 2,...,n q; = 1. Note that

Pi(T) = q;. Thus, (7) becomes

(8) q ==——) (ij'_l—xj)qj

-12 -

Applying the formula recursively we get for k = 1,...,n~1

Yk+1 T F1
(9) q = ——
k+1 xk+1 x1 k
This implies
y, - X y - X Y9 = X
- n 1 n-1 1 2 1
(10) Pl(T) = qn = (X — xl)(x -1 x1)9'°°9(x2 - xl)
Similarly,
X, " ¥y X <Y X, -
(1) P (m) = (AR, 20
n 1 n 2 n n-1

Finally, using Theorem 3(i) we get the required expression:

Yy = Yo = V. = X -y, X = X -,
(12) P, (1) = <2_ﬁ><3_x1>,...,(3_x1>1 [a2 S A T
J S i B | £ T T W 0T ¥l

To compute P(T) effectively, first compute the expressions qp, k = 1,...,n and

their counterparts g,

_ X =9y X =Y -
3, = B m oy R Ry a1 L2, g =1
X = X __ X, "X
n n—1 n

Each one of these expressions can be computed from its predecessor by a single
multiplication in 0(1) time. Thus, the entire series can be obtained in 0(n)

time. To get a specific value pi(T) we simply multiply the approprilate terms

pi(T) =9 4> i=1,...,n

- 13 -

Thus, the entire vector P(T) can be computed in 0(n) time.
We can now compute P(T) for the examples cited in the introduction.

Example 1. (y; =0, x; =1, yp =5, xp =6, y3 =10). The two minima here
may look symmetric, as T = (1,4,1,4). However, by corollary 3.1, we can
replace t) and t4 by O so that we can take T = (0,4,1,0). This is obviously a

situation biased in favor of xj. In fact, using (7) and (8) we get

Yo — X t
P = x2 - x1 T i T 475
- 1 1 2
X, -7y t
Py = x2 - x2 = t i t = 1/5
2 1 1 2

Example 2. (y; =0, x; =1, yp =3, x9 =5, y3 =9). This is an opposite
example to Example 1. On first glance it appears that x; is more likely than
xy as T = (1,2,2,4). However, using Corollary 3.1 we take T = (0,1,1,0) which

yields py = py = 1/2.

Example 3. (y; =0, %) =1, yp =2, xp =3, y3 =4, x3 =35, y, = 6). Here
T=(1,1,1,1,1,1) which is reduced to (0,1,1,1,1,0). Although the graph is
symmetric, the probabilities are not equal. In fact, it is easy to obtéin

qp = 1, q = 1/2, q3 = 3/8. The q's assume the same values in the reverse

‘

order. Thus we get
Py} T P3 = 43 = 3/8

- 2
Py T dy qy = q, = 1/4

- 14 -

The general symmetric case is handled in Section 6.

5. Properties

In this section we investigate some properties of the vector P which are
directly relevant to the performance of random binary search Iin practice.
Clearly, what we care about when the algorithm is actually applied is the

probability q = q(f,u) of picking the global optimum in one iteration as this

probability is iInversely related to the expected number of itarations required
before that optimum is generated. We take the typical approach used in worst
case analysis, i.e., we assume that the algorithm is applied to the “worst”
instance in a certain class C of problem instances and seek to assess a bound
q(C) on q(£f,u) which is valid for all intances in the class C. WNote that P
depends on the vector T only, but that for a given T one can easily construct
a function whose global minimum is any desired local minimum Xy,

i=1,...,n. Thus, for each vector T the worst choice of f is such that

q= min Pi(T). An obvious class to examine is the class of functions
i=l,...,n

with n or less local minima over the appropriate interval. Clearly in this
case q(C) < 1/n but as one would expect, it is not possible to derive a lower

bound on q in terms of n. This is demonstrated by the example of figure 6 for

the case n = 3.

A

1 e o 1
Figure 6

- 15 -

Here T = (0,1,e,e,1,0), P, = (T_ETE)Z so that q can be made arbitrarily small
by an obvious choice of . A more useful characterization of C is in terms of
the minimal (normalized) distance between adjacent minima and maxima

8§ = T;T(min min{ri,li}), or the size of the smallest "valley” in u
i=l,...,n

) =‘T—r(min {r. + l,}). Ideally, one would have liked the probability
u i i
i=l,...,n

of sampling a given minimum to equal the size of the appropriate "valley” as
this would have meant that each subinterval of u is being sampled
proportionally to its length and independently of its locatioa inside u. This
is, however, not the case as for a given size of §y or &y, q can be

. . . “ . - €
arbitrarily small. (Examine figure 6 again and note that 60 O] and

61 = TT—ETES)' However, a quadratic lower bound on q in terms of & can be

obtained:
Theorem 5. Let C be the class of problems with &; > A. Then q(C) = 4A2-

