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ABSTRACT

In this study we reformulate the classical theory of the firm in order to
account for the dynamic and stochastic effects pervading the real world. We
introduce, in a continuous time framework, monopolistic models of make-to-
stock firms under demand and production uncertainties. The basic assumption is
that cumulative production and cumulative demand are governed by two counting
stochastic processes with random intensities parameterized by production
capacity and price respectively. The optimal operating and/or pricing policies
(short-run decisions) and the optimal production capacities (long-run
decisions) are explored by the applications of a two-stage optimiztion device.
The influence of stochastic variability on the firm's behavior is examined.
The deterministic models and the diffusion models may be taken as the limits
of the stochastic models of the firm in this study. The conditions under which
the classic model or the diffusion model applies are better understood when

these limiting operations are carefully formulated.



1. Introduction

In the classical static microeconomics theory, the firm has just one
decision to make: Choice of a level of q, given its cost structure and market
environment. One may view q as either a rate of production or a rate of sales.
The two are identical and uniquely determined by a pricing decision which
equates marginal revenue to marginal cost. Of the many features of real-life
operating decisions missing in the classical "model”, perhaps the most
important is the uncertainty about demand and production. The sources of
variability in demand are quite obvious, and demand uncertainty is adopted in
many models while production uncertainty is usually ignored. In fact, in
practice, variability in production is just as common. It may arise from
mechanical failures, variable process yields, variable rates of absenteeism,
and so forth. Reitman (1971) gives a nice example of production uncertainty in
the making of integrated circuits. Batches of silicon slices are processed
through a number of steps including polishing, chemical etching, heating,
photoengraving, and testing. The number of steps, up to a maximum of 24,
varies for different circuits. Production yields of these circuits are very
low and unpredictable. As a result, a great deal of reprocessing is required
and it is difficult to meet delivery schedules. Production uncertainty enters
also in agricultural products and other high technology products.

The theory of the monopolistic firm under demand uncertainty has been
examined by Karlin and Carr (1962), Mills (1959, 1962), Nevins (1964, 1966),
and Zabel (1970, 1972, 1982). Uncertainty is introduced there by supposing
that in each time period demand is a random variable dependent on the price
chosen by the monopolist. De Vany (1976) is the first to introduce a queueing
model of make-to-order monopolists. But the study is restricted to the steady

state, i.e., the firm chooses a price and a rate of production to maximize its



rate of profits. Harrison (1982) investigates the diffusion limits of several
closely related production planning problems. Each involves a make-to-stock
producer who faces independently identically distributed demands over a
sequence of future periods. Harrison shows that under certain condition, the
production planning problem approaches a two-stage optimal control problem for
Brownian motion. The first stage in the limiting problem involves drift rate
selection for a Brownian motion, and its second stage is the instantaneous
control problem formulated and solved by Harrison-Taylor (1977).

This paper seeks to develop aspects of the theory of the firm with demand
and production uncertainties explicitly accounted for. A model of a make-to-
stock firm under uncertainty in a continuous time framework is introduced. The
basic assumption is that the cumulative production and the cumulative demand
in the deterministic theory are generalized to be two additive stochastic
processes parameterized by production capacities and price respectively. It
should be emphasized that we are talking only about stochastic variability,
assuming it is possible to hold inventory. In thg basic models currently under
discussion there are no seasonalities or trends - no dynamic effects except
those created by producers in response to stochastic variability.

It is really quite astonishing how much richer the theory of the firm
becomes when stochastic variability is introduced, even in a rudimentary way.
In particular, one obtains a fundamentally dynamic theory, with inventories
tying together production decisions and/or price decisions at different points
of time; there is also a distinction between static design decisions {(long-run
decisions) and dynamic operating decisions (short-run decisions). Finally, one
must distinguish among production capacity, actual production rate, demand
rate, and actual sales rate — all of these are the same in the classical model

and potentially different in a stochastic model.



Section 2 is devoted to the formulation of the basic modle. Three cases
are considered successively in Sections 3 - 5 under the assumptions that the
firm sets its price at time zero and keeps it unchanged over time, that the
firm sets its prices dynamically as time evolves, and that there are learning
effects. In each of these cases, the optimal production, price, and capacity
decisions are found. Section 6 shows that deterministic models and diffusion
models may serve as the limits of the models studied in this paper. This helps
one to better understand conditions under which the deterministic model or the

diffusion model applies.

2. Formulation

In the classical theory, after the initial pricing decision is made,
cumulative demand is given by D(t) = qt, and cumulative production is
identical. Let us generalize this by assuming that, given the capacity and
pricing decisions resolved at certain point of time, cumulative demand and
cumulative full-capacity production (or cumulative potential production) are
independent additive processes. Note that this is also a generalization of the
independent identical distribution assumption in the discrete time literature
since an additive process is an increasing stochastic process with stationary,
independent increments. One example is the deterministic process D(t) = qt.
Other simple examples are the Poisson processes. In fact, any additive process

L with L(0) = 0 has the form

n L(t) = qt + Y(t),

where



-]

t
(2) Y(t) = [ [ k(y)N(ds,dy),
00

q > 0 is a constant, N is a Poisson random measure with unit intensity (see
Appendix A for the definition), and k is a Borel function on [0,») satisfying

©

(3) [ (k(y)A)dy < =.

0
Note that any additive process is the sum of a deterministic part which is an
increasing linear function of t, and the stochastic part Y which is a jump
process. Compound Poisson processes are special cases where q = 0 and k(y) =0
for y > » > 0 (then, the positive constant A is called the jump rate of the
compound Poisson processes). Therefore, any additive process can be
approximated as closely as desired by a compound Poisson process. And Poisson
processes\are special cases of compound Poisson with k(y) =1 for y < A.

To have a theory that embraces pricing and facility design decisions, one
must have stochastic analogs for the firm's demand curve and cost function.
That is, we need a family of additive demand processes parameterized by price,
and a similarly parameterized family of production processes. The question
here is how one parameterizes demand and production as general additive
processes. The same question arises in the discrete time case in the form of
additive uncertainty versus multiplicative uncertainty. And there the
different formulations affect the results in a significant way. In the
interest of simplicity and concreteness, let us consider the special case
where both production and demand are Poisson processes with intensity o and B
respectively. In fact, providing "appropriate™ parameterization, the results
are not hard to extend to the compound Poisson case which represents an

approximation of the general additive case.



