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Introduction

In the specification of systems of factor demand, the firm's production
problem is usually considered under perfect certainty. Output supply and
factor demand equations are derived as deterministic functions of output and
factor prices. It must be recognized, however, that most firms are not able to
control all aspects of the production process and must purchase inputs and
sell output in markets subject to random fluctuations in demand and supply. In
this paper, current approaches to the stochastic specification of production
and cost relationships are examined. New stochastic specifications are

proposed which are consistent with expected profit maximization.

Sources of Uncertainty

Any adequate econometric model of the firm must recognize sources of
uncertainty in the firm's decision problem as well as the sources of
statistical error. The information observable or measurable by the
econometrician is almost always a proper subset of the firm's information
set., The traditional "omitted variable” interpretation of error terms follows
from the discrepancy between the firm's and the econometrician's information
set. The statistical model employed by the firm must recognize factors beyond
the firm's control which influence production decisions. The modeling of the
firm's decision problem under uncertainty is crucial in the development of
appropriate econometric models. We focus on this problem and ignore
informational differences between the firm and the econometrician.

The firm faces four major sources of uncertainty. 1. For price-taking

1

firms,* the price of output in the production period may be known only

1Throughout this paper, we assume the industry is competitive so that the
firm cannot affect the price distribution facing it.



imperfectly (output price variability). 2. By setting factor input levels,
the firm may only be able to control the distribution of output and not the
actual level of output. 3. The firm may face uncertain factor prices.2 4.
The firm may choose sub—optimal input combinations as a result of optimization
errors.3 If the goal of the econometric analysis is to obtain estimates of
production function parameters, the production function alone may be the
central relation under investigation. If attention is limited to the
production function, the econometrician need only focus attention on modeling
output variability. However, this would ignore the content of economic theory
embodied in the first order conditions which follow from profit-

maximization. As soon as first order conditions for profit maximization are
introduced, we must carefully consider factor price and output price

-~

variability. Dreze

Current Approaches to Stochastic Specification

By far the most popular econometric specification of the production
relation is obtained by appending a multiplicative error to the deterministic
production function, y = f(x)e, where x is a k x 1 vector of inputs. For
statistical convenience, & 1is often assumed log-normally distributed.4 £
represents factor-neutral sources of variation which increase or decrease the

marginal products of all factors by a constant proportion. A tremendous range

2Again, we assume the firm has no monopsony power in factor markets.

3Part of the managerial input is employed in solving the production
programming problem. A cost-minimizing firm may opt to utilize
approximiations to optimal solution techniques rather than using the resources
necessary to obtain an exact solution.

45 is frequently interpreted as representing omitted factors such as
managerial input.



of work including Zellner, Kmenta, and Dreze (1966) with the Cobb-Douglas form
and Gallant (1982) with the Fourier Flexible form employs this multiplicative
error. Just and Pope (1978) draw attention to the implications of
multiplicative errors for the behavior of the firm. Just and Pope conclude
that the multiplicative error imposes unreasonable restrictions on the
possible range of firm behavior.

Just and Pope put forth eight postulates which they believe all
reasonable specifications of stochastic production functions should meet.

Postulates four, five, and six are central to their analysis:

Postulate 4. A change in variance for random components in production should

not necessarily imply a change in expected output when all production factors

are held fixed (3E(y)/dVar(e) = O should be possible). Earlier, Zellner et al

(1966) had noted that expected profits in the miltiplicative error model is a
2

function of o¢“ which would suggest that a shift in the varlance of output

would change factor utilization.

Postulate 5. 1Increasing, decreasing, or constant marginal risk should all be

possibilities. (6Var(y)/6xi >,=,< 0).

Postulate 6. A change in risk should not necessarily lead to a change in
factor use for a risk-neutral (profit maximizing) producer.

* *
(6xi/6Var(e) = 0 where x;, 1is demand function for ith input)

Just and Pope claim that the common multiplicative specification violates
postulate 6, Just and Pope examine the case in which output is assumed to be

log-normally distributed.

¢h) y = f(x)e = f(x)e’  u~N(0,0%)
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2 , E(y) = f(x)e . Just and

In this case, mean output is a function of o

Pope conclude that input demand is an increasing function of o?. The firm is

assumed to maximize expected profits with known output and factor

]
prices, max E[Pof(geu) - p X] where Py is output price and p is a vector of
X
input prices. The first order conditions are

2
* -lpa
Vi(x ) = e P/PO'

Differentiating implicitly, we obtain

*
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o H 1P/PO > 0 by concavity of £,

An increase in o2 will increase the utilization of all inputs. Since
2, 2¢ 02 . \

Var(y) = f(x) " (e"" - e ), Just and Pope conclude that an increase in
variance of output changes the utilization of inputs in a risk-neutral firm.
This appears to violate the assumption of risk neutrality.