Proof. (i) Examine the function depicted in figure 6 and choose g such that

izi—ééjgy = A. This function clearly belongs to C. Also, pp(T) in that case
is equal to (3 i e)2 = 4p%. Thus q < 42,

(11) For any vector T and any minimum x;,P;(T) is at least equal to the
probability that the first z to the right of x; is in ry and the first z to

its left is in &;. Thus,

2Ty 2

> 4A d
(xi - a)(- xi) |

Pi(T) >

Theorem 5 means that some regions of u are undersampled relative to their
size and consequently some are oversampled., In the next section we study this
phenomenon more closely. One implication of the theorem is that if 6g 1is

known (or could be estimated) and if one is concerned with worst case

16

analysis, then it is better to break u into lul/éo = m intervals, each
containing at most one minimum; and to apply regular (non—randomizing) binary
search to each. This would require work proportional to m log m as opposed to
O(m2 log m) which is required to achieve a certain degree of confidence if the
randomizing algorithm is used. Note, however, that the latter does not
require any predetermination of Jq (or n) for its actual implementation.

Also, we get a more favorable assessment of the performance of random binary

search if we are ready to make some modest assumptions about the distribution

of problem instances inside C. For instance, assume that a class C is given
such that each problem instance in C has exactly n minima and such that for
each vector T induced by an instance in C, all n possible local optima %3,

i=1,...,n are equally likely to be the global optimum. Under these

conditions, the probability q that the global minimum is sampled in a given

iteration of the search is easily available.
Thereom 6. q = 1/n.

Proof. Pick any function of C and consider its T vector. Let
P(T) = (pl(T)""’pn(T)) be the sampling distribution of this vector. By our
assumption, each minimum %y, 1 = 1l,...,n has equal probability of being the

global minimum. Then

q = E pi(T) Prix = xi] = 1/n. 0
i=1
We conclude this section with a certain desirable and intuitive monotonicity
result. Consider the vectors T and T related to each other by the relation
2 =24, 4 =1,0.0,m, 7y =1y, 1 = 1,e00,n, 1% 4, ry > ri, i.e., T is
identical to T' except that the “valley"” surrounding ij in T is larger to the
: -

<

- 17 -
1
right. Surely, one expects Pj(T) > Pj(T). This seems hard to show directly
from (4) or (5), but falls easily out of (12).
]
Theorem 6. P;(T) > P;(T) for 1 = 1,...,3.
Proof. Direct for formula (12). 0

b. The Symmetric Case

The probability pi(T) of sampling x; depends on the relative sizes of the
different "valleys” surrounding the local minima and on the "positioa™ of xj
inside u. In this section we study the second effect by coﬁéentrating on
completely symmetric vectors T, namely t; =1, 1 = 1,...,2n. In spite of the
symmetry in sizes, we will shortly discover that the various local minima have
very different probabilities of being sampled.

Let T, be the symmetric vector of 2n ones. Let gn(i)'= p1(T,). We wish

to study this function. Let h(n) = py(T,) = g,(1). From Theorem 3 we have
g, (1) = h(1) h(n -1 + 1)

Thus, we first study the function h(). From (9) we get the following simple

recursion relatiqn
(13) h(n + 1) =22 =1 y¢n)
2n

Clearly, h(l) = 1. Thus

2n - 3

=1 ' 2n -3
h(n)—zx oocxzn_z

W
X
[o)Y [V,
X

We now wish to find a closed form approximation for h(n). Consider the
function £f(n) = 1//n. Using the first term in the Taylor expansion of this

function we get

.18.

/n+1 +/n 2n/n n ¢¥n /n n
that is
_ 42n - 1° 1 -
f(an+1) = Q*—fﬁ——'+ Oﬁ:f))t(n)-

with £(1) = 1,

Let t(n) = h(n)/Ya. Then t(n + 1) = £ (1 + Q(L,Zyy, ¢(1) = 1. Thus, for
n

large values of n, h(n) behaves approximately like c¢/v/n for some constant c

(more precisely, one can show cl//ﬁ < h(n) < czl/; and lim h(n) = c/v/n for
n+e .

some constants c;, cp and ¢). Thus,

('.'.2 C2
(14) L g (1) R
/A= IFI/1 ATIFIA

c
Yo - 1 + 1 /1
normalized to. sum to 1 for n = 30 are shown in Figure 7 below.

The actual values gn(i) together with their approximation

0.11

0.09 -

0.08

0.07 4 + +

0.06 4

+d
+d

0.05 -
0.04 - 4 &
0.03 -~
0.02 +

0.01

Figure 7. g, (i) for n = 30 (V) and its approximation'—:;—ii———- +)
vz /n - 1

- 19 -

For an asymptotically large n, we can consider the limiting behavior of
the probabilities p;(T,). Consider the following process defined on the
interval u = u; = [0,1]. At each step, pick a point z; uniformly distributed
over w. = [ap,by] and let upy; be [ay,z,] or [zy,b] with probability 1/2,
respectively. It can be shown that the process z = (zl,zz,...) converges to a
point z € [0,1] with probability one and that the density of the limit point 2
is given by

(15) f(z) =—1 0<z<1

Yz /1 - z
Clearly (15) is in agreement with (14). The implication of (14) or (15) is
clear. Random binary search tends to oversample at the sides of the interval
u and to undersample at the center. This may be helpful if the functions
involved are likely to have their global optimum at the edges. If that is not
the case, then this bias is bothersome. To offset it (but only partially) one
can replace the uniform distribution over uy by another distribution, heavier
at the center and lighter at the tails. Altermatively, if the optima tend to
be at the centér, one may be better off breaking u into several segments and

searching each separately using random binary search.