In the Poisson-Poisson example, let a be the average output rate when the
firm is working at its full capacity. The number a is an increasing function
of the designed capacity factors such as capital and labor invested. For
simplicity, we can view « as a primitive parameter which measures the capacity
of the firm and is determined at the beginning. The firm can change its
production "intensity"” within the range from O to « by using any fraction of
its designed capacity for any period of time. Translating this into
mathematical terms, we denote by @ the actual production rate that the firm

employs at time t. The cumulative output up to time t is represented by
t (xs

(4) A(t) = [ [ 7 N(ds,dy),
00

where N is a Poisson random measure with unit intensity. Mathematically, we
require that 0 < at< a for all t > 0, and that the process (at,t > 0) be
adapted (in a sense to be explained shortly). Note that if .= a for
all t > o, then A becomes the potential production process which is Poisson
with intensity «a.
Demands arrive according to another Poisson process, with rate

B(p), where B(p) is the demand function and p is the product price set by the
firm. For convenience, we say that the firm can control the average demand
rate through pricing and deal with the inverse demand function p(p)
where p(e+) is a deterministic decreasing function. Management is also assumed
to be free to reject potential sales. That means the firm may set the demand
rate to be zero whenever it is willing or is forced to do so. Denote by Bt the
average demand rate set by the firm through pricing at time t. Therefore, the

number of demands fulfilled up to time t is



t 0
(5) B(t) = f f N(ds,dy),
0 -B
s
where N is defined as in (4).
A make-to-stock producer is considered. Production flows into a finished
goods inventory, and Z(t) denotes the inventory level at time t. The basic

equation is:
(6) Z(t) = x + A(t) - B(v),

where x is the initial inventory level. Given the inverse demand p(s) and
value ¢ (selected at time zero), a feasible policy is defined as a pair of

stochastic processes (at,Bt) that jointly satisfy the following:

(7) (at) and (Bt) are left continuous with right-hand limits,
(8) (at) and (Bt) are adapted with respect to Z,

(9) 0 < at< a, Bt> 0 and Bt is bounded, for all t » O,

(10) Z(t) is non—-negative for all t.

Note that condition (8) implies that «_ and Bt are functions of (ZS, s < t).

t
This defines the information structure of the model in which the control that
the firm exercises at time t can only be based on the historical information
before time t. And the restriction imposed by (10) implies that backlogging is
not allowed. Sales which cannot be met from stock on hand are simply lost, and
this has no effect on future demand. Equation (4)—-(6) can be solved
simultaneously for any given feasible policy as shown in Figure l. Note that,

because of the possible dependence of «_  and Bt on the past history of Z until

t

t, the problem is in fact the simultaneous construction of Z, A, B,



(at), (Bt) (see Cinlar (1982) for details).
The cost structure under current consideration is as follows. The firm
incurs a fixed cost C(a) at time zero, which is used to build capacity a. We
assume C(a) is increasing and convex in «. The firm also incurs a linear
variable cost, say c¢ dollars per unit of actual production. A physical holding
cost of h dollars per unit time is incurred for each unit of production held
in inventory. Assume that the firm earns interest at rate r > 0, compounded
continuously, on funds which are not required for operations. Thus a cost or
revenue of one dollar at time t is equivalent in value to a cost or revenue of

exp(-rt) dollars at time zero. The time horizon is assumed to be infinite.

Therefore, given that the initial inventory is x, the expected revenue is

(11) TR(x) = E ([ e " p(B, )dB(t)},
’ 0

and expected cost is

H

(12) TC(x) = E {J e ""leda(t) + hz(t)de]} + ().
0

The risk neutral firm seeks to maximize expected profit
(13) M(x) = TR(x) - TC(x).

The firm's problem is to choose a production capacity a, and a pair of control
processes (at, Bt) to maximize II such that equations (4)-(6), and feasibility
constraints (7)-(10) are satisfied.

Using the integration by parts formila together with the inventory

equation (6), we have



Proposition l: For any given policy (at, Bt),

(14) N(x) = V(x) - 2 - ¢(a),
where
(15) v = B <TGy + BHas(e) - (e + DHaaw)1l.

The proposition says that with each unit produced to stock, the firm
actually incurs a physical cost ¢ and an opportunity loss % if this unit would
be stocked forever; with each unit sold from stock, the firm's actual gain
would be selling price p plus an opportunity gain 2 that is equal to the
opportunity loss if this unit would otherwise be stocked forever. The value
V(x) can be considered as the gross profit incurred by the operations after
time zero.

For ease of analysis, we may change the form of the value function V(x)
once more by noting the following important lemma (a more general result is

proved by Cinlar (1982)).

Lemma l: Suppose A and B are the counting processes defined above and G is a

left—continuous and right—limited stochastic process adapted to Z. Then,

t t
(16) E[f G(s)dA(s)] = E[] 6(s)a ds], and
0 0
t t
an E[] G(s)dB(s)] = E[foc(s)ssds].
0



t t
Note that (16) and (17) imply that A(t) - [ o ds and B(t) - f Bds are
0 0

martingales. We call processes A and B the counting processes with random

intensities (at) and (Bt) respectively.

Proposition 2: The value function

(18) V0 = B (S () + Bt (e + Da lae).

Proof: Apply the results in the above lemma noting that (e—rt

p(Bt)) is left-
continuous and right-limited process adapted to Z.

Q.E.D.

In fact, the firm's problem involves a two—stage optimization. The first
stage involves capacity selection for the plant. The second stage is to find
the optimal operating policy, the production decisions as well as pricing
decisions at any point of time. To solve the problem, we proceed in the
opposite direction. First, a unique optimal policy is found for each
value a. In this stage, it is sufficient to deal with V(x) since this is the
only part in the expected profit function that an operating policy would
affect. So, a family of operating policies and corresponding profit value
functions is obtained. Each of them is associated with a specific value @. In
the second stage, capacity a is selected to maximize the profit among the
profit value functions obtained in the first stage. This two-stage
optimization approach is the procedure that we shall follow throughout this

paper.

3. Pricing as a Design Decision




First, let us assume that the monopoly resolves its price decision at
time zero and price remains unchanged over time except that the firm is free
to reject demand at any point of time. This assumption can be applied to
situations where it is infeasible for the firm to vary the price frequently.
This is a special case of the basic formulation in Section 2 where the

feasible condition (2.9) is altered to be

(1) 0 < at< o, Bta {0,B}, for all t > O,
where B is a design decision variable, The firm's problem is to select a
selling price p (equivalently a potential demand rate B), a production
capacity o at the beginning, and a pair of control processes (at, Bt) to
maximize profit II.

Let us first examine the operating policy for given price p and
production rate a. In view of Proposition 2.2, the value function V(x) defined

in (2.15) with a fixed price p is of the form:
(2) V(x) = E {fme-rt(qﬁ - wa, )dt}
X7 t t ’

where q =

1l
o
+
'I
o
A
]
1"
0
+

By a submartingale argument, it can be shown that for fixed p (p > ¢)
and a , there exists a unique barrier policy with one critical number
b (inventory limit) which is optimal among all the feasible policies. A
barrier policy is such that, for some parameter b > O,
@, = a°1[0’b)(zt_) and Bt = B.I(O,b](zt—)’ for t » 0. . This means that

production is always at full capacity except that it ceases if the inventory

reaches level b and resumes when the inventory is deleted by one unit. Sales



are rejected only when products are unavailable in stock. This is really a
simple policy since it depends on only one number b if all other parameters
are fixed. In fact, under a barrier policy with parameter b > 0, the inventory
content process Z is a Markov Process with state space E = {0, 1, ..., b}.
Specifically, it is a birth and death process with finite state space or a
M/M/1/b queue. Almost all the desired results can be calculated explicitly as
shown in Lode Li (1984). The optimal barrier b can be then determined based on
these calculations.

For simplicity, we adopt the following notations:

o(x,y) = EX[e_rT(y)],

"

g(x) = (p,- 1)pIX - (p)- 1)p;‘, and

e(x) = (p,'= Dp* - (o]'- D,

"

where T(y) denotes the first time t > O at which Z(t) = y and p, and p, are
two roots of the quadratic equation
a 2 B

4) p = o -
a+f+r at+ B +r

Then the calculation shows that

g(b-x) e(x)
) 6(x,0) = ——ommmomm ,and 00x,b) = .
g(b) e(b)

As a function of the upper barrier b, 9(b.0) is strictly decreasing

and 9(=»,0) = 0, since function g(+) is strictly increasing and g(«) = .