Just and Pope's mistake is to associate variance with risk. An increase
in o2 does not correspond to increased risk as defined by Rothschild and

Stiglitz (1970). It is impossible to alter the variance of output without

also changing the mean level of output.

2 2

-1 -1
ety ~wtpy (e 2T -0 oo

5H= [62f/6xiaxj] is negative definite. We must also assume that
all factors are complements in production, i.e., h < 0 for all i not equal

i3
to j. J



A mean-preserving spread cannot be defined for the one-parameter log-normal
distribution. 1If we allow for a non-zero location parameter in the log-normal
distribution, it is possible to define a mean-preserving spread.6 If

dE(y)/dVar(y) = 0, then postulate 6 will be satisfied and we can associate
variance with risk.

Multiplicative error specifications appear to satisfy postulate & when
appropriate care is taken in the definition of risk. A number of authors have
proposed more general stochastic specifications in an attempt to avoid the
Just and Pope criticism; see Antle (1982) and Just and Pope (1979).

The traditional multiplicative log-normal error specification, however,
does not satisfy postulate 5. Var(y) = f(g)ZVar(s) and aVar(y)/axi > 0.
Increased utilization of an input may not, necessarily, increase the variance
of output. Many agricultural inputs such as insecticide and irrigation
services are thought to be variance-reducing. An additive error specifi-
cation, y = f(x) + e, imposes the restriction that the variance of output is
independent of the level of input utilization. Just and Pope propose a new
specification which avoids these variance restrictions, y =

f(x) + hi(x)e with E(e) = 0. Griffiths and Anderson (1982) have fitted this
form to Australian wool production data.

While the Just and Pope functional form imposes fewer moment re-

strictions, the analysis of the input demand functions of a risk-neutral firm

remains unchanged under either stochastic specification. The risk-
neutral firm seeks to maximize expected profits. E[I] = E[de - p’'x]. For the

multiplicative, log-normal error specification,

6Suppose Xy ~ LN(ul,c%). Define X, ~ LN(uz,c%) with d% > d% and

1o =lﬁzc% - L@o% + p1. Xp represents an increase in risk over Xj
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1
E[O] = E[Pof(g) - p'x] = E[Po]f(g)e

where Ep is the vector of mean input prices. While the Just and Pope

specification yields
E[I] = E[Pf(x) + h(x)e - p'x] = E[P, lf(x) - By X

Expected profits differ only due the inclusion of exp{lﬁzoz} in the
multiplicative error specification. Input demand decisions will be identical
under both error specifications. Only when firms are risk averse is it
important to consider the marginal risk properties of inputs. Following Pope
and Kramer (1979), we define an input as marginally risk reducing (increasing)
if a risk averse firm utilizes a larger (smaller) quantity of the input than
the risk neutral firm. In this analysis, we consider only risk-neutral firms
and, thus, the marginal risk characteristics of the multiplicative error
specification are not important in deriving the system of factor demands.
Additive error specifications, y = f(x) + €, have also received
considerable attention. Additive error specifications satisfy Just and Pope's
postulates 4 and 6. The fundamental difference between additive and
multiplicative specifications can be found in the coefficient of variation of

output. For the multiplicative specification, CV_, = (standard deviation of

y
y)/E(y) = (f(g)oe)/(f(g)pe) = oe/pe which is independent of the level of input
utilization. However, the coefficient of variation in the additive

specification is inversely proportional to input levels CVy = oa/f(g). Just

and Pope's new specification, y = £(x) + h(x)e, can be viewed as an attempt

to free up the traditional error specifications from relative variation



h(x)
Oge
£(x)
Zellner and Revanker (1969) consider a class of generalized production

restrictions. For the Just and Pope specification, CVy=

functions produced by tranforming the neo-classical, constant returns to scale
function. 1In order to make returns to scale vary with output level, Zellner

and Revankar use the differential equation,

o

y _ yaly)

Hh
Hh

where f is the neo-classical production function

Taking a(y) = a/(1 + 8y),

dy _ ya

£ £(1 + 9y)

which has the solution

ve®¥ = x£% or iny + 9y = C, + C anE(x).
If we complete the specification by appending a multiplicative, log-normal

disturbance, € = ~ LN(O,GZ), we have a new stochastic specification. Output

has a density function

I 1 + oy

_ 2.~
p(y) = (2no") .

exp{- 15 dz(ln}’ + oy - Hy)z}

with py = CO + Clln f(x). Analytical expressions for the moments of this
distribution are not available. WNumerical calculations show that, like the
one-parameter log-normal distribution, the mean and variance are closely

linked. Again, it is difficult to define a mean-preserving spread for this

family of distributions.