7. ~Adaptive Search

The simplest way to search the interval u using randomizing binary search
is to apply each iteration independently to the interval u. This means that
the information generated during the execution of the previous iterations is
compeletly ignored. However, one can expect to do better if this information
is somehow used to guide the search. In particular, say that the minimum
located in the first iteration is xj. One would certainly like to bias the

search in the subsequent iterations such that the likelihood of x; being

- 20 -

selected again is decreased. Naturally, the question arises whether this can
be achieyed. A simple way to go is the following. Split u at X; and consider
the two subintervals ur(x;) and uf(x4). (This can be done once x; 1is
identified in the first iteration.) Put these two intervals in a candidate
list and attachh a probability to each. At each iteration, pick an interval
from the list according to its probability and apply random binary search to
this interval. Then, split the subinterval at the new minimum found, modify
the probabilities, and repeat the process. Leaving aside the question of how
one assigns these probabilities, we examine below the quesfi;ﬁ of whether this
approach can be advantageous. Theorem 3 supﬁlies an excellent vehicle for
analyzing this issue.

Assume we split at x;. let p+ q =1, and p, ¢ > 0. Assume we chose ur
with probability ¢ and ul with probability q and apply the search to the
interval chosen. Let Pr(i: p,q) be the probability of sampling x4y with this
strategy. The qu-astion is whether we can pick p,q such that

Pr(i: p,q] <.pj(T). This is answered in the negative by
Theorem 8. Pr[i: p,q] > p;(T).

Proof.
Pr{i: p,q] = qep; (TR) + pep, (TL) > min{pl('I'R),pi(TL)} > pl('I'R)°pi(TL) =p, (M)

The question of whether one can devise other strategies for adaptive search
which will decrease the possibilities of sampling Xy again is still open. We
note that this issue is central to [3], [9], and [10], but in a very different

context.

- 21 -

Acknowledgment

I wish to thank Isaac-Meilijson for a very useful discussion concerning

the solution (15) to the asymptotic process discussed at the end of section 6.

(1]

(2]

(4]

(6]

[7]

(8]

[91]

[10]

[11]

[12]

22
References

Archetti, F. and B. Betro (1979), "A Probabilistic Algorithm for Global
Optimziation,” Calcolo 16, 335-343. :

Betro, B. (1982), "A Bayesian Algorithm for Global Optimization,” paper
presented at the International Institute for Statistics and
Optimization, Gargagno, Iltaly.

Boender, C. G. E., A, H. G. Rinnooy Kan, L. Stougie, and G. T. Timmer
(1980), "Global Optimization: A Stochastic Approach," in F.
Archetti amd M. Cugiani (Eds.), Numerical Techniques for Stochastic
Systems, North-~Holland, Amsterdam. e

Boender, C. G. E. (1984), The Generalized Multinomial Distribution: A
Bayesian Analysis and Applications, Ph.D. disseration, Erasmus
Universiteit Rotterdam (Centrum voor Wiskunde en Informatica,
Amsterdam).

Chandrasekaran, R. and A. Tamir (1982), "Polynomial Testing of the Query
'Is aP > c427' with Application to Finding a Minimal Cost
Reliability Spanning Tree,"” unpublished manuscript.

Dixon, L. C. W. and G. P. Szego (Eds.) (1975), Towards Global
Optimization, North—-Holland, Amsterdam.

Dixon, L. C. W. and G. P. Szego (Eds.) (1978), Towards Global
Optimization 2, North-Holland, Amsterdam.

Kuhm, H. W., Z. Wang and S. Xu (1984), "On the Cost of Computing Roots
of Polynomials,” Mathematical Programming 28, 156-164.

Rinnooy Kan, A. H. G. and G. T. Timmer (1984), "Stochastic Methods for
Global Optimization,” to appear in the American Jourmal of
Mathematical and Management Sciences.

Timmer, G. T. (1984), "Global Optimization: A Stochastic Approach,”
. Ph.D. thesis, Erasmus University Rotterdam, Rotterdam.

Zemel, E., "Probabilistic Analysis of Geometric Location Problems,” STAM
J. Alg. Dis. Meth. to appear.

Zemel, E. (1983), "A Linear Time Randomizing Algorithm for Local Roots
and Optima of Ranked Functions,” unpublished manuscript.