This property is crucial in proving the existence and uniqueness of the

optimal barrier.

Proposition 1l: There exists an optimal barrier policy with one critical

number, inventory limit b, which is uniquely determined by the condition
(6) 0(b+1,0) < :{-’, and 0(b,0) > j;’.

Of course, b is a function of a, ¢, p, h and r, and the relation is
determined by condition (6). Furthermore, b is a step function with jump size
1, jump occurs only when 0(b,0) equals the ratio w/q, and b increases or
decreases by 1 at this point. The comparative statics regarding the optimal

inventory limit b is summarized in the following proposition.

Proposition 2: The optimal inventory limit b increases as @, ¢, or h

decreases.

Proof: Let

W
8(b,0) - -,
q

(9) f(b, a, ¢, p, h, r)

and then b jumps only at the points when f = 0. According to condition (6),
f(b) = 0 implies b~1 is optimal. If an increase in some parameter causes a
decrease in f at the point where f(b) = O, then b-1 remains optimal to the
right (i.e., f(b-1) > 0, and f(b) < 0), and b is optimal to the left (i.e.,
f(b) > 0 and f£(b+l) < 0). In this case b is a decreasing right continuous step

function of the parameter. Conversely, if an increase in some parameter causes



an increase in f, then b is optimal to the right (i.e., £(b) > 0, and £(b+l) <
0), and b-1 remains optimal to the left (i.e., f(b-1) > 0, and f(b) < 0). In

this case b is an increasing left continuous step function of the parameter.

Note that
of 1
(10) —-— = - -— < 0,
oc q
of p-c¢
(11) — = = =5 <0,
oh rq
-b, - -1, -1 -b_ -b
of  rpp,(pt oy ) Tt e, PRy
(12) - = o[ —e -b] <0 if b > 1,
da [ag (b)1° Tl oty b
g pl ) pl )
df (1)
and ———-- = 0.
oa

The result (12) simply comes from the inequality

1 +al- ab

a3 - D £ ~b<0 forb>1,a>0,a%#1l
1 -al+a

by letting a = pz/pl.

Let

Clearly, k(1) = 0. And k(¢) is strictly decreasing since

2ab(l + a)
(14) k(b+l) - k(b) =

-1<0 forb:>1.
a+aPHa +a?

Inequality (14) comes from the fact that (1 - ab*ly(1 - aP) > 0 for b > 1.



Derivatives (10) - (12) together with the argument at the beginning

concludes the proof. Q.E.D.

The economic intuition is quite clear. An increase in production
capacity o implies a higher frequency of production and a longer time for a
product staying in stock. Therefore the firm prefers a lower inventory
capacity to modify this effect and avoid higher financial cost. A decrease in
holding cost h or production cost c¢ causes an increase in inventory capacity
simply because the firm can afford a higher inventory and then has more sales.

However the effect of price on b is ambiguous. The source of this
ambiguity is quite obvious. An increase in p would have a positive effect on b
if B were unchanged. But a higher monopolistic price implies a lower demand

rate B which would have a negative effect on b. Note that b increases or

decreases as p increases according as %E > 0 or %g < 0. And
h
c + =
of dg_d T
(15) 3= = T2e=20(b,0) + ————==—5
d i h,2
o p o (p + 2
8.2 c + 3
= geZe==0(b,0) + ————2~3
P

where € is the price elasticity of demand ép-p/ﬁ. The first term on the right
side of (15) has a negative effect on b, while the second reflects the
positive effect. Equation (15) reveals that the impact of the price on the
optimal inventory limit depends on the price elasticity of demand. If the firm
increases the price, other things being equal, it tends to have a lower
inventory limit when facing a more elastic market, and a higher one when
facing a less elastic market. Similarly, the effect on b of a change of r is

also ambiguous. The only remark we can make is that b tends to decrease as r



increases if holding cost h and/or the profit margin p - ¢ is low and vice
versa.

So far, a unique optimal policy is obtained for each specific capacity

a and price p. This optimal policy is a barrier policy with only one critical

number b which is a function of a as well as p. Therefore the objective
function ( the present value of expected profit) under an optimal operating
policy is again a function of « and p, and an explicit form of it can be
obtained. Theoretically, the optimal capacity can be determined by applying
calculus to the explicit value function. But it is not a trivial job; the
difficulties come from the fact that the first order derivative of the
objective function with respect to o or p is not continuous because of the
discontinuity of b as a function of a or p. De Vany (1976) avoids the similar
problem by approximating b, which he refers to as the balking value, by a
continuous differentiable function. However we will show that under a more
rigorous mathematical treatment, the usual calculus and the marginal revenue-
marginal cost interpretations can still be applied.

To avoid notational complexity, the same notations are used for those
under the optimal barrier policy with capacity « and price p. The profit

function can be written as
h
(15) I(x) = V(x) - X - C(a)
= h
= + .-@_ ._(_l__. —_
V(x) qel T WeD T DX C(a),

where

16 ) = B, e(x) _ o g(b—x)
f A N S R R CE O

P1 P2 1 2



To study the properties of Il as a function of « or p, it is sufficient to
examine V since the other part is assumed to be nice.

Suppose Vb is the value function under a barrier policy with a fixed
upper barrier b. As a function of «, Vb is continuous and infinitely

differentiable. The value function under an optimal barrier policy V is

determined so that

(17) V=max (V, V5, cee, V2, eeule
This fact immediately indicates the continuity of V with respect to o.
Secondly, both V and V are increasing functions of «. Because, if the
upper limit of the production rate « increases to atd for some & positive,
then V or V can be at least as good by feasibly employing the optimal barrier
policy with capacity a. Furthermore they are strictly increasing in a.
Note that Vb is infinitely differentiable for any fixed b, and b is a
decreasing step function of «. Therefore at each point where b is
continuous, V, V, and hence II, is differentiable. At each discontinuity point
b

of b, the right and left derivatives exist and they are VZfl and Va

respectively. Simple calculation shows that

(18) Vb(x) - Vb—l(x) = Fe[0(b,0) - gl’

aBps pb (~e(x))g(b)

where F = S R 5 > 0, for b > 1.

b
rley = ey ey opp)

Together with the fact that b jumps only when



(19) 0(b,0) - g =0,
we have that at each discontinuity point @, of b,

(20) 1im V (x) = 1im V (x) = lim V (%) - lim V (x)
[e 4 [e 4
afao a#ao afao a#ao

21 - 77 o]

[6(b,0) - gloga; + F.gae(b,0>

o)
F"éa@(b,O) <0, for b > 1,

since F > 0 and %&e(b,O) < 0.

In sum,

Proposition 3: As a function of a, V is continuous, strictly increasing, and

differentiable except that

(21) limV_ > 1lim V ,
a a
a%ao afao

for each discontinuity point a, of b.

] . . * .
These facts guarantee the existence of the optimal capacity a , and its
occurrence at a continuous point of Ha' Let us define B' as the expected total

discounted actual sales,

(22) B'

E[f ¢ TdB(t)];
0



and A' as the expected total discounted actual production,
(23) A' = E[f e Tfaa(e)].
0

Then, the conditions for the optimal price and the optimal capacity are

as follows.