The relationship between the mean and the variance of output can be
analyzed most conveniently by considering a general exponential family of
output distributions. The production functional form can be taken as

specifying the mean output function.
Ely] = u = £(x;8).
If y has a density of the regular exponential family,
p(y|p) = g(y) exp{p(p)y - q(w)},
the variance of y is (p'(p))_1 (see, for example, Charnes et al (1976)).
By choice of a flexible p function, the relationship between the mean and

variance of output can be examined empirically.

Formulation of Firm's Decision Problem

We assume that firms seek to maximize expected profit and thus are risk-

neutral.

Firm Problem:

(2) max E(D) = E[P £(x)e - p x]
X

where Py is price of output, p is k x 1 vector of factor prices.

We adopt the traditional multiplicative production error and assume
Py, p are random. Firms are assumed to be risk-neutral. It is reasonable to
assume that manufacturing firms have access to competitive capital markets.

The firm's managers need only maximize firm market value which 1s equivalent



to maximizing expected profits each period in a static model (see Fama and
Miller [1972]). Sandmo (1971), Barta and Ullah (1974), Blair and Lusky
(1975), and Pope and Kramer (1979) have considered the competitive risk-averse
firm facing output price uncertainty or production uncertainty and the
associated system of factor demand equations. Here we consider a risk-—neutral
firm facing output price uncertainty, random production, and uncertain factor
prices. Zellner et al. (1966) were the first to derive the first order
conditions for an expected profit-maximizing firm with Cobb-Douglas production
technology.

Before proceeding with the analysis of the risk-neutral firm, we derive

the first order conditions for the general case

max E{U() = U(PF(x,¢e) - 2'5)}
X

First order conditions:
LY *
E{U (M) (PGVF _(x ,e) - p)} =0

where H* = POF(§*,5) - p'g* and §* is the vector of optimal input choices
and U 1is the Von Neuman—-Morgenstern utility function of a firm.
In our case, U' =1 and F(x,e) = f(x)e. We will not consider the effects
of risk-averse behavior on factor demand price elasticities and symmetry.
Returning to the risk-neutral case, we write the production func-
tion, f(x)e = exp{g(inx)}e with fnx' = (lnxl, lnxz,...,lnxk). The first order

conditions can now be written in terms of the derivatives of g.

(3) exp{g(enx)} Vg (dnx/dx) E(Pye) = E(p)
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Zellner, et al. (1966), and Hodges (1969) assume that P, € are independent.
If & represents firmspecific shocks to production, it is reasonable to
assume that Pg, € are independent. However, aggregate industry level shocks
will induce a correlation between PO and €. In this section, Po and ¢
are taken to be independent. The independence assumption is relaxed in the
next section. For now, we also assume that factor prices, p, and output
price, Py, are independent.

The first order conditions can now be written

Elpy) *i dg .
E(P,)  explg(inx)] ~ blnxiE(e) 1= 1, eeey K

To express these first order conditions in terms of observables, we use the
relation y = exp{g(lng)} £; and assume’ pi/PO = [E(p;)/E(Py)] u; and obtain
Pi¥%y 0g

(4) Py ana By

Let Y; = (pixi)/(POy); Y; is the output share of the ith input. Since profits

are random with mean zero, Y; is different from the cost share of the ith

input. Taking logarithms of both sides of (4), we obtain

(5) XnYi =a, * Xn(bg/blnxi) + fne - lnui

To illustrate the difference between traditional analyses

and this approach, consider a Translog production function f(x) =

7This follows from assuming p;, Py are lognormally distributed.
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1 1] L} 1}
exp{a + a Anx +lﬁzln§ Alng}. g(nx) = a, + a nx +-U§£n§ A fnx

0 0

|
and Og/blnxi = a; + z aijln(Xj). Many investigators take a multiplicative,
J
lognormal error specification for the production function, coupled with
additive errors in the system of output shares:

A A
(6a) fny = a, + a fnx + lh2Rux Alnx + ¢

0

Kk
(6b) Y, =a, + ) a..Jln(xJ.) +e;  i=l,.. 0k

The error specification of the (6) system is not consistent. If we employ a

multiplicative production error, the output share equations are log-linear as

in (5).

Self-Fulfilling Industry Equilibria

If we recognize that there are aggregate shocks which affect all firms in
the industry, we can no longer assume that price and output are uncor-
related. If prices clear the output market, the equilibrium output price will
depend on the shocks to output demand and to production. Equilibrium is no
longer defined by the intersection of supply and demand curves but by a pair
of equilibrium price and output distributions. In a competitive model with
production shocks, it is no longer possible to define a supply curve for the
industry. Following Grossman (1975), we define self-fulfilling or rational
expectations equilibria as economic allocations made such that the new
resultant price distributions generated through market clearing support the
original allocations. The expectations about the equilibrium price
distributions are fulfilled. A simple example involving production

uncertainty illustrates this concept.
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Suppose the industry consists of one firm (or N identical firms) with a
one—-input Cobb-Douglas production technology and constant elastic demand

curve.,

%" (production)

]
]

= y—B (demand)

v}
]

Recognizing that equilibrium price is a function of u (this must be so as to

insure market clearing), we write the firm problem as

max ECD) = E[P (u) (@ Y% - wL]
L

with first order conditions:
* -
E[P (u)La 1eu] = w/a
or

O Re A MLAR A R

2
L* = [w/(ae 1/20 (1'8)2)]1/(a-aﬁ—1)

P ) = )P o TRu

A supply function cannot be defined for this problem. If the firm faces only
uncertain output price, supply can be defined as a function of expected output
price.

To derive the system of output share equations, assume the industry is
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competitive and consists of N identical firms. We assume the industry faces

stochastic demand

P = y—Bv

exp{g(inx)}e with v,c independent

<
]

The equilibrium price function will involve both v and ¢.
Firm Problem:

max E(I) = E[P*(v,s) exp{g(nx)} - E'E]
X

with first order conditions,
*
E[P (v,e) exp{g(inx)}vg(dinx/dx)e"] = E(p)

or for factor i (using P*(v,s) = [exp{g(lng)}s]_ﬁv)

E(pi)xi

= E(ug-B)-—gg——
exp{g(&nx) (1-8)} pAnx,

Recalling that Py = yl_Bv = exp{g(lng)(l~ﬁ)}sl—8v,

Pi¥%i dg
(7 5y = kO(alnxi)vi i=l,...,k
or
\i \i
(8) anY, = ko + 2n(dg/dtnx,) + v, i=1,...,k

The share equation system retains the same general form as before.
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Specification of Cost Relations

In the expected profit maximization problem with production uncertainty,
it is difficult to define the traditional cost function. The cost function is
the minimum cost of producing a given level of output with a given set of
prevailing factor prices. Output is random in our problem. The firm sets

input levels and thereby chooses a member of a family of output distributions.

max E(I) = E[P f(x)e - p'i_(]
X

To define a meaningful cost function, we must consider the basis for input

decisions. Inputs are chosen on the basis of expected output price and

expected factor prices. Therefore, we define the stochastic cost function
c*(§,§) as the minimum expected cost of producing an expected output level

of §. The firm now chooses the optimal level of output.

max E(T) = E[Pgy - ¢ (2,91, ¥ = E(£(x)e)
y

. * . et
Given ¢, we can define a system of conditional factor demands as

* * — -
9) x, =dc (p,y)/oE(p,)
and
y = ; + uO
é = E(E) + v.

u, =y - Ely]l = £(0)e - £(DEG) = £(x) (e - E(e))
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Relationships between observed cost, inputs, and factor prices are subject to
an errors—in—-variables interpretation. We note that if the mean part of
production technology exhibits constant returns to scale, then the cost
function is linear in ;.

- % -

X - =
c (p,y) = yc (p)

If factor prices were known to a firm at the time input decisions are
made (E(p) = p) and if the mean part of the production function exhibits
constant returns to scale, the relation between observed cost and observed

output would be given by

* * *
c =yc (p) -c¢ (E)UO

* '

= yc (p) + uy -

with variance-covariance matrix involving the parameters of the cost

function. The errors are now heteroskedastic. However, with a multiplicative
error model, y = §uo, we would find c*= yc*(p)uO which 1s log-linear.