*
Proposition 4: The optimal price p* and the optimal capacity a satisfy the

conditions:

(
(e
-

hyay - hyyv o
(24) (p + r)Bp + B! (c + r)Ap

[
o

hypr - LY
(25) (p+ 2B - (c + DA -C_

It is useful to think of (24) and (25) as short- and long-run conditions.
Equation (24) is a "short-run” condition in the sense that the size of the
plant is fixed, and output and sales changes are accomplished by changing

price. The value B' and A' defined in (22) and (23) are functions of p. In

fact,
v - B, _ 2 1 1 2
(26) B r [1 —(b+1)_ _(b+1) ]’ and
P )
+

A - 0= (1 - o)X

(27) A' = g-[l _ 2771 1772
r b+l b+l ’
P1 ~ P2

where x is the initial inventory level, b is the optimal inventory limit.



Therefore B' and A' are functions of p only through B(p). It can be shown that
A' is an increasing function of B, and hence a decreasing function of p; and
B' is an increasing function of B when B is large relative to a, and hence a
decreasing function of p. However, the necessary condition for optimality (24)
shows that the optimal p* is always located at the decreasing stretch of B' as
a function of p. Because, otherwise, the left side of (24) would be stictly
positive, and then there would be room for improvement by changing p. Recall
that B(p) is the mean rate of potential demand, whereas B'(p) is the expected
total discounted demands which are actually fulfilled. For this reason, we
refer to B'(p) as the effective demand function defined on thé decreasing
portion, while B(p) is the potential demand function. Similarly, €' is the
price elasticity of effective long-term demand B'p-p/B', while ¢ is the price

elasticity of potential demand Bp°p/B.

Proposition 5: If B » a, then the price elasticity of effective demand ¢' is

smaller than the potential elasticity € in the absolute value.

Proof: ©Show only for zero beginning inventory. let

. a - p-z-l)p;'(b+l)_ (1 - p'i-l)p-z'(b+1)
(28) L= ~(b+1)_ -(b+1) '
P T P2
Then
(29) B' = E-(l - L'), and
' = olo - ' - ﬁ. |
(30) Bp Bp . 1-1L") _ Lp



= E%‘B' - E.Lé. e
Whence
a1 ferl == 22 o]+ B < e
since Lé >0 if B > a and Bp( 0. Q.E.D.

It is shown that B » a is also a sufficient condition for B' to be a
decreasing function of p where the price elasticity of effective demand €' is
defined. Therefore the condition B > a is not as restrictive as it seems to
be.

To compare with the deterministic theory, we can rewrite condition (24)

. . *
for optimal price p as
1 cA' + %(A' - B")

(32) pel + 2 = R B-bo,

BI
p

or equivalently,

h
cA' + =(A' - B!)
(33) pe(l + €.) .

®8

I
foi]

This is analogous to the traditional monopoly result in that marginal revenue
equals marginal cost, price is set in the elastic portion of the demand curve,

and is a markup over marginal cost, i.e.,

(34) pe(l + i) = c.



It is important to note, however, that the relevant marginal cost in the
stochastic model is a cost of total discounted actual sales, not of output as
in the classic theory, that it is a "short-run” cost in the sense that it is
the increase in cost accomplished by price changes leaving capacity fixed, and
that it is composed of two parts, production cost and inventory carrying cost.

Equation (25) is refered to as the long-run condition since it determines
the production capacity of the firm. It indicates that capacity is expanded to
the point where the expected marginal revenue achieved through reduction of
the inventory limits equals the marginal cost of capacity, and can be
rewritten as

cA' +Bar —3Y) + ¢
a_ra a a

(35) P = TT
B'
a

The monopoly sets the price equal to the long—run marginal cost of total
discounted actual sales. The numerator of the right side in equation (35) is
the present value of the full incremental cost of increasing capacity. The
cost consists of the short-term marginal cost of output times the increase in
average total production stream induced by greater capacity, the increase in
average total inventory carrying cost due to an increase in capacity, plus the
marginal cost of capacity building. This full incremental cost of capacity is
multiplied by I/B&, the increment to capacity required to induce a unit
increase in average total sales. In the standard model of monopoly, there is
no such distinction between short— and long-run conditions.

It is quite astonishing to see how different the solution is from that in
the deterministic theory where the production and demand rate are identical.
First, it is necessary to formulate actual versus potential production and

demand, and to introduce a buffer stock if possible. Secondly, with stochastic



variability, production does not always meet demand even in the sense of
expected value, that is, a* does not necessarily equal B. As a matter of fact,
the firm always has excess capacity in response to a stochastic situation in
the sense that the optimal capacity a* always exceeds the mean rate of actual
sales. Finally, seeking a stochastic theory of the firm, one inevitably
arrives at a dynamic, stochastic theory of the firm where the decision process
is split into long-run design decisions and short—-run operating decisions,
because of the central role of inventories in responding to stochastic

variability.

4. Dynamic Pricing

We are now in a position to solve the basic monopolistic model formulated
in Section 2 with the further generality that dynamic pricing is allowed.

In the investigation of the optimal operating production and pricing
decisions, presentation is facilitated by considering a large class of
problems known as semi-Markov decision processes. In this stage of
optimization, it is again sufficient to consider the value function V as

before, that is, subject to the constraints proposed in Section 2,

o0
-rt h h

(1) V(x) = max E {[ e "[p(g) + 2)dB(t) - (c + 1dA(D)]).

(e ,8.) %0 r r

t’"t

The existence of a finite stationary solution can be shown by the contraction
mapping fixed point theorem and/or the general theory of semi-Markov decision
processes (see Dynkin and Yushkevich (1979), Heyman and Sobel (1984), and Ross
(1970)). Here we simply assume that there exists a finite stationary optimal
policy and focus our attention on the qualitative properties of the solution

and economic implications.



In the context of an semi-Markov decision process, the recursive

equations for problem (1) can be specified as follows

) V(x) = max {cCa",p") + U(X)},
a'E[O,a] ’ B'E[O,Bl (0,0)(}{)]

where
' h o' h
(3) c(a',B') = ==——mmm- (p(B") + ) = —mmmmmmn (c +D),
o'+ Bv+ r o'+ Bv+ r r
' a!
(4) U(x) = ==mmmmm—m W (x-1) + =mmmmmemm V(x+l).
a|+ B|+ r a|+ B'+ r

An equivalent form of the recursive equations is

(5) rV(x) = max {p'[p(B") + % - AV(x)]
a's[O,a],B's[O,Bl(o m)(X)]

+ o' [AV(x+]l) - (c + %)]},

where AV(x) = V(x) - V(x-1).

In (5), it is easy to see for each x, the optimal a(x) is so determined

that

a, if AV(xt+l) > ¢ + =,
(6) a(x) = {
0, 1if AV(x+l) < c + =.

=3

ail=2

Suppose b is the smallest x such that AV(x+l) < ¢ +

afii=2

, then a(x) = «
for 0 € x € b-1, and a(b) = 0. That means for fixed a, the optimal operating
policy is still a barrier policy with one critical number b (inventory limit).

Furthermore, if V(x) is concave with respect to x, then b is uniquely



determined by the following conditions, .

(7) AV(B) > ¢ + %, and AV(b+l) < ¢ + %.
Recall that

(8) ) = V() - % - o).

Then

(9) NIGR) = AV(x) - B,

And condition (7) is equivalent to

(10) ATI(b) > ¢, and AI(b+1) < c.

The implication of condition (10) is that the firm will produce to stock at
its full capacity to a limit where the short—-term marginal cost of production
will exceed the present value of the total future profit increment of an
additional unit of output at the moment.

The optimal pricing policy can be solved by examining problem (5) in a
similar fashion. First note that the action space for (Bt) varies with the
state of the inventory level only when the inventory level is zero, or
say, Bt is forced to be zero whenever Z,._ = (. Suppose the inventory level is
not zero, and the upper bound B is sufficiently large so that the interior
solution is obtained for each x. The optimal demand rate B(x) set by the

monopoly through pricing is determined by the following short-run conditions:



(11) p + % + B'pB - AV(x) =0 for 1 <x < b,
or equivalently,
(12) p + B'pB - All(x) =0 for 1 < x £ b.

The following lemma showing that V(e) is strictly increasing and concave will

be proved first, and then the above results will be stated as a proposition.

Lemma l: For fixed a, the optimal value function V(e) is strictly increasing

and concave.
Proof: See Appendix B. Q.E.D.

Proposition l: For fixed a, the optimal operating policy ia a barrier policy

with one critical number b (inventory limit), that is
(13) a, = a°1[0,b)(zt—)’

where b is uniquely determined so that

(14) AI(b) > ¢, and AII(b+1) < c.

The optimal pricing policy is

b
(15) P(Bt) = X p(B(X)).l{X}(Zt"),
x=1



and B(x) is determined by the following short-run condition:
(16) p+ B'pB -~ All(x) =0 for 1 < x < b.

First notice that the above proposition does not serve as a tool for numerical
calculation. Obviously, values of V(x) depend on a(x) and B(x).

Reversely a(x) and B(x) depend on V(x). In fact, the values of V(x) can be
approximated as closely as desired through successive iterations by the
contraction mapping fixed point theorem. However it is a useful tool for the
qualitative analysis.

Equation (16) can be written as
1
Q7) pe(l +2) = Al(x),

where € is the price elasticity of potential demand, Bp°p/B. Here, M(x) is
the total expected future profit given that there are presently x units of
product on hand. Suppose one unit is sold at the moment, then the present
value of net profit for this unit is p + II(x-1) - I(x). Therefore AI(x) can
be interpreted as the marginal cost of increase in sales by one unit .

Equation (17) is analogous to the traditional monopoly result that
1
(18) pe (1l + E) = c.
Notice, however, that the marginal cost in the stochastic model is strictly a

short-run cost, and a cost of actual sales, since AIl(x) is the increase in

cost of selling one unit out of stock leaving capacity and optimal operating



and pricing policy unchanged for the future.

Lemma 1 shows that AV(x) is decreasing in x. And the second order
condition of optimality says p(l + é) is decreasing in B. Condition (17) which
determines B(x) then implies that B(x) increases as x increases, or p(B(x))
decreases as x increases. That is, the monopoly will reduce the price of its
product as the stock is piled up. Moreover, let pd be the traditional
monopolistic price determined in (18). Comparing it with the monopolistic
pricing policy in the presence of stochastic variability determined in (17),

using the fact that

(19) AI(x) > e for 1 < x < b,

it becomes obvious that

(20) p(8(x)) > p¢ for 1 < x < b.

Proposition 2: The inventory links the dynamic pricing decisions of a

monopoly under production and demand uncertainty. The price decreases as

inventory level increases and is always higher than under certainty.

The first result is just what one would expect. Intuitively one can think
that the more product piles up in inventory, the more incentive the monopoly
has to lower the price and encourage demand for the sake of reducing its
holding cost. This line of thinking may be misleading regarding the second
result. Following that, one may think that, with zero inventory, the firm
would have a best situation and simulate the deterministic pricing decision.

Then the second result becomes a surprise. However, the fact is that, because



of stochastic variability, the more product the firm has on hand, the better
off it is. This can be seen from the fact that II(x) - U(x~1) > c > 0

for 0 € x < b. Therefore, with lower stock on hand, the monopoly sets higher
price to discourage demand in order to increase the stock level anticipating
higher profit in the future. This procedure continues to the point at which
the inventory level reaches b and the marginal cost of actual sales

I(b) — II(b-1) is closest to that in the deterministic case, c. It is at this
point that the monopoly ceases production optimally and simulates the
deterministic pricing decision. In fact the monopoly price under certainty

provides a lower bound for the monopoly prices under uncertainty, that is,
(21) p(B(1)) > p(B(2)) > ... > p(p(6)) > p.

In sum, the monopoly transfers the cost of uncertainty to consumers by raising
price.

Regarding the optimal inventory limit b, which solely determines the
optimal operating policy, similar comparative statics results hold in the
dynamic pricing case.

Lemma 2: V(x) is continuous in a«, ¢, or h.

Proof: Through successive iteration. Q.E.D.

Proposition 3: The optimal inventory limit b decreases as a, c,or h

decreases.

Proof: See Appendix B. Q.E.D.



Before deriving the condition for optimal capacity, it is worth
mentioning that results similar to those in Proposition 3.2 hold in the
current model where dynamic pricing is allowed. These results assure that the
following long-run condition applies.

Still as before, let B' be the expected total discounted actual sales,

(22) B'

® —rt
E_{[ e "dB(t)};
X
0
A' be the expected total discounted actual production,

(23) Al

® -rt
E {[ e Tda(t)};
X
0
and TR be the present value of expected total revenue,

-rt

(24) TR = Ex{f e " p(B,)dB(t)}.
0

*
Proposition 4: The long-run condition that optimal capacity o satisfies is

b

(25) TR = cA' +
[04 [0 4 Tr

Aé - B&) +C .

Condition (25) says that the monopoly expands its capacity to the point where
the expected marginal revenue achieved through reduction of the inventory
limits equals the marginal cost of capacity which consists of production cost,
holding cost and capacity building cost induced by the increase in the

potential production rate.



5. The learning Effects

Learning effects can be introduced into the monopolistic model of the
preceding section. In most of the literature, learning effects are introduced
by the assumption that unit cost declines with the accumulated output or
production (see Henderson (1980), Abel (1979), Porter (1980), and Spence
(1981)). However, we attempt to introduce learning effects into the current
model in a more direct way in which productivity increases with cumulative
production.

Let a-e(At_) be the upper bound of the production rate that the firm can
achieve at time t, where 0(a) is increasing and concave in a,

0(0) > 0, and 6(a) + 1 as a + », Therefore a+*Q(0) is the capacity achievable
at time zero, and o is the capacity achieveable in the long-run. The economic
justification is simple. The firm builds up an ideal capacity level a at the
beginning, and its full capacity production rate gets greater and greater
approaching the ideal capacity as the management and labor become more and
more sophisticated through actually producing.

With a learning effect introduced this way, the modification in the basic
model formulation (Section 2) is that, the feasibilty constraint (2.9) is

altered to be

(1) 0 < at< a-G(At_), Bt> 0 and Bt are bounded, for all t > O.
The firm's goal is to choose a pair of control processes (at,Bt) and a long-
run achievable capacity a to maximize expected profit 1[I providing the learning
curve 0(s).