The standard approach to the statistical analysis of factor demand
systems is to postulate a cost function, c(p,y) , and apply Shephard's Lemma
to obtain a system of conditional factor demand equations. Additive errors
are then appended to complete the statistical specification. This stochastic
specification is equivalent to the specification obtained by consideration of

the minimum expected cost problem if the following restriction holds
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* * *
(10) x, =0dc /3E(p,) _ = dc /3E(p;) +u,.
t Plamy, vruy iy

Linear conditional demands will satisfy the restriction

*
(11) X, =ay + 2 aijE(pj) =a, + Z aij(pj - Vj)
J J
= al + g aijpj + ul, u, = - } aij vJ

However, each of the regressors in (11) is correlated with the error term and
the least squares estimators are inconsistent.

Additive errors in the system of factor demand equations can be justified
in terms of measurement or observation error. In this line of argument
pursued by MacElroy (1981), the firm has complete knowledge of the production
technology and the econometrician has only partial knowledge of input levels

and productivity. The production function is given by
y = f(x1 T EpseeesXy T ek) + €0*

(g,eo) is known to the firm and not observed by the econometrician. The dual
“"stochastic” cost function

1

*
c (g,y,g,eo) = c(p,y - eo) +pe

is composed of the deterministic dual, ¢, to the production function, f, and a
linear combination of the observation errors. The associated conditional

demand functions
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are linear in the error terms. MacElroy works out the implications of this
additive error structure for the cost share equations as well. 1If the firm
faces production or price uncertainty, we cannot resort to a measurement error

argument to rationalize current additive error specifications.

Statistical Distribution of Cost and Output Shares

Consider the system of output shares consistent with the firm's decision

problem under uncertainty.

= gu; (compare [4])

= o8
(12) ¥, = E(e) x5 1

vi where v,
i

In order to proceed with a statistical analysis of (12), a form for the
distribution of Y; must be postulated. Output shares are always positive with
the mass of the distribution concentrated in the (0,1) interval. 1In
competitive industry, free entry ensures that expected profits fall to zero
but that actual profits may be negative, zero, or positive.8 With

particularly high factor prices and low productivity draws?

, 1t is possible
for output shares to be greater than one. More importantly, an adding—up

constraint cannot be imposed on the Y;.

*
; Yi = (g pixi)/(POy) = total cost/revenue # 1.

8As A. Zellner has pointed out, the popular An(lI) functional forms
assume profits are strictly positive, which is not consistent with the
assumption of competition.

9This corresponds to factor prices above their mean and low values of
€ , the technology shock.
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Many applied workers derive the deterministic system of output shares and
append an additive multivariate normal disturbance (see (6b) for Translog

example). TFor example, with three factors, we have a system of output share

equations

(13a) v, = £,(x,8) +¢
(13b) Y, = £,(%,8,) * g,
(13¢) Y, = f3(>_<,_9_3) + g4

with e = (e ,e,,85) ~ MVN(Q,T)

Imposing the deterministic adding—up constraint, the system of output shares

has a singular distribution and one of the share equations is dropped for
estimation purposes. As we have just observed in the stochastic problem, the
adding-up constraint is only approximately satisfied. Moreover, truncation of
the output shares on the left by assuming Y; > O may make the normal
approximation less than satisfactory. Of course, additive errors in the
output share equations are not consistent with a multiplicative error
specification in the production function,

Woodland (1979) recognizes the distributional problems associated with a
multivariate normal error structure and proposes to take {Yi} as Dirichlet
distributed over the k-1 dimensional simplex, sk-1 - {Yi; Yi > 0, 2 Yi < 1}.

i
The Dirichlet density for Yl,...Yk_l is

a,-1
-1 2
P(y)s ey [0) @ Hli(=1 4!
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with a; = fi(g,Qi), 0 = (91,...,9k). One of the convenient properties of the
Dirichlet distribution is that E(Yi) = fi(g,gi) so that the expectation of the
output share is the deterministic share. Careful study of (12) shows that the
expectation of the output share should not, in general, be equal to the

deterministic share

Il

E(Y,) = E(e) B—%{%{—;E(vi) = 298 . [E(e) E(v,)]

odnx,
i

= 5%%;; only if E(E)E(Vi) =1,
Also, the deterministic adding-up constraint will not be satisfied so
that {Yi} can only be approximately Dirichlet distributed. As discussed
below, however, the Dirichlet distribution imposes unreasonable restrictions
on the covariance structure of the shares.