First, for fixed a, we investigate the optimal operating and pricing

policies of the monopoly in the presence of learning effects. Again it is



sufficient to consider part of the profit function which will be affected by

the control processes (a ). That is the value function V, and

ePe

(2) 1) = VG - & - o).
Subject to the constraints listed in Section 2,

(3) V) = max  E_{f [(p(p,)+D)aB(£)-(c+)aa(p)]}.
{at’Bt} 0
Sete Osatsae(At_), 0<Bt<51(0’w)(zt_).

To fit into the semi-Markov decision process framework, the state space
needs to be expanded to include cumulative production. Each state (x,a) is a
pair of non—negative integers with the first element representing the
inventory level and the second representing the cumulative output. The system
is said to be in state (x,a) at time t if the firm has x units of product in
stock and has produced a units up to that moment of time, or say, it has full
capacity production rate ad(a) to start with from time t on. And Iix,a) is
the present value of the expected total profit starting at level (x,a).

Therefore

) Vo) = e }Ex’a{foe_rt[(p(Bt)+%)dB(t) - (a1},
t’"t

s.t. 0O<q <o0(atA ), 0<Bt<Bl(0’w)(Zt_).‘

*
Denote by V (x,a) the value function with capacity « in the absence of

learning effects as in the previous section. Simple observations indicate:

*
Proposition 1l: V(x,a) increases and converges to V (X,a) as a increases to




%
infinity, where V (x,a) is the value function without learning.

Proof: Starting with (x,a+l), the firm would be at least as well off by
following the optimal operating policy with starting state (x,a). This is
feasible since 6(atl++) > 0(ate*). Then V(x,a+l) » V(x,a). In fact, the
improvement is strictly positive by having more experience (see Appendix C for

the proof).
Arguments similar to those given above indicate
* *
(5) V (x,00(a)) < V(x,a) < V (x,a), since

(6) a0(a) < adlate) < a.

Letting a + =, and then a®(a) » a, we have

* * *
(7 0 < lim [V (x,a) - V(x,a)] < 1lim [V (x,a) - V (x,00(a))] =0
ate ate
*
since V (x,a) is continuous in « as shown in Section 4.3. Q.E.D.

The recursive equations can be specified as

(8) V(x,a) = max {c(a',B') + U(x,a)},
{0<a'<a0(a), 0<B'<Bl(0 w)(x)}

where

\ al

9) c(a',B') = —m=mm—mm- “(p(B') + 2y = —mmmmmme “(c +2), and
al+ Bl+ r al+ Bl+ r



1 1

a

(10) U(x,a) = ————————= V(x-1,a) + ————————v V(x+1,a+1).
al+ B'+ r al+ Bl+ r

Equivalently,

(11) rV(x,a) = max {B'[p(B") + L; - AlV(x,a)]

{a',B"}

+ a'[AZV(x+1,a+1) - (c + %)]}

S.te. a'E[O,a@(a)], B'E[O’Bl(o,m)(x)]’

where
(12) AlV(x,a) = V(x,a) — V(x-1,a), and
(13) A%V(x,a) = V(x,a) - V(x-1,a~1).

By examining (11), it is easy to see that the optimal production policy
is again a barrier policy but the upper barrier is no longer a single number
as before. As a function of time t, the optimal inventory limit b(At—) is
stochastic since the accumulated production is stochastic. As a function of
cumulative output, b(*) is a deterministic function and is defined by the
following conditions:

h

(14) AZV(b,a) > e+ %, and AZV(b+1,a) <e+ 3

or equivalently



(15) AZH(b,a) > ¢, and AZH(b+l,a) <ec

where AZH(b,a) = NI(b,a) - MO(b-1,a-1), providing that AZH(x,a) is decreasing in
x. That is, the firm will produce to stock at its full capacity achievable up
to a limit where short-run marginal cost of production will exceed the present
value of the total future profit increment of an additional unit ot output at
the moment.

Suppose B(x,a) is the optimal solution for the sales rate in problem
(11). Obviously, B(0,a) = 0 for a > 0. Assume an interior solution exists for
each state (x,a) with x > 1 and a > 0. Then, the optimal sales rate B(x,a) set
by the monopoly through pricing is determined by the first order condition:

(16) p + % + Bep, - A1V(x,a) =0 for 1l < x < b(a) and a > O,

B

*
Propositon 2: The optimal inventory limit b(a) decreases to b (a_) as a

*
increases to infinity. Here b (a) is the optimal inventory limit with

capacity a if there are no learning effects.
Proof: See Appendix C. Q.E.D.

The monopoly lowers the inventory limit gradually as its production experience
grows. One can also expect results similar to those in the absence of
learning. The downward-sloping optimal inventory limit b(e) will be shifted
upward as h, ¢, or a decreases. We just skip the tedious proofs.

The results regarding the optimal production and pricing policies are
summarized in the following proposition, with the fact that AIV(-,a) is

decreasing proved in Appendix C.



Lemma l: For fixed a and ©(¢), the optimal value function V(e+,a) is strictly

increasing and concave for every a > 0.

Proposition 3: For fixed long-run achievable capacity a and learning

curve 0(e¢), the optimal production policy is a barrier policy with inventory

limit b(e), a decreasing function of cumulative output, that is

o b(a)
(17) a, = £ T ae0(a)-l (Z,_,A, )
20 x=0 {x,a}""t=""c-"2
where b(a) is uniquely determined so that
2 2
(18) ATi(b,a) > ¢, and ATI(b+1,a) < c.
The optimal pricing policy is
» b(a)
(19) p(Bt) = E § p(B(X,a))'l{x,a}(Zt_,At_),
a=0 x=1

and B(x,a) is determined by the following short-run condition

(20) p + B'pB— Alﬂ(x,a) = 0, for each xe[l,b(a)], a »0.

To investigate the properties of the optimal pricing policy with

learning, rewrite conditon (20) as

(21) pe(1 + ) = alnx,a),



where Alﬂ(x,a) = NI(x,a) - N(x—1,a) and e is the price elasticity of potential
demand. The difference, Alﬂ(x,a), is the present value of the total future
profit reduction due to taking one unit out of the stock. It can be
interpreted as the (opportunity) marginal cost.of increase in sales by one
unit. Therefore, equation (21) is again an analogue to the traditional

monopoly result

(22) pe(1 + é) = c.

By the above lemma, AlV(-,a) is decreasing for any fixed a » 0. This implies
(23) p(B(x,a)) < p(B(x-1,a)), for 1 < x < b(a) and a > O.

Therefore the effect that in a stochastic environment the monopoly with lower
stock on hand has the tendency to set a higher price to discourage demand and
hence to achieve higher inventory level anticipating higher future profit,
still exists as that in the absence of learning. However, this tendency is
moderated by the learning effects. In the presence of learning effects, the
more the firm produces, the higher production rate is achieved, and the better
off it will be. To see this, note that Azﬂ(x,a) is a sum of two positive

terms, i.e.,
2 1 3
(24) A TI(x,a) = A TI(x,a) + A"II(x-1,a).
The first term of the right side in equation (24), Alﬂ(x,a) = IKx,a)

- II(x-1,a), is the marginal cost of actual sales determining the optimal

prices, while the second term, A3H(x—1,a) = I(x-1l,a) - I(x-1l,a-1), reflects



the profit gain by learning. The firm chooses the optimal inventory limit b(a)
by jointly considering these two effects (see condition (17) in Proposition

3). In fact, b is optimal if

(25) AZH(b,a) > ¢, and AZH(b+l,a) £ C.

The purpose of proposing the stronger condition (17) is simply to obtain the

uniqueness of b(a). Suppose b is so chosen that

(26) atnep,a) = c.
Then
: 1 2 3
27) A TI(b,a) = ATI(b,a) - All"(b-1,a) < ¢,

and
d
(28) p(B(b,a)) < p
where pd is the monopoly price under certainty satisfying (22). The

interesting point here is that the monopoly with stochastic variability tends
to transfer the cost of uncertainty to consummers, however, the presence of
learning effects moderate this transfer. Therefore the monopoly price with
uncertainty as well as learning effects does not always dominate the monopoly
price under certainty. When the firm becomes more and more mature, the effect

of learning is weaker and weaker, and this moderation diminishes gradually.



Proposition 4: The inventory and cumulative production link the dynamic

pricing decisions of a monopoly under uncertainty and with learning effects.
The price decreases as inventory level increases if the maturity level is
fixed. And the tendency that the monopoly transfer the cost of uncertainty to

consumers is moderated by the learning effects.

Similar to the case without learning effects, the long-run condition equating

the long-term marginal revenue and marginal cost of capacity determines the

%
optimal capacity a .

*
Proposition 5: The long-run condition that optimal capacity a satisfies is

h
= 1 RBear — pt
(29) TRa CAa + r(Aa Ba) + C

where TR = E{[ e_rtp(Bt)dB(t)},
0

A' = E{f e—rtdA(t)}, and
0

v o]
i

E{[ ¢ T"dB(t)}.
0

6. Limits

Close to the special case described in section 3 is a diffusion model of
inventory and production control studied by Harrison-Taylor (1978) and
Harrison (1982). There the difference of cumulative potential input and
cumulative demand is modeled by a Brownian motion (with general drift and
variance parameters), and the optimal policy (involving a single critical

number b*) is very simple. I have shown that this diffusion model represents



the limit of the model described earlier as certain parameters approach
critical values (see Lode Li (1984) Chapter 6). This helps one to better
understand conditions under which the diffusion model applies, and justifies a
very tractable approximation for the general additive process formulation
under such conditions. On the other hand, a sequence of the Poisson—Poisson
problems formulated in Section 2 will converge to a deterministic model as in
the classical theory which can be solved by the calculus of variation
technique, as certain parameters approach some limits, keeping the variance
approaching zero. This justifies another approximation for the models with

uncertainty by those deterministic ones under some other conditions.

7. Conclusion

Uncertainty has been long discussed in economic literature, and nowadays
no one would doubt that uncertainty plays a decisive role in the economics
theory and its applications to the behavior of business firms in the real
world. This paper contributes to the reformulation of the classical theory of
the firm to account for uncertainty and to the exploration of the optimal
decisions adopted by the firm in coping with the stochastic wvariability. The
uncertainty is introduced by assuming that cumulative production and
cumulative demand are two counting stochastic processes with random
intensities parameterized by production capacity and price respectively. This
is a matural generalization of the classical model of the firm which in fact
represents the limit of the stochastic counterparts as the uncertainty
diminishes. This formulation recaptures many important missing "pieces”™ in the
classical theory, such as the distinction among production capacity, actual
production rate, demand rate and actual sales rate; the distinction between

static design decisions (long-run decisions) and dynamic operating decisions



(short-run decisions), etc. In particular, one obtains a fundamentally dynamic
theory, with inventory tying together production decisions and/or pricing
decisions at different points in time, by the application of the stochastic
optimal control theory. More importantly, we have shown that the continuous
time modling is as clean and tractable as modles in discrete time.

There are many other interesting questions, both mathematical and
economic, that might be explored in the continuation of this initial work. Our
model can be generalized to formulation where cumulative potential production
A and cumulative demand B are abitrary additive processes. Suppose, for
example, the primitive processes are compound Poisson with absolutely
continuous jump size distributions. My conjecture is that the optimal
operating policy would still be a barrier policy with one critical parameter
b*. But, it is not clear how families of potential processes would be
"parameterized” by basic price and capacity decisions. This problem is not
surprising — in real life there may be many different "kinds of capacity”, and
one can also abstract different "kinds of business™ with different market
strategies. Secondly, the models in this study seem appropriate in markets
characterized by non-durable goods since there is no trend in the demand
patern. They can be generalized to be appropriate in markets characterized by
durable goods by assuming that the demand rate is a function of price as well
as cumulative demand. Thirdly, the variable cost of production is assumed to
be linear, and there is no cost associated with varying the production rate.
The linearity of variable cost can be reasonably justified since we associate
this cost with each unit actually produced and can incorporate the ecomomy of
scale into the capacity cost function. But varying the production intensity is
usually costly. The cost of varying the workforce size may be ignored in

operating decisions by assuming that the workforce size is fixed and the



workers are paid salary. But there is still a set—up cost associated with each
re-start of production. Finally, the models studied so far are models of
production under uncertainty. Efforts are focused on investigating the optimal
decision rules that the firm would follow in the presence of stochastic
variability. the question is how these models can be extended to an
equilibrium setting.

In sum, this study opens a new way of looking at the firm's problem under
uncertainty, and there are many potentially fruitful directions for future

research.
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AEEendix A

Definition 1l: Let (Q, M, P) be a complete probability space, and let (E, E)

be a measurable space. A random measure M on (E, E) is a transition kernel

from (Q, M) into (E, E). In other words, M maps
Q x E into §+, w > M(w,B) is M-measurable (namely, a random variable) for

each B ¢ E, and B » M(w,B) is a measure on (E, E) for each w & Q.

Definition 2: A Poisson random measure N on R; x R is an integer—valued

random measure such that, for any collection {Bl, crey Bn} of disjoint Borel
subsets of R, the processes t + N([o,t] x Bl)’ eeey, t > N([o,t] x Bn) are

independent Poisson processes. It is said to be standard or with unit

intensity if the expectation of N(C) is Leb(C) for every Borel set C R, x R.

AEEendix B

Proof of Lemma 4.l: Pick a value b such that AV(x) > c + % for 1 < x < b, and
AV(b+l) €< ¢ + %. The existence of such a finite b > 1 is assumed. Denote the
solutions for (4.5) by a(x) and B(x). Then

h h
(1) rV(x) = B(x) [p(B(x)) + i AV(x)] + a(x)[AV(x+l) - (c + ;)],

@) rV(x-1) = B(X‘l)[P(B(x-l))+% - AV(x-l)]+a(x-1)[Av(x)-(c+§)]

> B Ip(BG) + 1 - av(x-1)] + a() [V (x) - ()],



Subtract (2) from (1),

(3) rAV(x) € -8(x)[AV(X) = AV(x-1)] + a(x)[AV(x+l) — AV(x)].

Note that a(b) = 0 since AV(b+l) < c +

=2

, and let x = b in (3),

(4) B(b)[AV(b) — AV(b-1)] < = rAV(b) < 0, since AV(b) > c+% > 0.
Suppose AV(xt+l) — AV(x) < 0 holds. Again (4) implies that

(5) B(x)[AV(x) = AV(x-1)] < - rV(x) + a[AV(x+l) - AV(x)] < O, or

(6) AV(x) — AV(x-1) <0, for x> 1.

the inductive argument leads to

(7) AV(x) = AV(x-1) < 0, for 1 < x < b, Q.E.D.