A natural alternative to the Woodland-Dirichlet approach would be to take

logarithms of both sides of (12) and append an additive MVN error.
1
(14) lnYi =K + ln(ag/alnxi) + vy

It is now possible for lnYi to take on any value in (-»,0). However, most
of the mass of the distribution of {Yi} will be concentrated in the k-1
dimensional simplex. Since output shares are unlikely to be much greater than
one, lnYi would be skewed to the left. A possible transformation which may
eliminate some skewness would be to subtract A2nY from each equation. If

k

this transformation is applied to the system (13a-c), we obtain



-20-

]

(15a) ln(Yl/Y3) = fl(g,gl) - f3(§,93) + g
(15b) Rn(Y,/Y,) = £(x,8,) = £,(x,8,) + =,
(15¢) ln(Y3) = f3(§,93) + €4

It may be more reasonable to assume that this transformed system has a
multivariate normal distribution.

In the analysis of cost-share systems (see, for example, Berndt and Wood
[1975] and Gallant [1982]), a deterministic cost function is specified and the
deterministic cost share equations are derived. As noted above, severe
restrictions must be imposed to obtain additive errors and errors in variable
problems plague even the additive error specification. However, some
investigators maybe willing to adhere to the traditional approach derived from
deterministic theory for convenience. Even in the stochastic case, the

adding-up constraint is satisfied for every realization in the cost share

system, Z Si = Z [pixi/z ijj] = 1, Consider the system of cost shares dual
to (13a—z), ’ ?

(162) 5, = 8,(¥,2:8,v))

(16b) S, = gz(y,g,gz,vz)

(16¢) Sy = g3(y,2,93,v3)

with {Si} satisfying ) 5; = 1.
i
If we log all three equations and normalize by subtracting (16¢) from
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(16a) and (16b), we obtain by imposing addivity in the errors

|

1

[}
1]

(17a) an(S,/8,) = 4n(S,/1-8=8,) = h (y,p,0) + v

|

(17b) zn(sz/s3) 1—32) = hz(y,E,Q) + v,

Xn(Sz/l-S

) )

8,). We note that the left hand side of (17a and b) has

\} \}
Here Q_ = (_e_l) Qz) 23

1] 1]
the proper range for normality. If we assume that VsV, are bivariate
normal, then Sy and 8, have the Logistic-Normal distribution, a term

coined by Aitchison and Shen (1980). 1In the general %k factor case, we

normalize through the logistic transform (ln(Si/Sk)) and obtain a Logistic~—

Normal distribution over SK71.

If {Si} are logistic-Normal, their density function is given by
p(sl""’sk—l‘E’Z)

-1/2 k -1 1 '-1
= |2nz| (_Hlsk) exp{- 1 (n(s/s,) = p) T ()}
J=

k-1

for { €S .

S

Aitchison and Shen point out that the logistic-Normal can closely approximate
the Dirichlet distribution but remains more flexible. If {Si} are Dirichlet

distributed, cov(Si,Sj) <0 i # j. Negative covariances should outweigh

\}
positive covariances in systems of share equations. let § = (Sl""’sk)

1]
and 1 = (1, ...,1). The adding up constraint can be expressed as 1S = 1.

1] 1] 1]
This implies Var(iS) = O or E[(1 S - 1)(1 S -1) ] = 0. Here we
1]

1]
use E(1 S) = 1. Factoring out 1 from each term in the variance expression,

we have
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E[(1'§ - 1)1 - 1)'] = E[1 (8 - B(S$))(S - E(S)) 1]

=1 L1 = 0.

This implies that E1 = 0 or that E dij =0 ¥i. However, it seems overly

3
restrictive to assume that all off-diagonal elements of the covariance matrix
of shares are negative. The Logistic—-Normal does not impose severe covariance

restrictions. However, analytic expressions for the moments of the Logistic-

Normal random variables are not available as in the Dirichlet case.

Summary

Current approaches to the stochastic specification of production and cost
relationships are examined and found to be inconsistent with the firm's
maximization problem and the market equilibrium. Through investigation of the
firm's optimization problem under uncertainty, first order conditions are
expressed in terms of observable variables. This results in a new stochastic
specification for systems of output share equations with desirable statistical
properties. The rational expectations market equilibrium distributions of
price and output are found to be consistent with the stochastic specification
derived by considering only the firm's problem. Formulation of random cost
relationships is reviewed in light of the new specification results. Finally,
the Logistic-Normal distribution is proposed for the system of cost and/or

output shares.
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