Proof of Proposition 4.3: Show only for b as a function of «.

Let b(a) be the optimal upper barrier, and V(x,a) be the optimal value
function parameterized by capacity a. Suppose that, for some @, there exists a
positive sequence {Bn} decreasing to zero such that b(a—én) < b(a) holds for

each n. Then b(a—&n) + 1 < b(a), and this implies
(8) V(b(a—én)+l,a) - V(b(a-&n),a) > e+ %, for each n,

by condition (4.7) which determines b(a) and the concavity of V(e,a). But



since V(x,+) is continuous, (8) implies that
h
9 V(b(a—&n)+1,a-6n) - V(b(a—&n),a—én) >c + = for n large.
This contradicts condition (4.7), which says
.
— — - — — +—'
(10) V(b(a 6n)+1,a 6n) V(b(a 6n),a 6n) < c m
The counter statement of the above hypothesis is that for every
@, there is & > 0 such that for 0 < & < &, b(a=8) > b(a) holds.
Therefore, b(+) is decreasing.
Suppose a jump occurs at a, or b(a_) > b(a). Then for § small,

(11) V(b(a)+1l,a~8) - V(bla),a~8) > c + g.

Let & go to zero,

(12) V(b(e)+1,@) - V(b(a),a) > ¢ + L.
But condition (4.7) implies

(13) V(b(a)+1,a) - V(b(a),a) < c + ‘;‘
So,

(14) V(b(@)*1,a) - V(b(a),a) = ¢ + I
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h .,
Hence a further result that b jumps only when V(b+l) - V(b) = c + : is

proved.

Q.E.D.

Appendix C

*
Proof of Proposition 5.2: The convergence of b(a) to b (o_) follows directly

*
from the convergence of sz(x,a) to AV (x,a). In the limit, there are two

cases:

(1)

(2)

depending

case, lim
ate
Note

(3)

and

(4)

lim AZV(b(a),a) >c + h, and
N r

agTe

1im AZV(b(a),a) =c + %, and

ate

on whether a is a continuity
*
b(a) = b (a_).

that for x > 1,

rV(x,a) = B(x,a)[p(B(x,a)) +

lim AZV(b(a)+1,a) <c+ %,

ate

lim A%V (b(a)+1,a) < c + *;‘

ate

*
point of b (a) or not. But, in either

% - AIV(x,a)]

+ a(x,2) A7V (x+1,a41) = (e + D),

rV(x,a-1) » B(x,a)[p(B(x,a)) + % - AIV(x,a—l)]

+ alx,a-1) [A%V(x+l,a) - (c + g)].



Subtracting (4) from (3) and letting x = b(a), we have
- B(b(a),a)[A'V(b(a),a) - AlV(b(a),a-1)] > rIV(b(a),a) - V(bla),a-1)]
2 h
+ a(b(a),a-1)[A"V(b(a)+l,a) - (c + ;)] > 0,

since a(b(a),a) = 0, V(x,a) - V(x,a-1) > 0, and

a(x,a)[AZV(x+1,a+1) - (c + %)] > 0., This implies
(5) AtV (b(a),a) - AMV(b(a),a~1) < 0, for bla) > 1.
The difference AZV(x,a) can be written as

(6) AZV(x,a)

V(x,a) - V(x-1,a-1)

[V(x,a) = V(x~1,a)] + [V(x-1,a) - V(x-1,a-1)]

AIV(x,a) + A3V(x—1,a)

where A3V(x,a) = V(x,a) ~ V(x,a-1). In view of the proof of Proposition

5.1, A3V(x,a) decreases to zero as a increases. Therefore,
2 2 h
(7) A“V(b(a),a-1) > A"V(b(a),a) > c + z°

And this implies b(a-1) > b(a) by condition (14). Q.E.D.
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Proof of Lemma 5.l1:: Observe that

8) rV(x,a) = B(x,a) (p(B(x,a)) + ) - alx,a(c + D)
+ B(x,a)V(x-1,a) + alx,a)V(x+l,a+l) - (alx,a)+B(x,a))V(x,a), and
9 rV(x-1,a) > B(x,a)(p(B(x,a)) + ) = alx,a)(c + D)
+ B(x,a)V(x-2,a) + a(x,a)V(x,a+l) - (a(x,a) + B(x,a))V(x-1,a).
Combining these two inequalities, we obtain
(10) (x(x,a)+B(x,a)+r)(V(x,a) - V(x-1,a))
< B(x,a)(V(x-1,a)-V(x-2,a)) + a(x,a)(V(xt+tl,a+l)-V(x,a+l))
Similarly,
(11) (a(x-2,a)+B(x=2,a)+r)(V(x~1,a) — V(x~2,a))
> B(x-2,a) (V(x-2,a)-V(x=3,a)) + a(x-2,a)(V(x-1,a)-V(x-2,a))
Subtract (11) from (10),
(12) (a(x,a)+5(x,a)+r)[Alv(x,a)—Alv(x—l,a)]

< B(x=2,a) AV (x-1,2)-A 1V (x-2,2) 1+a(x, a) [AV(x+1, a+1) =21V (x,2+1) ]



+ (a(x,a)-a(x—Z,a))[AIV(x,a+1)—A1V(x—1,a)]

where AIV(x,a) = V(x,a) - V(x-1,a).

Suppose that x < b(a)-1, i.e., a(x,a) = a(x-2,a) = ad(a). Then
13) (alx,a)+8(x,a)+r) [AWV(x,2) - aAlV(x-1,a)]
< B(x=2,a) [ANV(x-1,a) - Alv(x-2,a)]
+ a(x,a)[AIV(x+1,a+1) - Alv(x,a+1)].

Double induction is used here. First note that V(es,a) is concave if a is
sufficient large following the fact that V(x,a) converges to V(x,a) (the value
function with capacity o« in the absence of learning) and V(e,a) is strictly
concave. It suffices to induce AIV(x,a) - AIV(x—l,a) < 0 for 2 < x < b(a)
given that AIV(x,a+1) - AIV(x—l,a+1) < 0 for 2 < x < b(atl), for each a > 0.
To show this, second induction argument is employed.

Let x = 2 in inequality (12),
(14) (a(x,a)+B(x,a)+r) [alv(2,a) - alv(1,a)]
< a(2,a) [A1V(3,a+1) - AlV(2,a+1)] < O
by the hypothesis that V(e,a+l) is concave and that B(0,a) = O.

Suppose that AIV(x—l,a) - AIV(x—Z,a) < 0 and AIV(-,a+1) is decreasing.

Then (12) implies



(15) AlV(x,a) - AlV(x—l,a) < 0, for 2 < x < b(a)-1.
Let x = b(a) in (10), and note that o(b(a),a) = 0,
(16) rAlv(b(a),a) < —B(b(a),a)[Alv(b(a),a) - AlV(b(a)‘l,a)]-

1
Therefore, A V(b(a),a) - AlV(b(a)—l,a) < 0 since AIV(x,a) > 0 as proved above.

This completes the proof. Q.E.D.
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Figure 1. Simultaneous construction of Z, A, B, a and R.



